10
ABSTRACT The major seismogenic faults of Umbria, which most of the moderate (M > 5) earthquakes of the region are related to, consist of a set of SW-dipping normal faults, aligned along a definite NNW- SSE trend, from Sansepolcro to Norcia, referred to in this paper as the Umbria Fault System (UFS). The major recent earthquakes, for which instrumental data have been recorded, as well as a significant portion of the historical seismicity can be associated with the activ- ity of the UFS. Data on the active stress field, from both geological and geo- physical sources (e.g. structural analysis, focal mechanisms, break- out data) indicate that this region is presently affected by crustal extension, with a minimum principal stress σ 3 oriented SW-NE. Seismic profiles reveal that the UFS seismogenic faults are antithetic to a major, ENE-dipping low angle normal fault, named Altotiberina Fault (ATF). The instrumental seismicity within the upper crust is concen- trated in a relatively shallow layer (Shallow Seismogenic Layer, SSL), which deepens from the internal to the external sectors of the Apenninic arc (that is, from WSW to ENE). The geological sections show that both the ATF detachment (a structural surface) and the envelope of the top of the basement (a lithological boundary) deepen towards the east, showing a geomet- rical similarity with the SSL. Available data on the major instrumen- tal earthquakes and on the aftershock sequences confirm this simi- larity. It is possible that the ATF detachment operates a structural con- trol on the SSL: in fact the SW-dipping seismogenic faults branch out from the ATF, and simply do not exist below it. The evaporites/basement boundary may represent a second, lithological, factor controlling the distribution of the seismicity: this boundary corresponds to abrupt variations both in the mechanical and in the permeability properties of the rocks. Finally, we present two geological sections, suggesting that both Gubbio and Colfiorito normal faults reactivate, in their deeper por- tion, pre-existing thrusts. Considering the map view, however, it is clear that it is not possible to hypothesise that the UFS, considered as a whole, reactivates a single, major thrust fault. Because of the arcuate shape of the major thrusts, which is in contrast with the straight alignment of the normal fault systems, the different seg- ments of the UFS reactivate different thrust faults. Concluding, it is possible that the basement steps related to the Miocene-Pliocene thrusts mechanically control the location of the single UFS seg- ments; but the individual thrusts are not suitable to control the loca- tion of the UFS system, considered as a whole. The UFS segments are aligned along a straight, NNW-SSE trend, parallel to the ENE-dipping, ATF master fault, that is not con- trolled by the west dipping thrusts. KEY WORDS: Normal faults, Seismotectonics, Inversion Tectonics, Seismic reflection profiles, Umbria-Marche Apennines. RIASSUNTO Fattori litologici e strutturali che controllano le faglie sismogenetiche dell’Umbria: osservazioni dai profili sismici a riflessione. Le maggiori faglie sismogenetiche dell’Umbria, cui è collegata la maggior parte degli eventi di magnitudo M >5, consistono in un set di faglie dirette, immergenti verso SW, allineate lungo la direttrice S. Sepolcro-Norcia, che in questo lavoro viene denominato UFS (Umbria Fault System). I maggiori terremoti recenti della regione, per i quali esiste una documentazione strumentale (Norcia, 1979; Gubbio, 1984; Colfiori- to, 1997-98) e gran parte della sismicità storica sono connesse all’at- tività di questo set di faglie. I dati sul campo di sforzi attivo (istantaneo), ricavati da mecca- nismi focali e dalle deformazioni dei pozzi (MONTONE et alii, 1999) coincidono quasi perfettamente con quelli del campo di sforzi geo- logico (a medio termine), ricavati da misure di piani di faglia stria- ti (LAVECCHIA et alii, 1994). Questa coincidenza induce a ritenere che non esistano sostanziali variazioni del campo di stress durante l’evoluzione tettonica recente (i.e. quaternaria) di questa regione. Nel settore settentrionale (a nord di Gualdo Tadino), i profili si- smici (BONCIO et alii, 1998; BARCHI et alii, 1999) mostrano che le fa- glie del UFS sono antitetiche ad una faglia diretta a basso angolo, immergente verso ENE (faglia altotiberina, ATF). Evidenze di que- sta faglia sono ricavabili anche dalla geologia di superficie e del sot- tosuolo dell’area dei Massicci Perugini (BROZZETTI, 1995). Sulla base di considerazioni di carattere regionale, si può ipotizzare che la ATF esista anche nel settore meridionale: tuttavia in questo settore non esistono buone immagini sismiche della faglia stessa. Analizzando i dati riguardanti la sismicità strumentale della re- gione, emerge che la sismicità della crosta superiore si dispone all’interno di uno strato relativamente superficiale (SSL, Shallow Seismogenic Layer), che si approfondisce verso i settori esterni della catena, da WSW verso ENE e da NNW verso SSE (BONCIO & LAVECCHIA, 2000). La geometria dello strato sismogenetico SSL, pur ricalcando quella ipotizzabile per il passaggio fragile-duttile (FEDE- RICO & PAUSELLI, 1998), si trova all’interno dello strato fragile, a profondità comprese tra 6 e 12 km. Le sezioni geologiche costruite attraverso l’area umbra, inte- grando dati geologici di superficie con profili sismici a riflessione, mostrano che la geometria del SSL potrebbe essere controllata sia da elementi strutturali che da cambiamenti litologici, che influisco- no sul comportamento meccanico delle rocce. L’ipotesi del controllo di tipo strutturale, già avanzata da BON- CIO & LAVECCHIA (2000), fa corrispondere la base di SSL alla traiet- toria della ATF. Poiché le faglie SW immergenti di UFS, lungo cui si sviluppano i terremoti, sono antitetiche alla ATF, che ne costitui- sce lo scollamento basale, esse semplicemente non esistono al di sot- to di essa. Nell’ipotizzare un controllo litologico sulla geometria di SSL, si può notare che anche il basamento si approfondisce da WSW verso ENE. Ciò è dovuto principalmente ai sovrascorrimenti legati alla tet- tonica compressiva, che hanno coinvolto almeno la parte più super- ficiale del basamento, e creano quindi una serie di gradini del tetto del basamento, che si approfondisce verso ENE. Anche l’azione del- le faglie est-immergenti (in particolare ATF) contribuisce all’ap- profondimento del top basamento verso i settori più esterni. L’interfaccia evaporiti/basamento costituisce una discontinuità importante, in corrispondenza della quale avvengono brusche va- riazioni delle proprietà meccaniche delle rocce, messe in evidenza dal forte contrasto nei valori della velocità di propagazione delle onde sismiche, e della loro permeabilità. Questa discontinuità favo- Boll. Soc. Geol. It., Volume speciale n. 1 (2002), 855-864, 5 ff., 2 tabb. Lithological and structural controls on the seismogenesis of the Umbria region: observations from seismic reflection profiles (*) MASSIMILIANO R. BARCHI (**) (*) Lavoro eseguito con il contributo finanziario del GNDT (PE98) e della Regione Umbria. Resp. M.R. Barchi. (**) Dipartimento di Scienze della Terra - Università di Perugia - Piazza Università - 06100 Perugia.

Lithological and structural controls on the seismogenesis of the Umbria region: observations from seismic reflection profiles

Embed Size (px)

DESCRIPTION

The major seismogenic faults of Umbria, which most of the moderate (M > 5) earthquakes of the region are related to, consist of a set of SW-dipping normal faults, aligned along a definite NNWSSEtrend.

Citation preview

  • ABSTRACT

    The major seismogenic faults of Umbria, which most of themoderate (M > 5) earthquakes of the region are related to, consist ofa set of SW-dipping normal faults, aligned along a definite NNW-SSE trend, from Sansepolcro to Norcia, referred to in this paper asthe Umbria Fault System (UFS). The major recent earthquakes, forwhich instrumental data have been recorded, as well as a significantportion of the historical seismicity can be associated with the activ-ity of the UFS.

    Data on the active stress field, from both geological and geo-physical sources (e.g. structural analysis, focal mechanisms, break-out data) indicate that this region is presently affected by crustalextension, with a minimum principal stress 3 oriented SW-NE.Seismic profiles reveal that the UFS seismogenic faults are antitheticto a major, ENE-dipping low angle normal fault, named AltotiberinaFault (ATF).

    The instrumental seismicity within the upper crust is concen-trated in a relatively shallow layer (Shallow Seismogenic Layer,SSL), which deepens from the internal to the external sectors of theApenninic arc (that is, from WSW to ENE).

    The geological sections show that both the ATF detachment (astructural surface) and the envelope of the top of the basement (alithological boundary) deepen towards the east, showing a geomet-rical similarity with the SSL. Available data on the major instrumen-tal earthquakes and on the aftershock sequences confirm this simi-larity.

    It is possible that the ATF detachment operates a structural con-trol on the SSL: in fact the SW-dipping seismogenic faults branchout from the ATF, and simply do not exist below it.

    The evaporites/basement boundary may represent a second,lithological, factor controlling the distribution of the seismicity: thisboundary corresponds to abrupt variations both in the mechanicaland in the permeability properties of the rocks.

    Finally, we present two geological sections, suggesting that bothGubbio and Colfiorito normal faults reactivate, in their deeper por-tion, pre-existing thrusts. Considering the map view, however, it isclear that it is not possible to hypothesise that the UFS, consideredas a whole, reactivates a single, major thrust fault. Because of thearcuate shape of the major thrusts, which is in contrast with thestraight alignment of the normal fault systems, the different seg-ments of the UFS reactivate different thrust faults. Concluding, it ispossible that the basement steps related to the Miocene-Pliocenethrusts mechanically control the location of the single UFS seg-ments; but the individual thrusts are not suitable to control the loca-tion of the UFS system, considered as a whole.

    The UFS segments are aligned along a straight, NNW-SSEtrend, parallel to the ENE-dipping, ATF master fault, that is not con-trolled by the west dipping thrusts.

    KEY WORDS: Normal faults, Seismotectonics, InversionTectonics, Seismic reflection profiles, Umbria-MarcheApennines.

    RIASSUNTO

    Fattori litologici e strutturali che controllano le faglie sismogenetiche dellUmbria: osservazioni dai profili sismici ariflessione.

    Le maggiori faglie sismogenetiche dellUmbria, cui collegata lamaggior parte degli eventi di magnitudo M >5, consistono in un setdi faglie dirette, immergenti verso SW, allineate lungo la direttriceS. Sepolcro-Norcia, che in questo lavoro viene denominato UFS(Umbria Fault System).

    I maggiori terremoti recenti della regione, per i quali esiste unadocumentazione strumentale (Norcia, 1979; Gubbio, 1984; Colfiori-to, 1997-98) e gran parte della sismicit storica sono connesse allat-tivit di questo set di faglie.

    I dati sul campo di sforzi attivo (istantaneo), ricavati da mecca-nismi focali e dalle deformazioni dei pozzi (MONTONE et alii, 1999)coincidono quasi perfettamente con quelli del campo di sforzi geo-logico (a medio termine), ricavati da misure di piani di faglia stria-ti (LAVECCHIA et alii, 1994). Questa coincidenza induce a ritenereche non esistano sostanziali variazioni del campo di stress durantelevoluzione tettonica recente (i.e. quaternaria) di questa regione.

    Nel settore settentrionale (a nord di Gualdo Tadino), i profili si-smici (BONCIO et alii, 1998; BARCHI et alii, 1999) mostrano che le fa-glie del UFS sono antitetiche ad una faglia diretta a basso angolo,immergente verso ENE (faglia altotiberina, ATF). Evidenze di que-sta faglia sono ricavabili anche dalla geologia di superficie e del sot-tosuolo dellarea dei Massicci Perugini (BROZZETTI, 1995). Sulla basedi considerazioni di carattere regionale, si pu ipotizzare che la ATFesista anche nel settore meridionale: tuttavia in questo settore nonesistono buone immagini sismiche della faglia stessa.

    Analizzando i dati riguardanti la sismicit strumentale della re-gione, emerge che la sismicit della crosta superiore si disponeallinterno di uno strato relativamente superficiale (SSL, ShallowSeismogenic Layer), che si approfondisce verso i settori esternidella catena, da WSW verso ENE e da NNW verso SSE (BONCIO &LAVECCHIA, 2000). La geometria dello strato sismogenetico SSL, purricalcando quella ipotizzabile per il passaggio fragile-duttile (FEDE-RICO & PAUSELLI, 1998), si trova allinterno dello strato fragile, aprofondit comprese tra 6 e 12 km.

    Le sezioni geologiche costruite attraverso larea umbra, inte-grando dati geologici di superficie con profili sismici a riflessione,mostrano che la geometria del SSL potrebbe essere controllata siada elementi strutturali che da cambiamenti litologici, che influisco-no sul comportamento meccanico delle rocce.

    Lipotesi del controllo di tipo strutturale, gi avanzata da BON-CIO & LAVECCHIA (2000), fa corrispondere la base di SSL alla traiet-toria della ATF. Poich le faglie SW immergenti di UFS, lungo cuisi sviluppano i terremoti, sono antitetiche alla ATF, che ne costitui-sce lo scollamento basale, esse semplicemente non esistono al di sot-to di essa.

    Nellipotizzare un controllo litologico sulla geometria di SSL, sipu notare che anche il basamento si approfondisce da WSW versoENE. Ci dovuto principalmente ai sovrascorrimenti legati alla tet-tonica compressiva, che hanno coinvolto almeno la parte pi super-ficiale del basamento, e creano quindi una serie di gradini del tettodel basamento, che si approfondisce verso ENE. Anche lazione del-le faglie est-immergenti (in particolare ATF) contribuisce allap-profondimento del top basamento verso i settori pi esterni.

    Linterfaccia evaporiti/basamento costituisce una discontinuitimportante, in corrispondenza della quale avvengono brusche va-riazioni delle propriet meccaniche delle rocce, messe in evidenzadal forte contrasto nei valori della velocit di propagazione delleonde sismiche, e della loro permeabilit. Questa discontinuit favo-

    Boll. Soc. Geol. It., Volume speciale n. 1 (2002), 855-864, 5 ff., 2 tabb.

    Lithological and structural controls on the seismogenesisof the Umbria region: observations from seismic reflection profiles (*)

    MASSIMILIANO R. BARCHI (**)

    (*) Lavoro eseguito con il contributo finanziario del GNDT(PE98) e della Regione Umbria. Resp. M.R. Barchi.

    (**) Dipartimento di Scienze della Terra - Universit di Perugia -Piazza Universit - 06100 Perugia.

  • risce la concentrazione degli sforzi ed influenza la distribuzionedelle pressioni dei fluidi nel sottosuolo, favorendo la nucleazione diterremoti.

    Confrontando i dati disponibili per le profondit ipocentrali(HAESSLER et alii, 1988; DESCHAMPS et alii, 1989; AMATO et alii,1998; BONCIO, 1998), riferite sia alle scosse principali che alle se-quenze di aftershock (terremoti di Norcia 1979, Gubbio 1984, Col-fiorito 1997-98) con le informazioni sulla profondit del top del ba-samento e della faglia altotiberina nelle stesse zone, si puconcludere che le ipotesi di controllo strutturale e litologico sonocompatibili con i dati disponibili.

    Infine, le sezioni geologiche integrate mostrano che le faglie di-rette di Gubbio e di Colfiorito riattivano in profondit dei pre-esi-stenti piani di sovrascorrimento (inversione tettonica). Tuttavia, os-servando in pianta la distribuzione dei sovrascorrimenti e dellefaglie dirette, risulta evidente la differenza tra la traiettoria arcuatadei sovrascorrimenti e quella rettilinea dei sistemi di faglie dirette.

    Il fenomeno di riattivazione limitato ai singoli segmenti diUFS, mentre il sistema nel suo complesso controllato dalla traiet-toria rettilinea delle master fault est-immergenti.

    TERMINI CHIAVE: Faglie dirette, Sismotettonica, Tettonicada inversione, Profili sismici a riflessione, Appenninoumbro-marchigiano.

    INTRODUCTION

    In the past few years the Structural Geology group ofthe Perugia University began a multidisciplinary researchproject on the seismogenesis of the Umbria region; thisactivity has been developed after the 1997-98 Colfioritoseismic sequence. The project consists of many branches:the active extensional faults have been studied throughgeological mapping and structural analysis (MIRABELLA& PUCCI, this Vol.), interpretation of seismic reflectionprofiles (BONCIO et alii, 1998; BARCHI et alii, 1999; COL-LETTINI et alii, 2000; PAUSELLI et alii, this Vol.), numeri-cal modelling with finite elements techniques (PAUSELLIet alii, 1998), analytical models of fault mechanics (COL-LETTINI, this Vol.). This interdisciplinary approach isessential for correctly modelling the relationshipsbetween the geometry of the seismogenic faults and theobserved seismicity: in particular, the interpretation ofthe seismic profiles allows a 3-D reconstruction of thefault geometry at depth (orientation, length, depth ofdetachment, ecc.), independently from seismologicaldata, such as focal mechanisms and shape of the after-shock sequence.

    The aim of this paper is to offer a synthetic view ofthe results achieved untill now, and in particular to dis-cuss the possible control of structural (faults) and/or lith-ological (stratigraphical boundaries) factors, on the spa-tial distribution of the seismicity of the region.

    Although alternative views have been presented byBOCCALETTI et alii (1995) and CELLO et alii (1997), mostauthors converge in describing both the recent tectonicevolution and the active faults in the Umbria-Marcheregion as related to an extensional stress field. In partic-ular, the major seismogenic faults of Umbria, which mostof the moderate (M > 5) earthquakes of the region arerelated to, consist of a set of SW-dipping normal faults,aligned along a definite NNW-SSE trend, from Sansepol-cro to Norcia (fig. 1), referred to in this paper as theUmbria Fault System (UFS). Both the major recentevents, for which instrumental data have been recorded(Norcia 1979, Gubbio 1984, Colfiorito 1997-98, GualdoTadino 1998), and a significant portion of the historicalseismicity (BOSCHI et alii, 2000), can be associated, at

    least from the geometrical point of view, to the activity ofthe UFS (fig. 1). Available knowledge on the UFS faults,along with a comprehensive list of references, have beenrecently summarised by BARCHI et alii (2000).

    It is worth noting, however, that some significant his-torical earthquakes (e.g. Fabriano 1741, Cagli, 1781) arelocated too far east to be referred to the UFS activity.Moreover, at least in the southern sector, paleoseismicitydata document the activity of a second, more easterlylocated, alignment of seismogenic faults (M. Bove-M. Vet-tore alignment, see BARCHI et alii, 2000, and referencestherein).

    The data on the active stress field, from both geolog-ical and geophysical sources (e.g. structural analysis,focal mechanisms, breakout data) indicate that thisregion is presently affected by crustal extension, with aninferred minimum principal stress 3 oriented SW-NE(LAVECCHIA et alii, 1994; MONTONE et alii, 1999). In thistectonic environment, the presence of minor, oblique orstrike-slip earthquakes (e.g. the 16th October 1997, 4.3 Mwearthquake of the Colfiorito sequence, EKSTROM et alii,1998) can be related to the activity of near-vertical, trans-fer faults, reactivating pre-existing faults (e.g. PUCCI &MIRABELLA, this Vol.): the main set trends about N-S,shows left lateral movement, and possibly reactivatestranspressive lateral ramps of the regional thrusts.

    At least in the northern sector of the UFS (north ofGualdo Tadino), the seismic profiles reveal that the seis-mogenic faults are antithetic to a major, ENE-dippinglow angle normal fault, named Altotiberina Fault (ATF,BONCIO et alii, 1998; 2000; BARCHI et alii, 1999), whosepresence was previously inferred by BROZZETTI (1995)from surface mapping of the extensional faults of theregion. Regional geology suggests that the ATF (or avicariant, ENE-dipping fault) could be present in thesouthern sector as well, but no good seismic image ofsuch fault is available.

    Finally, it is important to consider the spatial rela-tionships between the UFS (as well as the other exten-sional systems) and the compressional structures of thispart of the Northern Apennines. The Northern Apenninesare a typical arc-shaped belt: from the hinterland (west)to the foreland (east), all the main structural features ofthe region (e.g. the Tuscan Nappe front, the internal andthe external border of the Umbria-Marche Ridge, respec-tively indicated as WUT and ORT in fig. 1) are similarlyarc-shaped, with an eastward convexity (BALLY et alii,1986; DEIANA & PIALLI, 1994). On the contrary, the laterextensional structures, which bound Pliocene-Pleistoceneneo-autochthonous basins, are not arc-shaped and areessentially aligned along NNW-SSE trends: the Tiber Val-ley-Umbria Valley system and the UFS (from Gubbio toNorcia) are good examples of this straight shape. As aresult the compressive arcs of the Northern Apenninesare obliquely dissected by these later, extensional faultsystems (fig. 1).

    THE SHALLOW SEISMOGENIC LAYER (SSL)AND THE MECHANICAL STRATIGRAPHY

    OF THE UMBRIA UPPER CRUST

    Instrumental data show that most of the crustal seis-micity of the Umbria-Marche region is confined in theupper crust (depth < 15 km), even if, in the same region,

    856 M.R. BARCHI

  • LITHOLOGICAL AND STRUCTURAL CONTROLS ON THE SEISMOGENESIS 857

    Fig. 1 - Shaded relief and schematic structural map of Umbria, showing the major contractional and extensional faults of the region. Thetraces of the ATF and of the UFS segments are reported. The map is based on the compilation of published data (BARCHI et alii, 2000, andreference therein), and on unpublished field work. On the right side the focal mechanisms of the major recent earthquakes of the regionare reported (after DESHAMPS et alii, 1984; HAESSLER et alii, 1988; AMATO et alii, 1998). Thrusts: WUT = Western Umbria Thrust; IRT = InnerRidge Thrust; ORT = Outer Ridge Thrust. Boreholes: SnD = S. Donato1; PG2 = Perugia2. Topografia e carta strutturale schematica dellUmbria. Oltre alle principali strutture compressive ed estensionali della regione, sono riporate inevidenza le tracce della faglia Altotiberina (ATF) ed i segmenti del sistema sismogenetico dellUmbria (UFS). La mappa deriva dalla compilazio-ne di dati gi pubblicati (BARCHI et alii, 2000, and reference therein), integrati con i risultati di rilevamenti di terreno, ancora inediti. Sulladestra sono rappresentati i meccanismi focali dei principali terremoti recenti che hanno colpito lUmbria, ripresi dai lavori di DESHAMPS et alii,1984; HAESSLER et alii, 1988 e AMATO et alii, 1998. Sovrascorrimenti: WUT = Western Umbria Thrust; IRT = Inner Ridge Thrust; ORT = OuterRidge Thrust. Perforazioni profonde: SnD = S. Donato1; PG2 = Perugia2.

  • deeper, subcrustal earthquakes (>30km) have been recor-ded, related to the deep structural setting of the region(SELVAGGI & AMATO, 1992). In this paper, we will essen-tially deal with the shallow seismicity, which can be rela-ted to the activity of the UFS.

    BONCIO et alii (1998) and BONCIO & LAVECCHIA(2000) observe that the instrumental seismicity, if con-sidered in a cross-view with respect the UFS (i.e. alonga SW-NE trending section), defines a wedge-shapedseismogenic volume, whose base deepens from WSW toENE, showing a fairly good fit with the ATF trajectory.The main shocks are located close to the base of thisvolume, that we will name shallow seismogenic layer(hereinafter SSL). The same authors note that in a tieview, i.e. moving along the UFS, the SSL progressivelydeepens from NNW (Citt di Castello) to SSE (Norcia).This observation is consistent with the data reported intab. 1, showing the hypocentral depth of the mainshocks and of the aftershock sequences for the recentearthquakes of Gubbio 1984 (HAESSLER et alii, 1988),Colfiorito 1997-98 (AMATO et alii, 1998; BASILI &BARBA, 2000) and Norcia 1979 (DESCHAMPS et alii,1989; BONCIO, 1998). This data set is not homogeneous,since the accuracy of the depth determination is grea-ter for the more recent events (Colfiorito) and less pre-cise for the oldest (Norcia). Major uncertainties regardthe main shock locations, due to the lack of a tempo-rary local network. Nevertheless, available data consis-tently indicate a deepening of the SSL from SSW toNNE. Considering the data in a 3-D view, the SSL deep-ens from the internal to the external sectors of theApenninic arc, which is obliquely dissected by the UFS(fig. 1).

    The geometry of the SSL can be compared with thedepth of the brittle/ductile transition, which is controlledby the temperature. Thermal modelling of the brit-tle/ductile transition through the Northern Apennineslithosphere has been performed by FEDERICO & PAU-SELLI (1998) and PAUSELLI & FEDERICO (This Vol.),using heat flow data. The modelled boundary can becompared with the bottom of the SSL below the studiedregion: both surfaces deepen towards the east, but thedepth of the brittle/ductile transition is at a depth of 15-20

    km, whilst the base of the SSL is found at of 8-12 kmdepth (fig. 2).

    Therefore the mechanical stratigraphy of the brittleupper crust is to be considered, searching for the litholog-ical and/or structural features, capable of controlling thefrictional parameters along the fault surfaces (SCHOLZ,1990), which influence the observed distribution of theseismicity with depth and the geometry of the SSL.

    From a lithological point of view, the Umbria-Marcheupper crust can be divided into five main litho-structuralunits, clearly recognisable in all the seismic profilesthroughout the region (BARCHI et alii, 1998). They are,from top to bottom: Miocene Turbidites, Oligocene-Juras-sic Carbonates, Triassic Evaporites, Phyllitic Basement,Crystalline Basement. Each of these units can be consid-ered internally homogeneous from a lithological andmechanical point of view.

    PAUSELLI et alii (1998) evaluated the Young modulusE of these major litho-structural Units, using the equation(BARTON, 1986):

    E = Vp2 (1+) (12)/(1-).The values of P-wave velocity Vp were measured in

    deep wells of the region (BALLY et alii, 1986; BARCHI etalii, 1998), or derived from the results of DSS seismicrefraction experiments (PONZIANI et alii, 1995; DEFRANCO et alii, 1998). The results are reported in tab. 2.

    These data show that the brittle upper crust ismarkedly layered, consisting of alternated strong and

    858 M.R. BARCHI

    TABLE 1

    Recent instrumental earthquakes in the Umbria region.Data sources: DESHAMPS et alii, 1984; HAESSLER et alii,

    1988; AMATO et alii, 1998; EKSTROM et alii, 1998. Principali terremoti recenti dellUmbria. Dati ricavati da:DESHAMPS et alii, 1984; HAESSLER et alii, 1988; AMATO et

    alii, 1998; EKSTROM et alii, 1998.

    Fig. 2 - Relationships between the geometry of the Brittle-Ductiletransition (modelled along the CROP03 profile, see location in fig. 1)and the distribution of the instrumental seismicity (modified afterPAUSELLI & FEDERICO, This Vol.). Microseismicity is confined in aShallow Seismogenic Layer (SSL, see text for explanations), locatedwithin the upper crust, shallower than the estimated brittle-ductiletransition. Note also the relationship between the distribution of thehypocenters and the trace of the Altotiberina Fault (ATF). Relazioni tra la geometria della transizione fragile-duttile (modellocostruito lungo il profilo crostale CROP03, la cui localizzazione ri-portata in fig. 1) e la distribuzione della sismicit strumentale (modi-ficato da PAUSELLI & FEDERICO, This Vol.). Si nota che la microsi-smicit della crosta superiore risulta confinata in uno stratosuperficiale (Shallow Seismogenic Layer SSL) a profondit inferioria quelle stimate per la transizione fragile-duttile. anche evidente larelazione tra la distribuzione della sismicit strumentale e la traietto-ria in profondit della Faglia Altotiberina (ATF).

  • weak layers. The terms weak and strong are hereused in a relative sense: the phyllitic basement is a rela-tively weak layer, lying between stronger units.

    The boundary between the Evaporites (Vp > 6 km/s)and the phyllitic basement (Vp about 5 km/s) is a zone ofinversion of the P wave velocity (i.e. across this boundarythe velocity decrease with depth). It is also worth to notethat the Evaporites, consisting of alternated dolomitesand anhydrites (GHELARDONI, 1962; MARTINIS & PIERI,1963) and traditionally considered as the main dcol-lemnt level of the Apennines (e.g. BALLY et alii, 1986),would represent at present a relatively strong layer withinthe sedimentary cover.

    GEOLOGICAL SECTIONS THROUGHTHE UMBRIA FAULT SYSTEM

    Two geological sections through the Umbria seismo-genic region are shown in fig. 3 (see location in fig. 1):from NW to SE, they cross respectively the seismogenicdistricts of Gubbio-Valfabbrica (section A) and Colfiorito(section B).

    Section A crosses the southern termination of theGubbio anticline and the Gubbio fault, representing asegment of the UFS (fig. 1). It is based on surface geol-ogy data (BROZZETTI, 1995), on the interpretation of anetwork of closely spaced seismic reflection profiles(BARCHI et alii, 1999; PAUSELLI et alii, this Vol.), cali-brated on deep wells, and on the results of DSS seismicrefraction experiments (BIELLA et alii, 1993).

    In the westernmost part of the section, the S. Donato1well (ANELLI et alii, 1994) drilled at about 180 m a.s.l. theATF surface, tectonically juxtaposing the Miocene Turbi-dites (Marnoso-Arenacea Fm.) on the Triassic Evaporites(Burano Fm.). At greater depth (2390 m and 3977 m b.s.l.,respectively) the same well shows the presence of tectonicimbrications, involving the Triassic Evaporites and thePhyllitic basement: these structures demonstrate theinvolvement of at least the shallower part of the basement(Phyllitic basement) in the major thrust sheets, as con-firmed also, in a regional framework, by the seismicreflection profiles (BARCHI et alii, 1998). The thrust sur-

    faces drilled by the S. Donato1 well crop out about 30 kmfurther to the east, in correspondence with the front ofthe Inner Ridge of the Apennines (IRT in fig. 1).

    In the eastern part of the section, the seismic reflec-tion profiles effectively constrain the geometry of theGubbio fault, which is shown to be antithetic to the ATF:the intersection between the Gubbio fault and the ATFoccurs at a depth of about 5 km. In its shallower part, theGubbio fault displaces the back-limb of the Gubbio anti-cline, whilst at depth it inverts the displacement of a pre-existing thrust fault.

    Section B crosses the northern part of the M.Subasioanticline, the Valtopina synclinorium and finally theAnnifo and Colfiorito intermountain basins. It is based onrecently acquired surface geology data and on the inter-pretation of a seismic reflection profile (MIRABELLA &PUCCI, this Vol.). The seismic profile shows that the base-ment is imbricated at depth by two major thrusts, pro-ducing the stepping and deepening of the basementtowards east.

    The seismic profile does not reveal the trajectory ofthe ATF, whose presence is hypothesised only on thebase of regional geology speculations. Along this section,the UFS is represented at surface by the M. le ScaletteFault, which in this zone dips 55-70 towards SW. Somemovements were observed along the M. Le Scalette faultsurface during the Colfiorito (1997-98) earthquakes,interpreted as genuine surface faulting by CELLO et alii(1998) and as secondary phenomena by BASILI et alii(1998) and CINTI et alii (1999). The continuation at depthof the fault surface, dipping towards SW, has been tra-ced by the interpretation of the seismic profile: the aver-age dip (about 40) corresponds to the slip plane as infer-red from the focal mechanism of the main shock(EKSTROM et alii, 1998) and from the alignment in crosssection of the aftershock sequence (AMATO et alii, 1998).At a depth of about 8 km, the trace of the active normalfault corresponds to the position of the innermost base-ment step: this observation suggests that the position ofthe basement steps, generated by Miocene-Pliocenethrust tectonics, may have controlled the location of thelater normal faults. The intersection with the ATF of theactive, SW-dipping fault has to be hypothesised at adepth of at least 10 km, beyond the resolution of theavailable seismic data.

    Considering the geological sections, we can see howboth the ATF detachment (a structural surface) and theenvelope of the top of the basement (a lithological boun-dary) deepen towards the east, showing a geometricalsimilarity with the SSL.

    Moving from NW to SE, the horizontal distancebetween the ATF and the SW-dipping faults of UFSincreases, as well as the depth of their intersection. Wecan expect that the intersection of the Citt di Castellofault with ATF would be shallower than the Gubbio/ATF(i.e. less than 5 km): the CROP03 profile (BARCHI et alii,1998, location in fig. 1) shows the presence of an anti-thetic fault at the eastern border of the Tiber basin, alsoconfirmed by geomorphologic data (CATTUTO et alii,1995); another, antithetic fault has been placed more tothe east on the basis of seismic reflection interpretationand on re-interpretation of the existing geological maps.The intersection of the ATF with these antithetic faults is

    LITHOLOGICAL AND STRUCTURAL CONTROLS ON THE SEISMOGENESIS 859

    TABLE 2

    Mechanical stratigraphy of the Umbria-Marche upper crust.Data sources: BARCHI et alii, 1998; PAUSELLI et alii, 1998. Stratigrafia meccanica della crosta superiore in Umbria-Marche. Dati ricavati da BARCHI et alii, 1998; PAUSELLI et

    alii, 1998.

  • at relatively shallow depth (about 4 km), and is locatedjust below the Tiber Valley.

    Symmetrically, moving towards SSE, the depth of theintersection between the different UFS segments and theATF is expected to deepen progressively, becoming grea-ter than 10 km in the Norcia area.

    COMPARING SEISMICITY,LITHOLOGY AND STRUCTURES

    Fig. 4 presents a plot of the available data on thedepth of the instrumental seismicity, of the top of thebasement and of ATF, moving from northwest (Citt di

    860 M.R. BARCHI

    Fig. 3 - Two geological cross-sections through the Gubbio fault (Section 1, modified after COLLETTINI & BARCHI, submitted) and theColfiorito fault (Section 2, modified after MIRABELLA & PUCCI, This Vol.). Sezioni geologiche attraverso la faglia di Gubbio (Sezione 1, modificata da COLLETTINI & BARCHI, submitted) e le faglie di Colfiorito (Sezione 2,modificata da MIRABELLA & PUCCI, This Vol.).

  • Castello) to southeast (Norcia) along the UFS align-ment.

    a) Earthquakes: the hypocentres of the main shocks,as well as the associated aftershock sequences, deepenfrom Gubbio (6-7 km) to Norcia (10-11 km). A further,slight deepening of the instrumental seismicity movingtowards south-east (LAquila) has been shown by BONCIO& LAVECCHIA (2000). No instrumental data are availablefor the Citt di Castello-Sansepolcro area, that is thelocus of historical seismicity (e.g. 1458, 1789, 1917, BO-SCHI et alii, 2000). If the trend illustrated in fig. 4 isregionally significant, in this zone the seismicity is expec-ted to be shallower (4-5 km?) than in the Gubbio zone.

    b) Basement: using seismic reflection data, the depthof the top of the basement (D) can be established, withreasonable approximation, in the northern part of thestudied region, from Sansepolcro (D = 4-5 km) to Colfio-rito (D = 8-9 km). No seismic profile is available in theNorcia area. However, it can be noted that in the Umbria-Marche region the top of the basement deepens fromwest to east, due to the steps produced by the east-vergingthrusts (fig. 3): these features have been clearly evidencedby the CROP03 profile (BARCHI et alii, 1998 fig. 4).According to most authors, the basement depth is alsoexpected to increase from the northern to the southernpart of the thrust belt, as a consequence of the increaseof the shortening (e.g. BALLY et alii, 1986). This regionalframework suggests a relatively high value (11-12 km?)for the basement depth in the Norcia area.

    c) ATF: seismic reflection profiles effectively describethe geometry of the ATF from Sansepolcro to GualdoTadino: in this northern sector the intersection betweenATF and the antithetic, west-dipping faults of UFS deep-ens from 4-5 km to 7-8 km. South of Gualdo Tadino, thegeometry of ATF (or other, east-dipping detachments) isnot traceable in the available seismic reflection profiles. Itwould be possible that the ATF is only a local feature, bor-dering the western side of the Tiber Basin from Citt diCastello to Perugia, and that no east-dipping normal faultis present in the southern sector. However, no significantdifference can be observed in the geometric characters ofthe seismicity and of the active normal faults north andsouth of the Gualdo Tadino area. The continental basinrelated to the ATF (Tiber Basin) continues towards SSEfrom Perugia to Spoleto (Umbria Valley, fig. 1), withtrend, sedimentary features and age which are grosslysimilar to those of the northern part. At a regional scale,studies by many different authors, based on surface geo-logy data and/or interpretation of seismic reflection pro-files, demonstrate the role of gently east-dipping, exten-sional master faults in the formation and evolution of theMiocene-Pliocene basins of the Northern Thyrrenian-Tuscany domain (BARTOLE et alii, 1991; KELLER et alii,1994; LIOTTA & SALVATORINI, 1994; BARTOLE, 1995; JOLI-VET et alii, 1998). The geometry at depth of these faultshas been revealed by the CROP03 profile (BARCHI et alii,1998b), showing that the activity of east-dipping, relativelyflat, normal faults is a common feature in the Miocene-Quaternary tectonic evolution of the Northern Apennines.In conclusion, the presence of an east-dipping detach-ment, geometrically and cinematically equivalent to theATF, has to be hypothesised also in the sector south ofGualdo Tadino: probably such a detachment is deeper,beyond the resolution of the seismic profiles.

    The presented data show that both the ATF (a struc-tural surface) and the top of the phyllitic basement (astratigraphic boundary) deepen towards the east, reach-ing a depth that is comparable with the thickness of theSSL. From a geometrical point of view, both surfaces arelikely to control the distribution of the seismicity and thedepth of the SSL.

    The structural control operated by the ATF trajectoryon the geometry of the SSL, is quite evident (BONCIO &

    SEISMOGENESIS OF THE UMBRIA REGION 861

    Fig. 4 - Comparison between seismicity, lithology and structuresalong the UFS system. Seismological data are derived from DESHAMPSet alii, 1984; HAESSLER et alii, 1988; AMATO et alii, 1998; EKSTROMet alii, 1998 (see also tab. 1). Basement and ATF depths are derivedby seismic reflection profiles (BARCHI et alii, 1998; BARCHI et alii,1999; MIRABELLA & PUCCI, This Vol.). Confronto tra dati sismologici, profondit del basamento e strutturelungo il sistema delle faglie sismogenetiche umbre (UFS). I dati sismo-logici sono derivati da DESHAMPS et alii, 1984; HAESSLER et alii, 1988;AMATO et alii, 1998; EKSTROM et alii, 1998, mentre le profondit delbasamento e della faglia Altotibeina derivano dalla interpretazione diprofili sismici a riflessione (BARCHI et alii, 1998; BARCHI et alii, 1999;MIRABELLA & PUCCI, This Vol.).

  • LAVECCHIA, 2000; BONCIO et alii, 2000): assuming thatATF is the master fault, from which the SW-dippingfaults (UFS) splay out, the UFS seismogenic faults simplydo not exist below the ATF, corresponding to the base ofthe SSL.

    The evaporites/basement boundary may representanother, lithological, factor controlling the distribution ofthe seismicity and the nucleation of the main ruptures.The evaporites/basement boundary is a lithological andmechanical discontinuity, corresponding to abrupt varia-tions in the mechanical properties (as related to the seis-mic velocity) and possibly in the permeability of the rocks.

    Seismic reflection and down-hole data show that theevaporites, as well as the overlying carbonates, are hori-zons of relatively high seismic velocity (5.5-6.1 km/s, tab.2), constituting a highly competent level. High Vp valueshave been measured in rocks consisting of alternatedanhydrites and dolomites. The present-day, brittle behavi-our of the sedimentary cover (carbonates and evaporites)is suggested by the distribution of the instrumental seis-micity: the main shocks are generally located in the lowerpart of the sedimentary cover (within the evaporites?),while the aftershock volume is located within the carbo-nates/evaporites imbrications.

    On the contrary, the phyllitic basement is to be con-sidered a relatively weak layer, as suggested by sensiblylower values of seismic velocity (about 5 km/s, tab. 2).Experimental studies of the seismic properties the phyl-lites of the Elba Island (Tuscan basement) confirmed lowvalues of Vp (BURLINI & TANCREDI, 1998). It is reasonableto suppose that the changes in the mechanical propertiesof the rocks can induce corresponding variations in thefrictional properties of the fault zone and of the sur-rounding rocks (COLLETTINI & BARCHI, submitted).

    Considering this mechanical stratigraphy, character-ised by the presence of a weak basement below astrong sedimentary cover (evaporites and carbonates),the lower part of the sedimentary cover, located some kmabove of the brittle/ductile transition, has superiorstrength properties. This layer can therefore act as a

    stress guide (LISTER & DAVIS, 1989), whose failure pro-duces the largest earthquakes.

    THE ROLE OF INVERSION TECTONICS

    The geological sections of fig. 3 suggest that the loca-tion of the main SW-dipping normal faults (UFS) is con-trolled by pre-existing thrusts, which may have been par-tially reactivated, following the modes of negativeinversion tectonics. The influence of pre-existing faults onthe location and geometry of the active normal faults, andin particular the possible inversion of the thrust faults inthe present-day extensional stress regime has been largelydebated in the literature. The hypothesis of a reactivationhas been considered by different authors at differentobservation scales and different depths (e.g. BALLY et alii,1986; CALAMITA et alii, 1994; LAVECCHIA et alii, 1994).

    At the surface, the normal fault planes cropping outalong the UFS (e.g. Gubbio, Colfiorito and Norcia faults)are characterised by relatively high dip (50-70). Theavailable focal mechanisms (fig. 1) indicate that the seis-mogenic rupture planes, possibly related to the samefaults at hypocentral depth, are characterised by relativelylow dip (30- 40). In cross-section view, the resulting, lis-tric geometry of the normal faults is likely to join at depththe west-dipping thrust faults (fig. 5), representing a caseof partial, extensional reactivation of an inherited, reversefault (negative inversion). The process of fault reactiva-tion mechanically favours the movement along a non-Andersonian (relatively low-angle) normal fault (SIBSON,1990). Many authors (e.g. CELLO, 2000; GHISETTI & VEZ-ZANI, 2000) also underlined the role of high fluid pres-sures, which can facilitate the reactivation of partiallymisoriented (e.g. relatively low angle) normal faults, e.g.in the Colfiorito area (COLLETTINI, this Vol.).

    As previously discussed, integrated geological andgeophysical investigations demonstrate that at least theshallower levels of the basement were involved in themajor thrust sheets, probably during the last stages of thecompressional deformation (BARCHI et alii, 1998). From amechanical point of view, the basement steps resultingfrom the thrust sheets imbrications, correspond to placesof lateral heterogeneity between weak basement (phyl-lites) and strong sedimentary cover (evaporites and car-bonates). These lateral discontinuities might constituteplaces of stress concentration and consequent preferen-tial nucleation of the later normal faults.

    In fact, the sections of fig. 3 suggest that both theGubbio and Colfiorito faults reactivate, in their deeperportion, pre-existing thrust faults.

    Considering the map view (fig. 1), however, it is clearthat, even if the thrust reactivation is suitable for the sin-gle normal fault segments (e.g. Gubbio and Colfioritofaults), it is not possible to hypothesise that the UFS, con-sidered as a whole, reactivates a single, major thrust fault.

    Because of the contrast between the arcuate shape ofthe major thrusts and the straight alignment of the normalfault systems, the different segments of UFS reactivate dif-ferent thrust faults. In particular, moving from NW to SE,the normal faults reactivate progressively more easternand younger thrusts: the Gubbio fault reactivates the Gub-bio thrust (a portion of WUT in fig. 1), the Colfiorito faultreactivates the Inner Ridge thrust (IRT in fig. 1), the Nor-cia fault reactivate the Outer Ridge thrust (ORT in fig. 1).

    862 M.R. BARCHI

    Fig. 5 - Scheme of negative tectonic inversion for the Umbria FaultSystem. The scheme is based on dip data measured along the Gub-bio fault and on seismic profiles through the same structure. Schema di inversione tettonica negativa, applicata alle faglie del si-stema UFS. Lo schema basato sulla struttura di Gubbio, e prende inconsiderazione le immersioni rilevate in affioramento, lungo il pianodi faglia principale e le interpretazioni dei profili sismici disponibili.

  • In conclusion, some important structural features ofthe UFS normal faults can be summarised:

    the basement steps related to the Miocene-Pliocenethrust systems mechanically control the location of thesingle UFS segments;

    the arc-shaped thrusts possibly control the segmen-tation of the UFS system: the N-S trending portions of thethrusts are reactivated as transfer faults in the extensionalstress field;

    the single thrusts do not control the location of theUFS system, considered as a whole: in fact UFS segmentsare aligned along a straight, NNW-SSE trend, obliquelydissecting the Umbria-Marche fold and thrust belt andprogressively disrupting more eastern and younger arcsmoving from North to South.

    The latter point can be explained keeping in mindthat the UFS consists of fault segments, which are anti-thetic to the East-dipping, ATF master fault, whose tra-jectory is not likely to be controlled by the west dippingthrust faults.

    ACKNOWLEDGEMENTS

    The researches here summarised were supported by GNDT andRegione dellUmbria grants. The paper benefits by the constant dis-cussion with the other members of the research group, in particularCristiano Collettini, Costanzo Federico, Francesco Mirabella, Cri-stina Pauselli and Stefano Pucci. I am very grateful to Luigi Burliniand Gianluca Valensise for their comments, that greatly improvedthe manuscript.

    REFERENCES

    AMATO A., AZZARA R., CHIARABBA C., CIMINI G.B., COCCO M., DIBONA M., MARGHERITI L., MAZZA S., MELE F., SELVAGGI G.,BASILI A., BOSCHI E., COURBOULEX F., DESCHAMPS A., GAFFETS., BITTARELLI G., CHIARALUCE L., PICCININI G. & RIPEPE M.(1998) - The 1997 Umbria-Marche, Italy earthquake sequence: afirst look at the main shocks and aftershocks. Geoph. Res. Lett.,25, 2861-2864.

    ANELLI L., GORZA M., PIERI M. & RIVA M. (1994) - Subsurface welldata in the Northern Apennines. Mem. Soc. Geol. It., 48, 461-471.

    BALLY A.W., BURBI L., COOPER R.C. & GHERALDONI R. (1986) - Bal-anced section and seismic reflection profiles across the CentralAppenines. Mem. Soc. Geol. It., 35, 257-310.

    BARBA S. & BASILI R. (2000) - Analysis of seismological and geologi-cal observations for moderate-size earthquakes: the ColfioritoFault System (central Apennines, Italy). Geophys. J. Int., 141,241-252.

    BARCHI M.R., DE FEYTER A., MAGNANI M.B., MINELLI G., PIALLI G.& SOTERA B.M. (1998a) - The deformed foreland of the NorthernApennines and its structural style. Mem. Soc. Geol. It., 52, 557-578.

    BARCHI M., DE FEYTER A., MAGNANI M.B., MINELLI G., PIALLI G. &SOTERA B.M. (1998b) - Extensional tectonics in the NorthernApennines (Italy): evidence from the CROP03 deep seismic reflec-tion line. Mem. Soc. Geol. It., 52, 527-538.

    BARCHI M., LAVECCHIA G., GALADINI F., MESSINA P., MICHETTIA.M., PERUZZA L., PIZZI A., TONDI E. & VITTORI E. (a cura di)(2000) - Sintesi delle conoscenze sulle faglie attive in Italia Cen-trale: parametrizzazione ai fini della caratterizzazione della peri-colosit sismica. CNR-GNDT, Volume congiunto dei Progetti5.1.2, 6a2, 5.1.1, Esagrafica, Roma

    BARCHI M., PAOLACCI S., PAUSELLI C., PIALLI G. & MERLINI S.(1999) - Geometria delle deformazioni estensionali recenti nel ba-cino dellAlta Val Tiberina fra S. Giustino Umbro e Perugia: evi-denze geofisiche e considerazioni geologiche. Boll. Soc. Geol. It.,118, 617-625.

    BARTOLE R. (1995) - The North-Tyrrhenian-Northern Apennines post-collisional system: constraints for geodynamical model. TerraNova, 7, 7-30.

    BARTOLE R., TORELLI L., MATTEI G., PEIS D. & BRANCOLINI G.(1991) - Assetto stratigrafico-strutturale del Tirreno settentrionale:stato dellarte. Studi Geol. Camerti, Vol. Spec. 1991/1, 115-140.

    BARTON P. (1986) - The relationship between seismic velocity and den-sity in continental crust -a useful constraint? Geoph. J.R. Astr.Soc., 87, 195-208.

    BASILI R., BOSI V., GALADINI F., GALLI P., MEGHRAOUI M., MESSINAP., MORO M. & SPOSATO A. (1998) - The Colfiorito earthquakesequence of September-October 1997: Surface breaks and seismot-ectonic implications for the Central Apennines (Italy). J. Earthq.Eng., 2, 291-302.

    BIELLA G., DE FRANCO R., DE MARTIN M., MINELLI G., PIALLI G. &BARCHI M. (1993) - Profilo Perugia-Frontone: analisi integrata didati geologici e geofisici. Boll. Soc. Geol. It., 112, 31-42.

    BOCCALETTI M., BONINI M., MORATTI G. & SANI F. (1995) - Le fasicompressive neogenico-quaternarie nellAppennino Settentrionale:relazioni con levoluzione dei bacini interni e con la tettonica delbasamento. Studi Geol. Camerti, Vol. Spec. 1995/1, 51-72.

    BONCIO P. (1998) - Analisi integrata di dati geologici strutturali esismologici per la definizione di un modello sismotettonico inAppennino umbro-marchigiano. Tesi di Dottorato, Universitdi Perugia, 107 pp.

    BONCIO P., BROZZETTI F. & LAVECCHIA G. (2000) - Architecture andseismotectonics of a regional low-angle normal fault zone in cen-tral Italy. Tectonics, 19, 1038-1055.

    BONCIO P. & LAVECCHIA G. (2000) - A structural model for activeextension in Central Italy. J. of Geodyn., 29, 233-244.

    BONCIO P., PONZIANI F., BROZZETTI F., BARCHI M., LAVECCHIA G. &PIALLI G. (1998) - Seismicity and extensional tectonics in thenorthern Umbria-Marche Apennines. Mem. Soc. Geol. It., 52,539-556.

    BOSCHI E., GUIDOBONI E., FERRARI G., MARIOTTI D., VALENSISE G.& GASPERINI P. (Eds.) (2000) - Catalogue of strong italian earth-quakes from 461 B.C. to 1997. Annali di Geofisica, 43.

    BROZZETTI F. (1995) - Stile deformativo della tettonica distensivanellUmbria Occidentale: lesempio dei Massicci Mesozoici Peru-gini. Studi Geologici Camerti, vol. spec. 1991/1, 187-192.

    BURLINI L. & TANCREDI S. (1998) - Experimental study of the seismicproperties of Isola dElba metamorphic basement (Tuscany, Italy).Mem. Soc. Geol. It., 52, 101-110.

    CALAMITA F., COLTORTI M., FARABOLLINI P. & PIZZI A. (1994) - Lefaglie normali quaternarie nella dorsale appenninica umbro-mar-chigiana: proposta di un modello di tettonica di inversione. StudiGeologici Camerti, Vol. Spec. CROP18.

    CATTUTO C., CENCETTI C., FISAULI M. & GREGORI L. (1995) - I bacinipleistocenici di Anghiari e Sansepolcro nellalta valle del Tevere. IlQuaternario, 8, 119-128.

    CELLO G. (2000) - A quantitative structural approach to the study ofactive fault zones in the Apennines (Peninsular Italy). J. of Geo-dynamics, 29, 265-292.

    CELLO G., DEIANA G., MANGANO P., MAZZOLI S., TONDI E., FERRELIL., MASCHIO L., MICHETTI A.M., SERVA L. & VITTORI E. (1998)- Evidence for surface faulting during the September 26, 1997,Colfiorito (Central Italy) earthquakes. J. Earthq. Eng., 2, 303-324.

    CELLO G., MAZZOLI S. & TONDI E. (1997) - Active tectonics in theCentral Apennines and possible implications for seismic hazardanalysis in peninsular Italy. Tectonophysics, 272, 43-68.

    CHIODINI G., FRONDINI F. & PONZIANI F. (1995) - Deep structuresand carbon dioxide degassing in Central Italy. Geothermics., 24,81-94.

    CINTI F., CUCCI L., MARRA F. & MONTONE P. (1999) - The 1997Umbria-Marche (Italy) earthquake sequence: relationship betweenground deformation and seismogenic structure. Geophys. Res.Lett., 26, 895-898.

    COLLETTINI C. (this Vol.) - Structural permeability controlling post-seismic fluid discharge and aftershocks triggering: hypotheses forthe 1997 Colfiorito earthquakes.

    COLLETTINI C. & BARCHI M. (submitted) - A low-angle normal faultin the Umbria region (Central Italy): mechanical model for therelated microseismicity. Submitted to Tectonophysics.

    SEISMOGENESIS OF THE UMBRIA REGION 863

  • COLLETTINI C., BARCHI M., PAUSELLI C., FEDERICO C. & PIALLI G.(2000) - Seismic expression of active extensional faults in North-ern Umbria (Central Italy). Journal of Geodynamics, 29, 309-321.

    DE FRANCO R., PONZIANI F., BIELLA G., BONIOLO G., CAIELLI G.,CORSI A., MAISTRELLO A. & MORRONE A. (1998) - DSS-WARexperiments in support of the CROP03 Project. Mem. Soc. Geol.It., 52, 67-90.

    DEIANA G. & PIALLI G. (1994) - The structural provinces of theUmbro-Marchean Apennines. Mem. Soc. Geol. It., 48, 473-484.

    DESCHAMPS A., SCARPA R. & SELVAGGI G. (1989) - Analisi sismolo-gica del settore settentrionale dellappennino umbro-marchigiano.Atti 8th Congresso G.N.G.T.S., 1, 9-15.

    EKSTROM G., MORELLI A., BOSCHI E. & DZIEWNONSKI A.M. (1998) -Moment tensor analysis of the central Italy earthquake sequenceof September-October 1997. Geophysical Research Letters, 25,1971-1974.

    FEDERICO C. & PAUSELLI C. (1998) - Thermal evolution of the North-ern Apennines (Italy). Mem. Soc. Geol. It., 52, 267-274.

    GHELARDONI R. (1962) - Stratigrafia e tettonica del Trias di M. Malbepresso Perugia. Boll. Soc. Geol. It., 81, 247-256.

    GHISETTI F. & VEZZANI L. (2000) - Detachments and normal faultingin the Marche fold and thrust belt (central Apennines, Italy): infer-ences on fluid migration paths. J. of Geodynamics., 29, 345-369.

    HAESSLER H., GAULON R., RIVERA L., CONSOLE R., FRONGNEUX M.,GASPARINI G., MARTEL L., PATAU G., SICILIANO M. & CISTERNASA. (1988) - The Perugia (Italy) earthquake of 29, April 1984: amicroearthquake survey. Bull. Seism. Soc. Am., 78, 1948-1964.

    JOLIVET L., FACCENNA C., GOFF B., MATTEI M., ROSSETTI F., BRU-NET C., STORTI F., FUNICIELLO R., CADET J.P., DAGOSTINO N.& PARRA T. (1998) - Midcrustal shear zones in postorogenicextension: Example from the northern Tyrrhenian Sea. J.Geophys. Res., 103, 12123-12160.

    KELLER J.V.A., MINELLI G. & PIALLI G. (1994) - Anatomy of a lateorogenic extension: the Northern Apennines case. Tectonophysics,238, 275-294.

    LAVECCHIA G., BROZZETTI F., BARCHI M., MENICHETTI M. & KELLERJ. (1994) - Seismotectonic zoning in Eastern-Cenral Italy deducedfrom an analysis of the Neogene to present deformations and rela-ted stress fields. Geological Society of America Bullettin, 106,1107-1120.

    LIOTTA D. & SALVATORINI G.F. (1994) - Evoluzione sedimentaria e tet-tonica della parte centro meridionale del bacino Pliocenico diRadicofani. Studi Geologici Camerti, vol. spec. 1994/1, 65-78.

    LISTER G.S. & DAVIS G.A. (1989) - The origin of metamorphic corecomplexes and detachment faults formed during Tertiary conti-nental extension in the northern Colorado region, U.S.A. J. Struct.Geol., 11, 65-94.

    MARTINIS B. & PIERI M. (1963) - Alcune notizie sulla formazione eva-poritica del Triassico superiore nellItalia centrale e meridionale.Mem. Soc. Geol. It., 4, 648-672.

    MIRABELLA F. & PUCCI S. (This Vol.) - Integration of geological andgeophysical data along a section crossing the region of the 1997-98 Umbria-Marche earthquake (Italy).

    MONTONE P., AMATO A. & PONDRELLI S. (1999) - Active stress mapof Italy. J. Geophys. Res., 104, 25595-25610.

    PAUSELLI C. & FEDERICO C. (This Vol.) - The brittle/ductile transitionalong the Crop03 seismic profile: relationship with the geologicalfeatures.

    PAUSELLI C., FEDERICO C., BARCHI M., MINELLI G. & PIALLI G.(1998) - Modellizzazione ad elementi finiti della faglia diretta delbacino tiberino settentrionale (Faglia Altotiberina). Atti del XVICovegno Naz. del GNGTS - Sessione XV.

    PAUSELLI C., MARCHESI R. & BARCHI M.R. (This Vol.) - Seismicimage of the compressional and extensional strcutures in the Gub-bio area (Umbrian pre-Apennines).

    PONZIANI F., DE FRANCO R., MINELLI G., BIELLA G., FEDERICO C. &PIALLI G. (1995) - Crustal shortening and duplication of theMoho in the Northern Apennines: a view from seismic refractiondata. Tectonophysics, 252, 391-418.

    PUCCI S. & MIRABELLA F. (This Vol.) - Integration of geological andgeophysical data along a section crossing the region of the 1997-98 Umbria-Marche earthquake (Italy).

    SCHOLZ C.H. (1990) - The Mechanics Earthquakes and Faulting. Cam-bridge Univ. Press. New York.

    SELVAGGI G. & AMATO A. (1992) - Subcrustal earthquakes in theNorthern Apennines (Italy): evidence for a still active subduction?Geophys. Res. Lett., 19, 2127-2130.

    SIBSON R.H. (1990) - Rupture nucleation on unfavourably orientedfaults. Bull. Seism. Soc. Am., 80, 1580-1604.

    864 M.R. BARCHI

    Manoscritto pervenuto il 20 Dicembre 2000; testo approvato per la stampa il 21 Settembre 2001; ultime bozze restituite il 27 Marzo 2002.