37
5.3 Smartboard filled in lesson.notebook 1 January 30, 2015 Logarithmic, Exponential, and Other Transcendental Functions 5 Copyright © Cengage Learning. All rights reserved.

Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

1

January 30, 2015

Logarithmic, Exponential, and Other Transcendental Functions5

Copyright © Cengage Learning. All rights reserved. 

Page 2: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

2

January 30, 2015

Inverse Functions

Copyright © Cengage Learning. All rights reserved. 

5.3

Page 3: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

3

January 30, 2015

• Verify that one function is the inverse function of another function.

• Determine whether a function has an inverse function.

• Find the derivative of an inverse function.

Objectives

Page 4: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

4

January 30, 2015

Inverse Functions

What do you knowabout inverses?

Page 5: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

5

January 30, 2015

Inverse FunctionsThe function f (x) = x + 3 from A = {1, 2, 3, 4} to B = {4, 5, 6, 7} can be written as

By interchanging the first and second coordinates of each ordered pair, you can form the inverse function of f. This function is denoted by f –1. It is a function from B to A, and can be written as

Page 6: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

6

January 30, 2015

The domain of f is equal to the range of f –1, and vice versa, as shown in Figure 5.10. The functions f and f –1 have the effect of “undoing” each other. That is, when you form the composition of f with f –1 or the composition of f –1 with f, you obtain the identity function.

f (f –1(x)) = x andf –1(f (x)) = x

Figure 5.10

Inverse Functions

Page 7: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

7

January 30, 2015

Inverse Functions

Page 8: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

8

January 30, 2015

Here are some important observations about inverse functions.

1. If g is the inverse function of f, then f is the inverse    function of g.

2. The domain of f  –1 is equal to the range of f, and the    range of f  –1 is equal to the domain of f.

3. A function might not have an inverse function, but if it    does, the inverse function is unique. 

Inverse Functions

Page 9: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

9

January 30, 2015

You can think of f   –1 as undoing what has been done by f. For example, subtraction can be used to undo addition, and division can be used to undo multiplication.Use the definition of an inverse function to check the following.

f (x) = x + c and f  –1(x) = x – c are inverse functions of each other. 

f (x) = cx and                             , are inverse functions of each other.

Inverse Functions

Page 10: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

10

January 30, 2015

Example 1 – Verifying Inverse Functions

Show that the functions are inverse functions of each other.

                           and Solution: Because the domains and ranges of both f and g consist of all real numbers, you can conclude that both composite functions exist for all x.The composition of f with g is given by

Page 11: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

11

January 30, 2015

The composition of g with f is given by

cont'dExample 1 – Solution

Page 12: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

12

January 30, 2015

Because f (g(x)) = x and g(f (x)) = x, you can conclude that f and g are inverse functions of each other  (see Figure 5.11).

Figure 5.11

Example 1 – Solutioncont'd

In Figure 5.11, the graphs of f and g = f  –1 appear to be mirror images of each other with respect to the line y = x. The graph of f  –1 is a reflection of the graph of f in the line  y = x.

Page 13: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

13

January 30, 2015

The idea of a reflection of the graph of f in the line y = x is generalized in the following theorem.

Figure 5.12

Inverse Functions

Page 14: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

14

January 30, 2015

Existence of an Inverse Function

Page 15: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

15

January 30, 2015

Existence of an Inverse FunctionNot every function has an inverse function, and Theorem 5.6 suggests a graphical test for those that do—the Horizontal Line Test for an inverse function.

This test states that a function f has an inverse function if and only if every horizontal line intersects the graph of f at most once (see Figure 5.13).

Figure 5.13

Page 16: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

16

January 30, 2015

The following theorem formally states why the Horizontal Line Test is valid.

How can we check to see if a function is monotonic (always increasing or always decreasing)?

Existence of an Inverse Function

Do the derivative and see if it has any maximum or minimum points.If it does, it can’t be monotonic.

Page 17: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

17

January 30, 2015

Example 2 – The Existence of an Inverse Function

Which of the functions has an inverse function?a. f(x) = x3 + x – 1                     This equation has no solution                                                   so f(x) has no extreme values.                             The slope is always positive, so 

                          The function is monotonic and                            has an inverse function.

b. f(x) = x3 – x + 1

                          This equation has two solutions                          and the function has a maximum                           at            and a minimum at         .                          It increases, then decreases, and

                              increases again. Therefore, its                                                   inverse is not a function.

Page 18: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

18

January 30, 2015

Example 2(a) – SolutionFrom the graph of f shown in Figure 5.14(a), it appears that f is increasing over its entire domain. 

To verify this, note that the derivative, f '(x) = 3x2 + 1, is positive for all real values of x. 

So, f is strictly monotonic and it musthave an inverse function.

Figure 5.14(a)

Page 19: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

19

January 30, 2015

From the graph of f shown in Figure 5.14(b), you can see that the function does not pass the horizontal line test.

In other words, it is not one­to­one.For instance, f has the same valuewhen x = –1, 0, and 1.

f (–1) = f (1) = f (0) = 1

So, by Theorem 5.7, f does nothave an inverse function.

Figure 5.14(b)

Example 2(b) – Solutioncont'd

Page 20: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

20

January 30, 2015

Example  – Testing Whether a Function Is One­to­One

Show that the sine function f(x) = sin x

is not one­to­one on the entire real line. Then show that             [–π/2, π/2] is the largest interval, centered at the origin, on which f is strictly monotonic.

Suppose you are given a function that is not one­to­one on its domain. 

By restricting the domain to an interval on which the function is strictly monotonic, you can conclude that the new function is one­to­one on the restricted domain.

Example:

Page 21: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

21

January 30, 2015

Example  – SolutionIt is clear that f is not one­to­one, because many different x­values yield the same y­value.For instance,

sin(0) = 0 = sin(π)

Moreover, f is increasing on the open interval (–π/2, π/2), because its derivative

f'(x) = cos x

is positive there.

Page 22: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

22

January 30, 2015

Finally, because the left and right endpoints correspond to relative extrema of the sine function, you can conclude that f is increasing on the closed interval [–π/2, π/2] and that on any larger interval the function is not strictly monotonic (see Figure 5.16).

Figure 5.16

Example  – Solutioncont'd

Page 23: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

23

January 30, 2015

The following guidelines suggest a procedure for finding an inverse function.

Existence of an Inverse Function

Steps 2 and 3 above can be interchanged: Step 2: Interchange x and y.Step 3: Solve for y.

Page 24: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

24

January 30, 2015

Example 3 – Finding an Inverse Function

Find the inverse function ofSolution:f is increasing overits entire domain,            .

because it's derivative is positiveon the domain of f.So, f is strictly monotonic and it must have an inverse function.

Page 25: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

25

January 30, 2015

Example 3 – SolutionTo find an equation for the inverse function, let y = f (x) and solve for x in terms of y.

                                                                                                             (or you can                                                                                                               switch x & y first                                                                                                               and then solve                                                                                                               for y

cont'd

Page 26: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

26

January 30, 2015

The domain of f ­1 is the range of f which is          .

You can verify this result as shown.

Example 3 – Solutioncont'd

Page 27: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

27

January 30, 2015

Example 3 – Finding an Inverse Function

Figure 5.15

Page 28: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

28

January 30, 2015

Derivative of an Inverse Function

Page 29: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

29

January 30, 2015

Derivative of an Inverse FunctionThe next two theorems discuss the derivative of an inverse function.

Page 30: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

30

January 30, 2015

Example 3

.

Figure 5.15

Page 31: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

31

January 30, 2015

Let f(x) = x2 (for x ≥ 0) and let                    . 

Show that the slopes of the graphs of f and f ­1 are reciprocals at each of the following points.a. (2, 4) and (4, 2) b. (3, 9) and (9, 3)

Solution:The derivative of f and f  

–1 are given by

f'(x) = 2x and a. At (2, 4), the slope of the graph of f is f'(2) = 2(2) = 4.    At (4, 2), the slope of the graph of f  –1 is

Example 4 – Graphs of Inverse Functions Have Reciprocal Slopes

Page 32: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

32

January 30, 2015

Example 4 – Solution

b. At (3, 9), the slope of the graph of f is f'(3) = 2(3) = 6.

    At (9, 3), the slope of the graph of f ­1 is

So, in both cases, the slopes are

reciprocals, as shown in Figure 5.18.

Figure 5.18

cont'd

Page 33: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

33

January 30, 2015

Derivative of an Inverse Function

Example: find g'(9) from the given graph:

Solution: Since the slope of f(x) at (3, 9) is 6,

               Then the slope of g(x) at (9, 3) is 1/6.g(x)

f(x)

f(x) & g(x) are inverse functions

Page 34: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

34

January 30, 2015

Example 5 – Evaluating the Derivative of an Inverse Function

(Find x by guess and check)

Leta. What is the value of f  –1(3)? 

b. What is the value of (f  –1)'(3)?

Solution:Notice that f is one­to­one and therefore has an inverse function.

a. Because f (x) = 3 when x = 2, you know that f –1(3) = 2

Page 35: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

35

January 30, 2015

Example 5 – Solutionb. Because the function f is differentiable and has an       inverse function, you can apply Theorem 5.9                             (with g = f –1) to write

    Moreover, using                              you can conclude that

cont'd

Page 36: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

36

January 30, 2015

In Example 5, note that at the point (2, 3) the slope of the graph of f is 4 and at the point (3, 2) the slope of the graph of  f ­1 is     .

Derivative of an Inverse Function

Figure 5.17

Page 37: Logarithmic, Exponential, and Other Transcendental …gourley.weebly.com/uploads/5/0/9/1/5091587/5.3_lesson...5.3 Smartboard filled in lesson.notebook 6 January 30, 2015 The domain

5.3 Smartboard filled in lesson.notebook

37

January 30, 2015