92
“LIPOMICS” David C. White, MD, PhD, [email protected], 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L. Kline, J. Bownas, S. Pfiffner, R Thomas Collaborators in the last 48 Months:A my, Penny S., Univ. Nevada (Las Vegas); Appelgate, Bruce, UTK; Balkwill, David L., Florida State Univ.; Bienkowski, Paul R., UTK; Bjornstad, B.N., DOE PNNL; Boone, David R., Univ. Portland (Oregon); Brockman, Fred J., DOE PNNL; Coleman, Max L., Univ. Reading (UK); Colwell, Fredrick S., DOE INNEL; Curtis, Peter S., Univ. Michigan; Davis, Wayne T., UTK; DeFlaun, Mary F., Envirogen; Dever, Molly, UTK; Eagenhouse, Robert, USGS, Reston; Fayer, Ronald, USDA (Beltsville); Flemming, Hans-Kurt, Univ. of Druisberg (Germany); Fredrickson, James K., DOE , PNNL; Geesey, Gill G., Montana State Univ.; Ghiorse, William C., Cornell, Univ.; Griffin, Tim, Golder Associates; Griffiths, Robert. P., Univ. Oregon; Gsell, T.C., DOE PNNL; Guezennec, Jon. G.,IFMER (Brest, France); Haldeman, Dana S., Univ. Nevada (Las Vegas); Heitzer, Armin, ABB Consulting (Zurich Switzerland); Hersman, Larry E., DOE Los Alamos; Holben, William E., Univ., Montana; Kaneshiro, Edna S., Univ. Cincinnati; Kieft, Thomas L., New Mexico State Univ.; Kjelleberg, Stephan, Univ. New South Wales (Australia); Krumholtz, Lee R., Univ. Oklahoma; Larsson, Lennart, Univ. Lund (Sweden); Lehman, Robert M., DOE INEEL; Li, S-M., DOE PNNL; Little, Brenda, Naval Research Lab. Stennis; Lovell, Charles R., Univ. South Carolina; McDonald, E.V., DOE PNNL; McKinley, James P., DOE PNNL; Murphy, Ellen M., DOE PNNL; Nichols, Peter. D., CSIRO (Hobart, Taz); Nierzwicki-Bauer, S.A., Rensselaer Polytec. Inst.; Nold, Steven C., Montana State Univ.; Norby, Robert J., DOE ORNL; O'Neill, Eugena G., DOE ORNL; O'Neill, Robert V., DOE ORNL: Onstott, T.C., Princeton Univ.; Palumbo, Anthony V., DOE ORNL; Pfiffner, Susan M., DOE ORNL; Phelps, Tommy J., DOE ORNL; Pregitzer, K.S., Michigan Univ.; Randlett, D.L., DOE INEEL; Rawson, Sally, A., DOE INNEL; Ringelberg, David B., US Army Corps of Engineers Watershed Experiment Station; Rogers, Rob, DOE, INEEL; Russell, Bert, Golder Associates; Sayler, Gary S., UTK; Schmitt, Jurgen, University of Druisberg (Germany); Stevens, Todd O., DOE PNNL; Suflita, Joseph M., Univ., Oklahoma; Sutton, Sue D., Miami Univ. (Ohio); Venosa, Albert. D., USEPA (Cincinnati); Whitaker Kylen W., Microbial Insights, Inc.; Wobber, Frank J. DOE (Germantown); Wolfram, James W. , DOE INEEL; Zac, Donald R., Univ., Michigan; Zogg, G. P., Univ. Michigan. Associated post doctoral, and student advisees of White in last 5 years Almeida, J.S., Univ. Lisbon, Portugal; Angell, Peter, Canadian Atomic Energy Commission; Burkhalter, Robert S., UTK; Chen, George, Vapor Technologies, Inc., Co.; Kehrmeyer, Stacy, DOE LLNL; Lou, Jung. S., US Patent Office; Macnaughton, Sarah, J., UTK; Nivens, David E., UTK; Palmer, Robert J., UTK; Phiefer, Charles B., Celmar MD; Pinkart, Holly C., Univ. Central Washington;

“LIPOMICS” David C. White, MD, PhD, [email protected], 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Embed Size (px)

Citation preview

Page 1: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

“LIPOMICS”

David C. White, MD, PhD, [email protected], 865-974-8001Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L. Kline, J. Bownas, S. Pfiffner, R Thomas

Collaborators in the last 48 Months:A my, Penny S., Univ. Nevada (Las Vegas); Appelgate, Bruce, UTK; Balkwill, David L., Florida State Univ.; Bienkowski, Paul R., UTK; Bjornstad, B.N., DOE PNNL; Boone, David R., Univ. Portland (Oregon); Brockman, Fred J., DOE PNNL; Coleman, Max L., Univ. Reading (UK); Colwell, Fredrick S., DOE INNEL; Curtis, Peter S., Univ. Michigan; Davis, Wayne T., UTK; DeFlaun, Mary F., Envirogen; Dever, Molly, UTK; Eagenhouse, Robert, USGS, Reston; Fayer, Ronald, USDA (Beltsville); Flemming, Hans-Kurt, Univ. of Druisberg (Germany); Fredrickson, James K., DOE , PNNL; Geesey, Gill G., Montana State Univ.; Ghiorse, William C., Cornell, Univ.; Griffin, Tim, Golder Associates; Griffiths, Robert. P., Univ. Oregon; Gsell, T.C., DOE PNNL; Guezennec, Jon. G.,IFMER (Brest, France); Haldeman, Dana S., Univ. Nevada (Las Vegas); Heitzer, Armin, ABB Consulting (Zurich Switzerland); Hersman, Larry E., DOE Los Alamos; Holben, William E., Univ., Montana; Kaneshiro, Edna S., Univ. Cincinnati; Kieft, Thomas L., New Mexico State Univ.; Kjelleberg, Stephan, Univ. New South Wales (Australia); Krumholtz, Lee R., Univ. Oklahoma; Larsson, Lennart, Univ. Lund (Sweden); Lehman, Robert M., DOE INEEL; Li, S-M., DOE PNNL; Little, Brenda, Naval Research Lab. Stennis; Lovell, Charles R., Univ. South Carolina; McDonald, E.V., DOE PNNL; McKinley, James P., DOE PNNL; Murphy, Ellen M., DOE PNNL; Nichols, Peter. D., CSIRO (Hobart, Taz); Nierzwicki-Bauer, S.A., Rensselaer Polytec. Inst.; Nold, Steven C., Montana State Univ.; Norby, Robert J., DOE ORNL; O'Neill, Eugena G., DOE ORNL; O'Neill, Robert V., DOE ORNL: Onstott, T.C., Princeton Univ.; Palumbo, Anthony V., DOE ORNL; Pfiffner, Susan M., DOE ORNL; Phelps, Tommy J., DOE ORNL; Pregitzer, K.S., Michigan Univ.; Randlett, D.L., DOE INEEL; Rawson, Sally, A., DOE INNEL; Ringelberg, David B., US Army Corps of Engineers Watershed Experiment Station; Rogers, Rob, DOE, INEEL; Russell, Bert, Golder Associates; Sayler, Gary S., UTK; Schmitt, Jurgen, University of Druisberg (Germany); Stevens, Todd O., DOE PNNL; Suflita, Joseph M., Univ., Oklahoma; Sutton, Sue D., Miami Univ. (Ohio); Venosa, Albert. D., USEPA (Cincinnati); Whitaker Kylen W., Microbial Insights, Inc.; Wobber, Frank J. DOE (Germantown); Wolfram, James W. , DOE INEEL; Zac, Donald R., Univ., Michigan; Zogg, G. P., Univ. Michigan. Associated post doctoral, and student advisees of White in last 5 yearsAlmeida, J.S., Univ. Lisbon, Portugal; Angell, Peter, Canadian Atomic Energy Commission; Burkhalter, Robert S., UTK; Chen, George, Vapor Technologies, Inc., Co.; Kehrmeyer, Stacy, DOE LLNL; Lou, Jung. S., US Patent Office; Macnaughton, Sarah, J., UTK; Nivens, David E., UTK; Palmer, Robert J., UTK; Phiefer, Charles B., Celmar MD; Pinkart, Holly C., Univ. Central Washington; Rice, James F., UTK; Smith, Carol A., UTK; Sonesson, Anders, Univ. Lund Sweden; Stephen, John R., UTK; Tunlid, Anders, Univ. Lund Sweden; Webb, Oren. F., DOE ORNL; Zinn, Manfred, Harvard.

Page 2: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

“LIPOMICS”

Inception: 1972 U. Kentucky Med Center Biochemistry of membrane bound electron transport system including lipids ( GC) Florida State Univ. Marine & Estuarine Lab microbial ecology PLFA of detrital biofilms Note shifts in membrane lipids with growth conditions in monocultures

Fungus Heaven & Hell otherwise ignored as “too difficult and chemical”.

Myron Sasser at Delaware carefully grew plant and then clinical isolates with rigidly standardized conditions, extracted, did acid hydrolysis, methylated and identified on capillary GC. HP developed pattern recognition algorithm for 4 major peaks and he developed a large library (10,000 strains) now founded MIDI (0M for HP) international company.

Myron says DC got famous Myron got Rich

1991 Andrew B. White founded Microbial Insights, Inc to do PLFA & DNA in environmental matrices commercially 1999 sold

Microbial Insights, Inc.

Page 3: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

“LIPOMICS”

Inception: MIDI 1. Requires isolate grown under standard conditions 2. Economical Not need MS to identify analytes can do analyses $30/sample

and make money. 3. Now Automated Quick ~identify in 30 min4. Specific tells E. coli from Salmonella if isolate grown under standard conditions 5. Unknown organisms have been a disaster

miss 99.9% of the cells in a soil or sediment often the dominants6. Excellent way to quickly tell if new isolates are identical PLFA 1. Much more specific Extract lipid the fractionate on silicic acid column into

neutral lipids, Phospholipids, and residue lipids requiring hydrolysis before extraction LPS, spores etc.

2. Mild alkaline methanolysis vs acid hydrolysis Transesterify only Esters (need mild acid to find Plasmalogen vinyl ethers)

3. Identify analytes with MS vs adding pig fat to the sample4. Requires days, expensive equipment, compulsive analysts $300/sample

Page 4: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

“LIPOMICS”

Development:~ Effectiveness methods, resources & tools limited

Establish interpretation in environmental samples with 8000 species/g

1. Add a microbe and recover it 13C labeled or with distinctive lipids [Sphingomonas]

2. Manipulate and detect expected responses Anaerobic Aerobic Aerobic Anaerobic Sulfate [SRB] & DSR genes Aerobic Anaerobic Nitrate nifS, nifX, noxE genes Aerobic Anaerobic + Acetate & Fe(III), U (III) Geobacter 3OH 21, rDNA Aerobic Anaerobic + Hydrogen + molybdate Methanogens (ether lipids)

3. Manipulate with toxins, pH, antibiotics Fungus heaven vs Fungus Hell, hydrocarbons, pesticides, or PCB expected response

4. Add specific predators protozoa, amphipods, bacteriophage specific disappearance

5. Correspondence of rDNA and signature lipids derived from isolates

Page 5: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

“LIPOMICS”

Current Status: [a[pplication limited by, analytical skill, equipmentCost, time & arcane literature for intrepretation

Most comprehensive, rapid, quantitative, measure of in-situ microbial communities Combines phenotypic and genotypic responses “Cathedral from a brick”

1. Viable & Total Microbial Biomass, Community Composition, Physiological Status2. Rhizosphere & defining forest biodiversity 3. Waste treatment effectiveness monitoring4. Validating source of deep subsurface microbiota 5. Defining food sources & effectiveness of utilization (with 13C “) 6. Monitoring bioremediation effectiveness & defensible treatment endpoints 7, Multi-species toxicological assessment8. Ultrasensitive detection of biomarkers forward contamination of spacecraft 9. Quantitatively defining soil quality and effects of tilth10. Monitoring carbon sequestration in soils11. Rapid detection of biocontamination & antigenic immune potentiators in indoor air12. Rapid detection and monitoring of contamination in drinking water biofilms13. Detecting pathogens in microbial consortia & food14. Defining food source effectiveness [Triglyceride/sterol or PLFA]15. Defining disturbance artifacts in soils and sediments [PHA/PLFA] 16. Lipid extraction purifies DNA for PCR

Page 6: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Phospholipid Fatty Acid [PLFA] Biomarker Analysis = Single most quantitative, comprehensive insight into in-situ microbial community

Why not Universally utilized?

1. Requires 8 hr extraction with ultrapure solvents [emulsions]. 2. Ultra clean glassware [incinerated 450oC]. 3. Fractionation of Polar Lipids4. Derivatization [transesterification] 5. GC/MS analysis ~ picomole detection ~ 104 cells LOD 6. Arcane Interpretation [Scattered Literature] 7. 3-4 Days and ~ $250

Signature Lipid Biomarker Analysis

Page 7: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

“LIPOMICS”

Future: Automated sequential extraction tandem MS detection of Lipid Biomarkers DNA / mRNA with arrays coupled data bases & GPS map

20 min? Analysis of microbial contamination & insight into infectivity Ft. Johnson Seminar

Clinical & Veterinary Monitor Airports Buses, Ports to data base

CBW Defense Food Safety, Indoor Air vs adult Asthsma & Sick Building Syndrome

Monitor exhaled breath (capture in silicone bottle) GC/TOFMS Monitor bioremediation, use in-situ microbial community define end points

~ multispecies, multi trophic levels Monitor effects of GMO plants Drugs, hormones, endocrine disrupters, antibiotics are most often hydrophobic as

they interact with the membranes of cells. collect biofilms (act as solid phase extractor) analyze with HPLC/ES/MS/MS

Urban watershed monitoring & Toilet to Tap

Page 8: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

“LIPOMICS”

Tools:

Thou shall know structure & concentration of each analyte

Progress (equipment) for speed, specificity, selectivity and sensitivity)Extraction1. Extraction high pressure/temperature faster more complete2. Supercritical CO2 pressure becomes gas directly into MS inlet3. Sequential saves time & effortChromatography1. GC high pressure , 0.1 mm controlled flow, > resolution & faster 2. SFC not much used3. HPLC smaller diameter, Chiral, 4. CZE high resolution, requires charge, presently difficult Detection (lipids generally lack chromophores) 1. NMR insensitive, expensive, 2. Laser fluorescence not as specific but incredibly sensitive3. Light scattering cheep & nonspecific 4. Mass Spectrometry

IonizationElectron impact 70 eV known structure catalogue but inefficient

Electrospray the dream but needs charged analyte ~ 100%

Page 9: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

“LIPOMICS”

Tools:

Thou shall know structure & concentration of each analyte

Mass Spectrometry Ionization EI Electron impact 70 eV known structure catalogue but inefficient

ES Electrospray the dream but needs charged analyte ~100% APCI less sensitive not require charge Photometric APCI potential mild “booster” + light

SIMS to map Phospholipids have that charge Detection Quadrupole slow and good to 3000 m/z MS/MS sensitive chemical noise MRM ITMS (MS)n sensitive . Exploring

TOFMS Speed increases scans sensitivity & resolution, m/z 200K Q/TOF Sequence on the fly but 650K

FTMS mass resolution to 0.0000001 , large capacity in trap, expensive, difficult require superconducting magnet & often not working

Data Analysis Jonas Almeida comprehensiveness of ANN ~ PLFA, Neutral Lipids, rDNA functional genes, activity measures Biolog (samples “weeds”)

Page 10: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

ESI (cone voltage) Q-1 CAD Q-3

ESI/MS/MS

Page 11: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

PE-Sciex API 365 HPLC/ESI/MS/MS Functional Sept 29, 2000

Page 12: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Expanded Lipid Analysis Greatly Increase Specificity ~Electrospray Ionization ( Cone voltage between skimmer and inlet ) In-Source Collision-induced dissociation (CID)

Tandem Mass Spectrometry Scan Q-1 CID* Q-3 DifferenceProduct ion Fix Vary VaryPrecursor ion Vary Fix VaryNeutral loss Vary Vary FixNeutral gain Vary Vary Fix

MRM Fix Fix Fix(Multiple Reaction Monitoring)

*Collision-induced dissociation (CID) is a reaction region between quadrupoles

Lipid Biomarker Analysis

Page 13: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Tandem Mass Spectrometers

CEBJPL

Ion trap MSn (Tandem in Time)Smaller, Least Expensive, >Sensitive (full scan)

Quadrupole/TOF> Mass Range, > Resolution

MS/CAD/MS (Tandem in Space)1. True Parent Ion Scan to Product Ion Scan2. True Neutral Loss Scan 3. Generate Neutral Gain Scan4. More Quantitative 5. > Sensitivity for MRM6. > Dynamic Range

Page 14: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

LIPIDS

Lipids1. Defined by process as Cellular components

extracted from by organic solvents

2. Diverse Chemical Structure characterized by hydrophobic properties

3. Relatively small molecules compared to Biopolymers [molecular weights < 2000]

4. Not with properties of the Biopolymer macromolecules

Polysaccharides, Nucleic Acids, Proteins

Page 15: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

LIPIDS

PROBLEM IN Assessing the microbes : 1. The largest and most critical biomass on Earth is essentially invisible

Earth did well (Geochemical Cycles maintaining disequilibrium) for 3 billion years without multicellular eukaryotes

2. Methods Limited Classical plate counts miss 99.9%, NPN need to grow and be isolated from matrices into single cells, VBNC common

3. Morphology not define function Direct counts need .> 104 to detect matricides often fluorescent

4. Live as multispecies biofilms with interactions and communication

5. Disturbance artifact ~live like coiled spring waiting for nutrient

Page 16: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

LIPIDS

A Solution look for biomarkers : 1. Not persist with death of cells

ATP. DNA, RNA, Enzymes, Uronic acid polymers, Cell walls, neutral lipids (petroleum) , lignin, KDO, Muramic Acid all found outside of cells and persist

POLAR LIPIDS ~ Metabolically Labile not found in petroleum

2. Universally present in the same ~ amount /cell ~pmol in 2-6 x 104 cells size of E. coli

3. Structurally diverse enough to provide insight into composition Bacteria make ~ 1000 Fatty acids, eukaryotes (except plant seeds)

~ 100; Diverse structures-- rings, branches, amides, ethers, . . .

4. Present at measurable quantities & be Readily determined

HPLC/ES/MS/MS, ~ 10-16 moles/L GC/MS, ~ 10-9 moles/L GC/TOFMS ? 10--12 moles/L ??

Page 17: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

LIPIDS

Intact lipid membrane a necessary but not sufficient criteria of life [ON Earth]

1. Cannot have a functional cell without an intact lipid membrane Phospholipid Diglyceride evidence of cell lysis

deeper in the subsurface the > the diglyceride to phospholipid ratio

2. Intact membrane ~ Lipids form micelles in water [not living]

Micelles do not show orderly reproduction & evolution Micelles do not have porins and show transport

Micelles do not maintain disequilibrium > Donnan Equilibrium Usually not all the same size & do not move

Why is the lipid composition so exact in each species of bacteria when

enzymes requiring lipids for function can be relatively nonspecific?

Page 18: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

LIPID Biomarker Analysis

1. Intact Membranes essential for Earth-based life

2. Membranes contain Phospholipids

3. Phospholipids have a rapid turnover from endogenous phospholipases .

4. Sufficiently complex to provide biomarkers for viable biomass, community composition, nutritional/physiological status

5. Analysis with extraction provides concentration & purification

6. Structure identifiable by Electrospray Ionization Mass Spectrometry at attomoles/uL (near single bacterial cell)7. Surface localization, high concentration ideal for organic

SIMS mapping localization

Page 19: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

VIABLE NON-VIABLE

O O || ||

H2COC H2COC

| |C O CH C O CH

| |

H2 C O P O CH2CN+ H3

||

|

O

O-

||O

H2 C O H

||O

Polar lipid, ~ PLFA

Neutral lipid, ~DGFA

phospholipase

cell death

Membrane Liability (turnover)

Page 20: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Bacterial Phospholipid ester linked fatty acids

Monoenoic

cis trans

cyclopropylOH, = position

-CH2

CH=CH

CH2- -CH2

CH=CHCH2-

Isomerconformation

CH3(CH2)XCH=CHCH2CH(CH2)YCOOH 0H CH2

-CH2CHCHCH2-

CEBMicrobial Insights, Inc.

JPL

Page 21: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Bacterial Phospholipid ester-linked fatty acids

iso

anteiso

RCH2CHCH3

CH3 RCH2CHCH2CH3|CH3

mid-chain

RCH2CHCH2CH2R’|CH3

Methyl Branching

CEBMicrobial Insights, Inc. JPL

Page 22: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Biofilm Community Composition

Detect viable microbes & Cell-fragment biomarkers : Legionella pneumophila, Francisella tularensis,

Coxellia burnetii, Dienococcus, PLFA oocysts of Cryptosporidium parvum, Fungal spores PLFAActinomycetes Me-br PLFA Mycobacteria Mycocerosic acids, (species and drug resistance)Sphingomonas paucimobilis Sphingolipids Pseudomonas Ornithine lipidsEnterics LPS fragmentsClostridia PlasmalogensBacterial spores Dipicolinic acid Arthropod Frass PLFA, SterolsHuman desquamata PLFA, Sterols

Fungi PLFA, Sterols Algae Sterols, PLFA, Pigments

Page 23: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

In-situ Microbial Community Assessment

What do you want to know? Characterization of the microbial community: 1. Viable and Total biomass ( < 0.1% culturable &

VBNC ) 2. Community Composition

General + proportions of clades Specific organisms (? Pathogens)

Functional groups [Signature Lipids]-Specific Strains [PCR-DGGE]

3. Physiological/Nutritional Status ~ Evidence forAlmeida Manifesto Cathedral from a brick

4 Metabolic Activities (Genes +Enzymes + Action)Consequences of Activities = Gene frequency & Phenotypic Responses vs the Disturbance Artifact

5.Community Interactions & Communications

Page 24: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Microniche Properties from Lipids

1. Aerobic microniche/high redox potential.~ high respiratory benzoquinone/PLFA ratio, high proportions of Actinomycetes, and low levels of i15:0/a15:0 (< 0.1) characteristic of Gram-positive Micrococci type bacteria, Sphinganine from Sphingomonas 2. Anaerobic microniches ~high plasmalogen/PLFA ratios (plasmalogens are characteristic Clostridia), the isoprenoid ether lipids of the methanogenic Archae.

3. Microeukaryote predation ~ high proportions of phospholipid polyenoic fatty acids in phosphatidylcholine (PC) and cardiolipin (CL). Decrease Viable biomass (total PLFA) 4. Cell lysis ~ high diglyceride/PLFA ratio.

Signature Lipid Biomarker Analysis

Page 25: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Microniche Properties from Lipids

5. Microniches with carbon & terminal electron acceptors with limiting N or Trace growth factors ~ high ( > 0.2) poly β-hydroxyalkonate (PHA)/PLFA ratios

6. Microniches with suboptimal growth conditions (low water activity, nutrients or trace components) ~ high ( > 1) cyclopropane to monoenoic fatty acid ratios in the PG and PE, as well as greater ratios of cardiolipin (CL) to PG ratios.

7. Inadequate bioavailable phosphate ~ high lipid ornithine levels

8. Low pH ~ high lysyl esters of phosphatidyl glycerol (PG) in Gram-positive Micrococci.

9. Toxic exposure ~ high Trans/Cis monoenoic PLFA

Signature Lipid Biomarker Analysis

Page 26: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Capillary GC PLFA 20m x 0.1mm i.d. x 0.1m film thickness, 0.3 ml/min flow rateQuadrupole MS 41-450 m/z scan, 1.84 scan/sec ~av. Peak = 6 sec /sec 11 scans. TOFMS 6 sec = 280,000 scans resolution & sensitivity ~ 50 times greater

6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

2600000

2800000

3000000

3200000

3400000

3600000

3800000

4000000

4200000

4400000

4600000

4800000

Time-->

Abundance

TIC: SERDP2.D

EI off during solvent elution

Page 27: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Details of GC/MS tracing showing deconvolution of PLFA

Page 28: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

LIPIDS –DATA ANAYSIS

Problem: PLFA Analysis is like comparing spectraFew replications but huge data load/sample

1. Classic Statistics likes replications of simple data ~ group data in rational clusters

2. Do replications then test the variance between them perform ANOVA Assumes variables are independent and form a normal distribution

3. Do a Tukeys post hoc test for more stringent test of significant difference to control better for chance in large replications

4. Assume Linear Relationships and display graphically with:

Hierarchical Cluster AnalysisPrincipal components Analysis PCA

Essentially a huge correlation matrix

Page 29: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Scatterplot

Uranium vs Mid-Chain Branched Saturated PLFA

Uranium

Mid

-Ch

ain

Bra

nc

he

d P

LF

A

608

610615

617

624626

826

828

853

857

4

8

12

16

20

24

28

0 500 1000 1500 2000 2500 3000 3500 4000

Page 30: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

October

-1

2

-1

1

August

-1

1

-1

PCA 2 Analysis of Forest Community Soil total PLFAP

CA

1

PCA Analysis Sugar Maple-Basswood Black Oak- White Oak Sugar Maple- Red Oak

Page 31: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

LIPIDS-DATA ANALYSIS

Problem: PLFA Analysis is like comparing spectraFew replications but huge data load/sample

5. Assume non-Linear Relationship

ANN Use data for training to generate a Artificial neural network using nodes for interactions. If relatively few nodes are required easier to

interpret

Predictability is the test and with “training” gets better and better but must test for ‘OVERTRAINING” ie memorization

Perform a sensitivity analysis ~ components contribute most to predictability

Now map on a surface to explore spatial and temporal interactions

Page 32: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

ANN Analysis of CR impacted Soil Microbial Communities

1. Cannelton Tannery Superfund Site, 75 Acres on the Saint Marie River near Sault St. Marie, Upper Peninsula, MI

2. Contaminated with Cr+3 and other heavy metals between1900-1958 by the Northwestern Leather Co.

3. Cr+3 background ~10-50 mg/Kg to 200,000 mg/Kg.

4. Contained between ~107-109/g dry wt. viable biomass by PLFA; no correlation with [Cr] (P>0.05)

5. PLFA biomass correlated (P<001) with TOM &TOC but not with viable counts (P=0.5)

-CEB

Page 33: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

0 400ft

N

C4

B5 B7 B9

C8 C10

D9 D11

C16

D17E16 E18

G14

H15 H17 H19 H21I20 I22

J19J21

K22K20

L21M20

J23

N21O22

P23

Q24

N23

O24

P25

U26T27

K28

TANNERY

G18

Q26

RemovedBeach

Grass Pond

Woodland

Swampy/Cattails

Wooded Wetland

Grassy Wetland

Running Water

A

Cannelton Tannery Superfund Site

Page 34: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

100,001-300,000

75,001-100,000

50,001-75,000

25,001-50,000

10,001-25,000

7,001-10,000

5,001-7,000

3,001-5,000

2,001-3,000

1,001-2,000

501-1,000

101-500

51-100

1-50

ND

Cr+3 Concentrations Site map

Page 35: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Total Biomass (~108 cells)

Chromium

Bio

mas

s (n

mol

e PL

FA g

-1)

-200

20406080

100120140

1 2 3 4 5

Page 36: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Biomarkers for Sulfate/metal reducing bacteria

NABIR

Chromium

Sulf

ate/

met

al r

educ

ers

(mol

e%)

1

2

3

4

5

6

1 2 3 4 5

Page 37: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

“Stress” biomarkers

NABIR

Chromium

18:1

w7t

/18:

1w7c

-0.02

0.02

0.06

0.10

0.14

0.18

1 2 3 4 5

Met

abol

i c

stre

ss

Page 38: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Principal components analysis~ associated with wetlands, eukaryote biomarkers and bacterial stress markers

Factor Loadings, Factor 1 vs. Factor 2

Rotation: Unrotated

Extraction: Principal components

Factor 1

Fac

tor

2

WETLAND

CI140

C140

CI151A

CI151B

CI151W11

CI151CCI150

CA150

C151

C150

CBR150A

CBR150B

CI161

CBR150C

C162

CI160

C161W11C

C161W7C

C161W7T

C161W5C

C160

CBR160

CI171W8

C10ME160

C11ME160

C12ME160

CI170

CA170

CCY170A

CCY170B

C170

CBR170A

CBR170B

C182A

C182W6

C183W3

C181W9C

C181W7C

C181W7T

C181W5CC180

CBR181

C10ME180

C12ME180

CCY190

C204W6

C205W3

C203W6

C201W9C

C200C210

C220

C230

C240

PH

%TOM

BIOMASS

CR__MG_K VIABLE_C

%TOC

P

K

CA

MG

-1.0

-0.6

-0.2

0.2

0.6

1.0

-1.0 -0.6 -0.2 0.2 0.6 1.0 1.4

Eukaryote PLFA

Page 39: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Summary: Biomass

• Biomass (bacterial abundance): ~ 6 x 107 to 109 •• cells gram-1. No correlation between [Cr] and

total biomass (P>0.05)

• Viable cell counts were between 1-3 orders of magnitude lower than bacterial abundance from PLFA

• Biomass (PLFA) correlated positively with both TOM and TOC (P<0.001)

Page 40: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Summary: community composition/physiological status

• Significant shifts in PLFA profiles with [Cr]

• [10me16:0] (sulfate/metal reducers) peaked at 103 mg kg-1 Cr

• No clear pattern was determined between bacterial sequence identity (from PCR/DGGE) and increasing [Cr]

• Bacterial Stress markers (18:17t/18:17c) increased at the higher [Cr]

• PCA - association between [Cr] and wetlands, biomarkers for eukaryotes and “stress”. Needs a different analysis.

Page 41: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

regression

training

testing

Pred

ictiv

e er

ror

cross-validated error

Stop !

classificationvector

Inputprofile hidden layer

Schematic architecture of a three layer

feedforward network used to associate

microbial community typing profiles

(MCT) with classification vectors.

Symbols correspond to neuronal nodes

Generalization is assured

by cross-validation

ANN are universal predictors

Capable oflearning from examples

Page 42: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

1 10 100 1000 10000 100000 1E+006

Observed Cr3+ concentration (mg Kg-1)

1

10

100

1000

10000

100000

1E+006

Predicted Cr3+ concentration (mg Kg-1)

training setvalidation setregressionidentity

slope = 1.09

R2 = 0.98

Good Predictive Accuracy at > 100 mg Cr+3 /Kg

Page 43: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

C181W

9C

CI1

70

C181W

7C

C10M

E180

CA

170

CI1

51W

11C

I151A

C161W

5C

CI1

50

C201W

9C

C161W

11C

C10M

E160

CB

R181

CA

150

CI1

60

%TO

MC

160

CC

Y170B

C170

C150

C203W

6C

AC

210

PH

C12M

E160

C161W

7T

C183W

3%

TO

CC

I171W

8C

BR

150B

CB

R170B

C181W

7T

C182A

CB

R170A

BIO

MA

SS

C151 P

CI1

51B

WE

TLA

ND

CB

R150A

CC

Y190

MG

CI1

40

C180

C161W

7C

C230

CB

R160 K

C11

ME

160

C205W

3C

12M

E180

C200

CC

Y170A

CI1

51C

C182W

6C

140

C220

CI1

61

C162

C240

CB

R150C

C204W

6V

IAB

LE

_C

C181W

5C

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

Rel

ativ

e se

nsiti

vity

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

Cum

mulative sensitivity

Sensitivity analysis ranks the inputs by importance in predicting [Cr+3]PLFA have a significant larger predictive value than environment parameters (marked with arrows).

PLFA profiles are a can be used as a general purpose biosensorgeneral purpose biosensor

Page 44: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Biological systems are so complex that prediction of function from the composition of system components is inversely proportional to the distance to the function itself

OR

It’s hard to see the forest for the trees!

One cannot easily predict if a brick (DNA) will be used to build a cathedral or a prison but the structure of the windows will tell.

BUT Cellular membranes are in contact with the environment and the intracellular space. So

Cellular membranes are in contact with the environment and the int PLFA is an ideal sensor of the environmental composition and the biological response, e.g. degree of contamination by a pollutant and its bioremediation.

Cellular membranes are in contact with the environment and the intracellular space.

Page 45: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

ANN Analysis of CR impacted Soil Microbial Communities

SENSITIVITY (from ANN) 20% of the variables accounted for 50% of the predictive of Cr+3

concentrationOf these 20 %:

18:1w9c (6.6%) Eukaryote (Fungal) correlated with 18:26 (P<0.02)

10Me 16:0 (2.5%) correlated with i17:0 (4.8), 16:1 11c (2.9), i15:0 (3.1) (P<0.001). Thus all are most likely indicative of SRBs or MRBs.

18:17c (4.6%) = Gram negative bacteria

10Me 18:0 (4.3%) (Actinomycetes)

-CEBNABIR

Page 46: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

ANN Analysis of CR impacted Soil Microbial Communities

CONCLUSIONS:1. Non-Linear ANN >> predictor than Linear PCA (principal Components Analysis)

2. No Direct Correlation (P>0.05) Cr+3 with Biomass (PLFA), Positive correlation between biomass (PLFA) and TOC,TOM

3. ANN: Sensitivity to Cr+3 Correlates with Microeukaryotes (Fungi)18:19c, and SRB/Metal reducers (i15:0, i 17:0, 16:1w11, and 10Me 16:0)

4. SRB & Metal reducers peaked 10,000 mg/Kg Cr+3

5. PLFA of stress > trans/cis monoenoic, > aliphatic saturated with > Cr+3

-CEBNABIR

Page 47: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

“LIPOMICS”

Future: Automated sequential extraction tandem MS detection of Lipid Biomarkers DNA / mRNA with arrays coupled data bases & GPS map

20 min? Analysis of microbial contamination & insight into infectivity Ft. Johnson Seminar

Clinical & Veterinary Monitor Airports Buses, Ports to data base

CBW Defense Food Safety, Indoor Air vs adult Asthsma & Sick Building Syndrome

Monitor exhaled breath (capture in silicone bottle) GC/TOFMS Monitor bioremediation, use in-situ microbial community define end points

~ multispecies, multi trophic levels Monitor effects of GMO plants Drugs, hormones, endocrine disrupters, antibiotics are most often hydrophobic as

they interact with the membranes of cells. collect biofilms (act as solid phase extractor) analyze with HPLC/ES/MS/MS

Urban watershed monitoring & Toilet to Tap

Page 48: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Sequential Extraction & HPLC/ESI/MS analysis ~ 1-2 hrs

Concentration/Recovery

Extraction SFE/ESE

SeparationHPLC/in-line

Fractionation

DetectionHPLC/ESI/MS(CAD)MS

or HPLC/ESI/IT(MS)n

CEBMicrobial Insights, Inc.

Page 49: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Lipid Biomarker Analysis

Sequential High Pressure/Temperature Extraction (~ 1 Hour)

Supercritical CO2 + Methanol enhancer Neutral Lipids, (Sterols, Diglycerides, Ubiquinones)

Lyses Cells Facilitates DNA Recovery (for off-line analysis

2. Polar solvent Extraction Phospholipids CID detect negative ions

Plasmalogens

Archeal Ethers 3). In-situ Derivatize & Extract Supercritical CO2 + Methanol

enhancer 2,6 Dipicolinic acid Bacterial Spores

Amide-Linked Hydroxy Fatty acids [Gram-negative LPS]

Three Fractions for HPLC/ESI/MS/MS Analysis

Page 50: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Microbial Insights, Inc.

CEB

Supercritical Fluid Extraction (SFECO2 + Methanol Enhancer)for Neutral Lipids

Liquid Gas1. vs. liquids greater solute diffusivityless solute viscositydensity varies with pressure

2. Fractionate with sequential addition of modifiers3. Effective in situ derivatization4. Less toxic than solvents 5. Fast 20 min vs. 8 hrs with solvents6. Potential for automation7. Compatible with ES/MS/MS & IT(MS)n

8. Generate micellar emulsions + water + surfactants9. SFCO2 becomes a gas < 1070 psi10. Low Temperature Possible ~ 390C

Page 51: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

*Macnaughton, S. J., T. L. Jenkins, M. H. Wimpee, M. R. Cormier, and D. C. White. 1997. Rapid extraction of lipid biomarkers from pure culture and environmental samples using pressurized accelerated hot solvent extraction. J. Microbial Methods 31: 19-27(1997)

Feasibility of “Flash” Extraction

ASE vs B&D solvent extraction*

Bacteria = B&D, no distortionFungal Spores = 2 x B&D Bacterial Spores = 3 x B&D Eukaryotic = 3 x polyenoic FA

[2 cycles 80oC, 1200 psi, 20 min] vs B&D = 8 -14 Hours

CEBMicrobial Insights, Inc.

Page 52: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Problem: Rapid Detection/Identification of Microbes

Propose a Sequential High Pressure/Temperature Extractor Delivers Three Analytes to HPLC/ESI/MS/MS

CO2

Pump

N2 blowdownAutosampler

HPLC/ES/MS/MS

Fraction Collector

Spe-ed SFE-4 NL

PL

LPS

MeOHMeOHCHCl3PO4

-

Page 53: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Expand the Lipid Biomarker Analysis

1. Increase speed and recovery of extraction “Flash”

2. Include new lipids responsive to physiological status HPLC (not need derivatization)

Respiratory quinone ~ redox & terminal electron acceptorDiglyceride ~ cell lysisArchea ~ methanogensLipid ornithine ~ bioavailable phosphateLysyl-phosphatidyl glycerol ~ low pHPoly beta-hydroxy alkanoate ~ unbalanced growth

3. Increased Sensitivity and Specificity ESI/MS/MS

Signature Lipid Biomarker Analysis

Page 54: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Lyophilized Soil Fractions, Pipe Biofilm

SFECO2 1. Neutral Lipids

UQ isoprenologues

Derivatize –N-methyl pyridyl Diglycerides Sterols Ergostrerol Cholesterol

ESE Chloroform.methanol

2. Polar Lipids

Transesterify

PLFA

CG/MS

Intact Lipids

HPLC/ES/MS/MS

Phospholipids PG, PE, PC, Cl, & sn1 sn2 FAAmino Acid PGOrnithine lipidArchea ether lipidsPlamalogens

PHAThansesterify & Derivatize N-methyl pyridyl

3. In-situ acidolysis in SFECO2

2,6 DPA (Spores)

LPS-Lipid A OH FA

Page 55: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

+Q1: 119 MCA scans from 0928002.wiff Max. 8.7e8 cps.

600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800m/z, amu

0.0

5.0e7

1.0e8

1.5e8

2.0e8

2.5e8

3.0e8

3.5e8

4.0e8

4.5e8

5.0e8

5.5e8

6.0e8

6.5e8

7.0e8

7.5e8

8.0e8

8.5e8

In

te

ns

ity

, c

ps

693.7

694.6

679.7

635.5680.6

653.8 696.7 725.7617.5 707.6637.5

O O

CH2CH3

H

CH3

H

H O

HO

CH3

CH3

CH2OHH

OO

HO

H

CH3

H3C

H3CHC CH3

OH3C

CO

ONa

C36H61NaO11Exact Mass: 692.41

Mol. Wt.: 692.85

+Product (693.8): 119 MCA scans from 0929001.wiff Max. 4.9e7 cps.

400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700m/z, amu

0.0

5.0e6

1.0e7

1.5e7

2.0e7

2.5e7

3.0e7

3.5e7

4.0e7

4.5e7

4.9e7

In

te

ns

ity

, c

ps

693.2

675.4

461.4

479.3501.2 695.2581.5443.6 599.3 657.7

Monensin Q1 scan

693.7

675.4

461.3

Page 56: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Q6

Q7Q10

O

O

H3OC

H3OC

CH3

]H

n

197 m/z

Respiratory Benzoquinone (UQ)

Gram-negative Bacteria with Oxygen as terminal acceptor LOQ = 580 femtomole/ul, LOD = 200 femtomole/ul ~ 104 E. coli

Page 57: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

CH2O C

O

CH2(CH2)13CH3

CH2OH

CHO C

O

CH2(CH2)13CH3N

CH3

F+

CH3

SO3

N

CH3

O

N

CH3

CH2O C

O

CH2(CH2)13CH3

CHO C

O

CH2(CH2)13CH3

OCH

CH2O C

O

CH2(CH2)13CH3

CH2

CHO C

O

CH2(CH2)13CH3

Pyridinium Derivative of 1, 2 Dipalmitin

C41H73NO5+

Exact Mass: 659.55

Mol. Wt.: 660.02

C6H7NOExact Mass: 109.05

Mol. Wt.: 109.13

neutral loss

C35H67O4+

Exact Mass: 551.50

Mol. Wt.: 551.90

[M+92]+

[M+92-109]+

M = mass of original Diglyceride

LOD ~100 attomoles/ uL

Page 58: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

HPLC/ESI/MS

CEB

• Enhanced Sensitivity• Less Sample

Preparation• Increased Structural

Information• Fragmentation highly

specific i.e. no proton donor/acceptor fragmentation processes occurring

CH2

HC O C

O

R1

CH2OC

O

R2

OP

O

O

OX

Page 59: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Parent product ion MS/MS of synthetic PG Q-1 1ppm PG scan m/z 110-990 (M –H) -

Sn1 16:0, Sn2 18:2

Q-3 product ion scan of m/z 747 scanned m/z 110-990 Note 50X > sensitivity

SIM additional 5x > sensitivity ~ 250X

Page 60: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

“LIPOMICS”

Tools:

Thou shall know structure & concentration of each analyte

Progress (equipment) for speed, specificity, selectivity and sensitivity)Extraction1. Extraction high pressure/temperature faster more complete2. Supercritical CO2 pressure becomes gas directly into MS inlet3. Sequential saves time & effortChromatography1. GC high pressure , 0.1 mm controlled flow, > resolution & faster 2. SFC not much used3. HPLC smaller diameter, Chiral, 4. CZE high resolution, requires charge, presently difficult Detection (lipids generally lack chromophores) 1. NMR insensitive, expensive, 2. Laser fluorescence not as specific but incredibly sensitive3. Light scattering cheep & nonspecific 4. Mass Spectrometry

IonizationElectron impact 70 eV known structure catalogue but inefficient

Electrospray the dream but needs charged analyte ~ 100%

Page 61: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Petroleum Bioremediation of soils at KwajaleinNutrient Amendment and Ex Situ Composting vs Control Showed:1. VIABLE BIOMASS (PLFA)2. SHIFT PROPORTIONS: Gram + , Gram - (Terminal branched PLFA, :: Monoenoic, normal PLFA )3. Cyclo17:0/16:17c :: Cyclo19:0/18:17c (Stress)4. = 16:17t/16:7c (Toxicity), [often ]  5. 16:9c/16:17c (Decreased Aerobic Desaturase) 6. % 10Me16:0 & Br17:1 PLFA (Sulfate-reducing bacteria) 7. % 10Me18:0 (Actinomycetes) 8. = PROTOZOA, FUNGI + (Polyenoic PLFA) [ often ]In other studies also usually see:  1. PHA/PLFA (Decreased Unbalanced Growth)2. RATIO BENZOQUINONE/NAPHTHOQUINONE

(Increased Aerobic Metabolism)

DEGREE OF SHIFT IN SIGNATURE LIPID BIOMARKERS PROPORTIONAL TO DEGRADATION

Page 62: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

1. 104-106 cells/cm2 vs ~ 103-104 /Liter 2. Integrates Over Time3. Pathogen trap & nurture

(including Cryptosporidum oocysts) 4. Serves as a built in solid phase extractor for

hydrophobic drugs, hormones, bioactive agents5. Convenient to recover & analyze for biomarkers Its not in the water but the slime on the pipe

Biofilms not pelagic in the fluid

Sampling Drinking Water-- Collect Biofilms on Coupons

Page 63: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

1. Add from continuous culture vessels:Pseudomonas Spp.Acetovorax spp.Bacillus spp.

2. Seed with trace surrogate/pathogen E. coli (GFP), Mycobacterium pflei (GFP), Legionella bosmanii , Sphingomonas

In the Drinking Water Biofilm

Reproducibly Generate a Drinking Water Biofilm:

Page 64: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Microbial Insights, Inc.

CEB

Tap Water Biofilm ~ 600 L in 3 weeks on 200 cm2 stainless steel beads

Page 65: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Microbial Insights, Inc.

CEB

Tap Water Biofilm ~ 600 L in 3 weeks on 200 cm2 stainless steel beads

1. Biomass = 2,85 pmoles PLFA ~ 2,8 x 107 2. Largely Gram - heterotrophs

monoenoic PLFA derivativesCyclopropane (Stationary Phase) No trans PLFA (little toxicity)

3. Gram + aerobes Terminally branched saturated PLFAi17:0/a17:0 = 0.7

4. No actinomycetes, Mycobacteria (10 Me 18:0)5. No microeukaryotes (polyenoic PLFA)6. No Cryptosporidium Cholesterol7. No Legionella (2,3 di OH i14:) UQ-138. No Sphingomonas (sphanganine-uronic acid)9. Pseudomonas >>> Enterics (LPS 3 0H 10, 12:0 >> 30H 14:0)10. Chlorine toxicity = oxirane & dioic PLFA

Page 66: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Biofilm Test System

Page 67: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Rapid Detection of Bacterial Spores & LPS OH Fatty Acids in Complex Matrices

From the lipid-extracted residue, Acid methanolysis & Extract: Strong Acid methanolysis SPORE Biomarker

1. Detect 2,6 dipicolinate with HPLC/ES/MS/MS 1 hour and 100% yield vs Pasteurize& Plate ---- 3 days and ~ 20% viable Weak acid methanolysis ( 1% HAc, 100oC, 30 min.)

2. Detect 3-OH Fatty Acids Ester-linked to Lipid A in LPS of Gram-negative Bacteria with HPLC/ES/MS/MS or GC/MS

Enterics & Pathogens 3OH 14:0Pseudomonad's 3OH 10:0 & 3OH 12:0 (Should Dog Drink from Toilet Bowl?)

Page 68: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

OOP

OO

OH O HN

O

OHO

OHN O

P O

OH

O

O

OH

OO

OO

O

O

O

OH

C93H174N2O24P22-

Exact Mass: 1765.19

Mol. Wt.: 1766.32

1414

14

14

1412

Gram-negative Bacteria lipid-extracted residue, hydrolize [1% Acetic acid, 30 min, 100oC], extract = Lipid A

E. Coli Lipid A MS/MS 3 OH 14:0, 14:0 as negative ions

Acid sensitive bond

{to KDO]

Lipid A

Page 69: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Lipid A from E. coliFatty acids liberated by acid hydrolysis followed by

acid–catalyzed (trans) esterification

14:03OH 14:0

3OH 14:0 TMS

phthalatesiloxane

GC/MS of Methyl esters

Page 70: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

-Q1: 49 MCA scans from 1004001.wiff Max. 1.6e8 cps.

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700m/z, amu

0.0

1.0e7

2.0e7

3.0e7

4.0e7

5.0e7

6.0e7

7.0e7

8.0e7

9.0e7

1.0e8

1.1e8

1.2e8

1.3e8

1.4e8

1.5e8

1.6e8

Inte

ns

ity, c

ps

227.8

243.9

177.6

367.4

199.6

396.0

424.2 1280.7586.6 1099.0872.5

284.7 1508.4451.9509.5 751.4 1054.7768.9 854.2255.9 691.0 1325.3339.8 480.2 1262.9978.1162.8 708.9 1491.0208.7 1718.9795.3551.4 836.7 1205.7118.8 921.3 1463.01064.1

Electrospray Mass Spectrum of Lipid A Standard from E. coli

14:0 m/z 227OH 14:0 m/z 243

14:0 and 3 0H 14:0 are clearly detectible as negative ions

Page 71: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

WQ1 669 524 94

LIPID A:

    Pseudomonas 3 0H 12:0 & 3 0H 10:0 (water organism) Enteric & Pathogens 30H 14:0 (fecal potential pathogen)

Toilet bowl biofilms: High flush vs Low flush rate Higher monoenoic, lower cyclopropane PLFA ~ Gram-negative more actively growing bacteria

mol% ratios of 72 (30)*/19 (4) of 3 0H 10 +12/ 3 OH 14:0 LPS fatty acids

Human feces 7 (0.6)/19 (4) 3 0H 10 +12/ 3 OH 14:0 in human feces [*mean(SD)].

Pet safety if access to processed non-potable water.

Page 72: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Toxicity Biomarkers

Hypochlorite, peroxide exposure induces:

1. Formation of oxirane (epoxy) fatty acids from phospholipid ester-linked unsaturated fatty acids

2. Oxirane fatty acid formation correlates with inability to culture in rescue media. Viability?

3. Oxirane fatty acid formation correlates with cell lysis indicated by diglyceride formation and

loss of phospholipids.

Page 73: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L
Page 74: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Compounds not readily ionized, that contain a hydroxy groupcan be derivatized to their methylpyridyl ether

Cl

Cl

O

OH

Cl N

CH3

F

CH3

SO3

+

Triclosan

2-flour-1-methylpyridinium-toluenesulfonate

Cl

Cl

O

O

Cl

NH3C

CH2Cl2

TEA

Page 75: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

+Q1: 181 MCA scans from 0927001.wiff Max. 1.3e9 cps.

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500m/z, amu

0.0

1.0e8

2.0e8

3.0e8

4.0e8

5.0e8

6.0e8

7.0e8

8.0e8

9.0e8

1.0e9

1.1e9

1.2e9

1.3e9

In

te

ns

ity

, c

ps

101.8

380.3

124.2

384.374.2

81.3 110.3

58.480.9

375.7

116.3397.775.2 165.486.4

Triclosan (Pyridinium derivative) Q1scan

+Product (380.3): 181 MCA scans from 0927003.wiff Max. 9.3e6 cps.

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500m/z, amu

0.0

5.0e5

1.0e6

1.5e6

2.0e6

2.5e6

3.0e6

3.5e6

4.0e6

4.5e6

5.0e6

5.5e6

6.0e6

6.5e6

7.0e6

7.5e6

8.0e6

8.5e6

9.0e69.3e6

In

te

ns

ity

, c

ps

218.1

236.1

93.2219.1

380.2125.1204.2141.0110.079.1 237.0112.1

Cl

Cl

O

O

Cl

NH3C

C18H13Cl3NO2+

Exact Mass: 380.00

Mol. Wt.: 381.66

Product ion scan

380.3

218.1

Page 76: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

+Q1: 0.573 to 1.962 min from 0928001.wiff Max. 8.1e6 cps.

260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600m/z, amu

0.0

5.0e5

1.0e6

1.5e6

2.0e6

2.5e6

3.0e6

3.5e6

4.0e6

4.5e6

5.0e6

5.5e6

6.0e6

6.5e6

7.0e6

7.5e6

8.0e6

In

te

ns

ity

, c

ps

475.7

476.8

507.6492.0281.7 416.0 447.7253.7 312.7

+Product (475.7): 119 MCA scans from 0928003.wiff Max. 8.5e7 cps.

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500m/z, amu

0.0

5.0e6

1.0e7

1.5e7

2.0e7

2.5e7

3.0e7

3.5e7

4.0e7

4.5e7

5.0e7

5.5e7

6.0e7

6.5e7

7.0e7

7.5e7

8.0e7

8.5e7

In

te

ns

ity

, c

ps

100.1

99.2

475.458.1

311.4283.4

299.4377.1163.4 329.470.0 285.3

Sildenafil (Viagra) Q1 scan

S

O

CH3

N

N

H3C

O

ON

HN

O

N

N

CH3

CH2CH2CH3

C22H30N6O4SExact Mass: 474.20

Mol. Wt.: 474.58

Product ion scan

475.4

100.1

Page 77: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

WQ1 669 524 94

Goal:

     Provide a Rapid (minutes) Quantitative Automated Analytical System that can analyze coupons from water systems to:

1).) Monitor for Chlorine-resistant pathogens [Legionella, Mycobacteria], Spores

2). Provide indicators for specific tests (Sterols for Cryptosporidium, LPS OH-FA for enteric bacteria

3). Monitor hydrophobic drugs & bioactive molecules

Establish Monitored Reprocessed Waste Water

as safer than the wild type

Page 78: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

The CH vs 13C- Problem H = 1.007825 12-C = 12.00000 13-C = 13.003345So the differentiate CH from 13-C must differentiate 13.0034 from 13.0078 requites High resolution Mass Spectrometry

Solution: 13C Label to saturation by growth with 13C so avoid CH problem a). Recover polar lipids (Extraction & Concentration) unique biomarker b). HPLC/ESI/MS/MS ~ attomolar sensitivity c) . Detect unique masses of PLFA for specific P-lipids

Detection of 13C grown bacteria

Page 79: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Solution: Use a polar lipid biomarker:

a) Total lipids can be extracted & concentrated from large sample environmental samples.

b) polar lipids can be purified

c) specific intact polar lipid can be purified with HPLC

d) polar lipids excellent for HPLC/eletrospray ionization [~ 100% vs < 1% for electron impact with GC/MS]

Problem: detect 13-C grown bacteria

Page 80: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Extract lipids, HPLC/ESI/MS/MS analysis of phospholipids detect specific PLFA as negative ions PLFA 12C Per 13C 16:1 253 269 same as 12C 17:0

16:0 255 271 Unusual 12C 17:0 (269) + 2 13C cy17:0 267 284 12C 18:0 (283) + 13C

18:1 281 299 12C 20:6 , 12C 19:0 with 2 13C 19:1 295 314 12C 21:5 (315), 12C 21:6 (313)

Detection of specific per 13C-labeled bacteria added to soils

13C bacteria added

No 13C bacteria added

Page 81: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

1 Part 13C DA001 Spiked into 10 Parts of Soil Sample

PE from soil with 13C added

PE from soil with 13C added

Page 82: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Detection of Shrimp Gut Microbes

1. Recover DNA from Hind and Mid gut 2. Amplify with PCR using rDNA eubacterial primers3. Separate Amplicons with Denaturating

Gel Gradient Electrophoresis (DGGE)4. Isolate Bands, 5. Sequence and match with rDNA database 6. Phylogenetic analysis

Page 83: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Figure 1. DGGE analysis bacterial community in water and shrimp gut samples. Amplified 16S rDNAs were separated on a gradient of 20% to 65% denaturant.

Wat

er 8

31

Wat

er 8

17

Sta

ndar

d

For

e gu

t

Hin

d gu

t

Water changed composition between Aug 17 & 31st, much > diversity than shrimp gut, Fore gut less diverse than Hind gut.

Major bands have been RecoveredFor sequencing& Phylogenetic analysis

Page 84: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

(Vib

rio)

Gra

m p

osit

ive

Mycobacteria

Propioni-bacterium

Marine α-proteobacteria

δ-proteobacteria

γ-pr

oteo

bact

eriu

m

BCF group

Green alga

Figure 2. Neighbor-joining analysis of 16S sequences from excised DGGE bands, relationships with reference organisms downloaded from RDP.

= Foregut,

= Hindgut,

= Water

Page 85: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Microbial Community in Water (W), Fore Gut (F), Hind Gut (H)

W F H W F H W F H W F H W F H

0%

20%

40%

60%

80%

100%

8020

1

8020

1F

8020

1H

8030

1

8030

1F

8030

1H

8100

1

8100

1F

8100

1H

8230

1

8230

1F

8230

1H

8310

1

8310

1F

8310

1H

Monos

Bmonos

TBSats

MBSats

NSats

Page 86: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Microbial Viable Biomass: Water (W), Fore Gut (F), Hind Gut (H)

W F H W F H W F H W F H W F H

Biomass PLFA

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

80201

80201F

80201H

80301

80301F

80301H

81001

81001F

81001H

82301

82301F

82301H

83101

83101F

83101H

pm

ol/g

Note Log scale

Page 87: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Microbial Viable Biomass: Food, Flock, Water, Fore, Gut Hind Gut

0

10

20

30

40

50

60

70

80

90

100

Food Flock Water 8/31 Foregut 8/31 Hindgut 8/31

mo

l%

Poly

Mono

Bmono

Tbsat

MBSat

Nsat

Page 88: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Shrimp In Mariculture Water & Gut Microbial Community

Over one month of aquiculture: • Water microbial biomass increases somewhat• Algal and Microeukaryotes decrease • Desulfobacter increase Desulfovibrio slight decrease • Gram-negative bacteria increase then decrease • Water microbial composition relatively constant gets

more anaerobic? SRB? Not important in Gut• Fore Gut & Hind gut same viable biomass• Gut Community very different from water• DGGE shows Fore and Hind Gut differences & much

less diverse community• Gut 2-order of magnitude > viable microbial biomass

than water • Gut and Water different PLFA from Shrimp food

Page 89: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Feed per-13-C labeled bacteria, Algae, microeukaryotes to shrimp:

1. Determine Triglyceride Fatty acids to Phospholipid

fatty acids in muscle, hepatopancreas, gut etc. using HPLC/ES/MS/MS [Lithiated TG (positive ions) & PG with detection of negative ions)]

2. This gives evidence for both incorporation and nutritional status into the Shrimp

3. Can differentiate between bacteria PE, PG vs the eukaryotes with Ceramides and PC with HPLC/ES/MS/MS

Detection of specific per 13C-labeled bacteria, Algae, etc. in Shrimp

Page 90: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Problem: Rapid Non-invasive Detection of Infection or Metabolic stress for Emergency room Triage

Human Breath sample GC/MS

Page 91: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Problem: Detecting Indoor Air Biocontamination

Collect particulates on a tape with vortex flow collector

In lab process tape Lyse cells PCR DGGE or use hybridization chip for :Bacteria, Fungi and spores Immune potentiators ~ LPS, Fungal Antigens, dust mites, cat dander, cockroach frass

Adult Asthmas

Page 92: “LIPOMICS” David C. White, MD, PhD, milipids@aol.com, 865-974-8001 Current team: Peacock. A. D., C. Lytle, Y-J. Chang, Y-D. Gan, J. Cantu, K. Salone, L

Microbial Insights, Inc.

CEB

Biomarkers for Confined Space Air Biocontaminant Monitoring:

1. Viable Biomass (all cells with an intact membrane) PLFA2. Detect Recently Lysed (diglyceride fatty acids)3. Community Composition4. Nutritional/Physiological status (Infectivity & Toxin production)5. Evidence for Toxicity (trans/cis PLFA)6. Detect Specific Microbes Mycobacteria, Legionella, Francisella,

some Aspergillis, complementary with gene probes and PCR7. Detection of Allergens: pollens, danders, spores, arthropod frass8. Detection of immune potentiators (bacterial endotoxin)9. Detection of mycotoxins10. Independent of “culturability”11. Independent of sample source (tiles, covers, carpet, air filters)12. + Proteins & Nucleic Acids ~ detect virus