5

Click here to load reader

lo02

  • Upload
    hisuin

  • View
    217

  • Download
    0

Embed Size (px)

DESCRIPTION

lo02

Citation preview

Page 1: lo02

7/21/2019 lo02

http://slidepdf.com/reader/full/lo02 1/5

Technische Universitat MunchenFakultat f ur InformatikLehrstuhl f ur Effiziente AlgorithmenProf. Dr. Harald RackeChintan Shah

Wintersemester 2012Losungsblatt 2

16 November 2012

Effiziente Algorithmen und Datenstrukturen I

Aufgabe 1 (10 Punkte)Solve the following recurrence relations:

1.   an  =  an−1 + 6n−1 with  a0 = −15.

2.   an  = −an−1 + 9an−2 − 11an−3 + 4an−4  with  a0 = −7,  a1 = 4,  a2 = 48 and  a3 = 0.

Losungsvorschlag

1.

an   =   an−1 + 6n−1 (1)

an−1   =   an−2 + 6n−2 (2)

Multiplying equation 2 by 6 and subtracting from equation 1 gives us

an   = 7an−1 − 6an−2

The characteristic polynomial of this recurrence is  λ2

−7λ + 6 = 0. Solving for  λ

gives us   λ   = 6 or   λ   = 1. So the solution is of the form   an   =   α1n + β 6n. Also,a0 = −15 gives us  a1 = −14. Hence,

a0 = −15 =   α + β 

a1 = −14 =   α + 6β 

Solving for  α  and  β  gives us  α = −151

5  and  β  =   1

5. So,

an   =   −151

5 +

 6n

5

2. The characteristic polynomial of this recurrence relation is λ4

+λ3

−9λ2

+11λ−4 = 0or (λ− 1)3 · (λ + 4) = 0. So the solution is of the form an = α(−4)n + βn2 + γn + δ .Hence,

a0 =   −7 =   α   +   δ 

a1 = 4 =   −4α   +   β    +   γ    +   δ 

a2 = 48 = 16α   + 4β    + 2γ    +   δ 

a3 = 0 =   −64α   + 9β    + 3γ    +   δ 

Solving this system of linear equations gives us  α  = 1, β  = 4, γ  = 12 and  δ  = −8.So,

an   = (−4)

n

+ 4n2

+ 12n− 8

Page 2: lo02

7/21/2019 lo02

http://slidepdf.com/reader/full/lo02 2/5

Aufgabe 2 (10 Punkte)Solve the following recurrence relations using generating functions:

1.   an  =  an−1 + 2n−1 for  n ≥ 1 with  a0 = 2.

2.   an  = 3an−1 − 3an−2 + an−3   for  n ≥ 3 with  a0 =  a1 = a2 = 1.

Losungsvorschlag

1.   an  =  an−1 + 2n−1 for  n ≥ 1 with  a0 = 2.

A(z ) =n≥0

anz n

=   a0 +

n≥1anz 

n

= 2 +n≥1

(an−1 + 2n−1)z n

= 2 + z n≥1

an−1z n−1 + z 

n≥1

2n−1z n−1

= 2 + z n≥0

anz n +

n≥0

2nz n

⇒ (1 − z )A(z ) = 2 + z n≥0

2nz n

= 2 +  z 

1 − 2z 

=  2 − 3z 

1 − 2z 

⇒ A(z ) =  2 − 3z 

(1 − 2z )(1 − z )

=  1

1 − 2z  +

  1

1 − z 

=n≥0

2nz n +n≥0

z n

= n≥0

(2n + 1)z n

⇒ an   = 2n + 1

2

Page 3: lo02

7/21/2019 lo02

http://slidepdf.com/reader/full/lo02 3/5

2.   an  = 3an−1 − 3an−2 + an−3   for  n ≥ 3 with  a0 =  a1 = a2 = 1.

A(z ) =n≥0

anz n

=   a0 + a1z  + a2z 2

+n≥3

(3an−1 − 3an−2 + an−3)z n

= 1 + z  + z 2 + 3z n≥3

an−1z n−1 − 3z 2

n≥3

an−2z n−2

+z 3n≥3

an−3z n−3

= 1 + z  + z 2 + 3z (A(z ) − 1 − z ) − 3z 2(A(z ) − 1)

+z 3A(z )

⇒ (1 − 3z  + 3z 2 − z 3)A(z ) = 1 + z  + z 2 − 3z − 3z 2 + 3z 2

⇒ A(z ) =   (1 − z )2

(1 − z )3

=  1

1 − z 

=n≥0

z n

⇒ an   = 1

Aufgabe 3 (10 Punkte)

Solve the following recurrence using a generating function:

an  =  an−1 + an−2   for  n ≥ 2 with  a0 = 0 and  a1 = 1.

Losungsvorschlag

A(z ) =n≥0

anz n

=   a0 + a1z  + n≥2

anz n

=   z  + z n≥2

an−1z n−1 +

n≥2

an−2z n

=   z  + z (A(z ) − a0) + z 2A(z )

=   z  + zA(z ) + z 2A(z )

⇒ A(z ) =  z 

1 − z − z 2

Note that (1 − z − z 2) = (1 − αz )(1 − βz ) for

α =  1 + √ 52

  and  β  = 1 −√ 52

3

Page 4: lo02

7/21/2019 lo02

http://slidepdf.com/reader/full/lo02 4/5

We want to find  A,  B  satisfying

1 − z − z 2  =

  A

1 − αz  +

  B

1 − βz 

Solving, for A,  B  gives

A   =1

α

1 −   β

α

=  1

α− β   =

  1√ 5

B   =1

β

1 −   αβ

=  1

β − α = −1√ 

5

⇒ A(z ) =  1√ 

5

  1

1 − αz  − 1

1 − βz 

=

  1

√ 5 n≥0 αn

n

−n≥0 β 

n

n=n≥0

(αn − β n)√ 5

z n

⇒ an   =  αn − β n√ 

5

=  1√ 

5

1 +

√ 5

2

n

1 −√ 

5

2

n

Aufgabe 4 (10 Punkte)Solve the following recurrence using a generating function:

an = 5an−1 − 8an−2 + 4an−3   for  n ≥ 3 with  a0 = 1, a1 = 3 and  a2 = 11.

Losungsvorschlag

A(z ) =

n≥0anz 

n

=   a0 + a1z  + a2z 2 +n≥3

(5an−1 − 8an−2 + 4an−3)z n

= 1 + 3z  + 11z 2 + 5z (A(z ) − 3z − 1) − 8z 2(A(z ) − 1)

+4z 3A(z )

⇒ (1 − 5z  + 8z 2 − 4z 3)A(z ) = 1 − 2z  + 4z 2

⇒ A(z ) =  1 − 2z  + 4z 2

(1 − z )(1 − 2z )2

=  A

1−z 

 +  B

1−

2z  +

  C 

(1−

2z )2  , (say)

4

Page 5: lo02

7/21/2019 lo02

http://slidepdf.com/reader/full/lo02 5/5

Solving for  A, B,C   gives

4 = 4A + 2B

−2 =   −4A− 3B − C 

1 =   A + B + C 

or  A = 3,  B  = −4,  C  = 2.Therefore,

A(z ) =  3

1 − z  − 4

1 − 2z  +

  2

(1 − 2z )2

= 3n≥0

z n − 4n≥0

2nz n + 2n≥0

(n + 1)2nz n

= n≥0

(3 + (n− 1)2n+1)z n

⇒ an   = 3 + (n− 1)2n+1

5