52
Supplementary Tables Impact of Genetic Polymorphisms of ABCB1 (MDR1, P- glycoprotein) on Drug Disposition and Potential Clinical Implications: Update of the Literature Clinical Pharmacokinetics Stefan Wolking, 1 Elke Schaeffeler, 2,3 Holger Lerche, 1 Matthias Schwab, 2,4# Anne T. Nies 2,3 1 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler Strasse 3, 72076 Tübingen, Germany 2 Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany 3 University of Tübingen, Germany 4 Department of Clinical Pharmacology, University Hospital Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany # Corresponding author Email: [email protected] Tel: +49 711 8101 3700 Fax: +49 711 85 92 95 1

link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

Embed Size (px)

Citation preview

Page 1: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

Supplementary Tables

Impact of Genetic Polymorphisms of ABCB1 (MDR1, P-glycoprotein) on Drug

Disposition and Potential Clinical Implications: Update of the Literature

Clinical Pharmacokinetics

Stefan Wolking,1 Elke Schaeffeler,2,3 Holger Lerche,1 Matthias Schwab,2,4# Anne T. Nies2,3

1 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler Strasse 3, 72076 Tübingen, Germany2 Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany3 University of Tübingen, Germany 4 Department of Clinical Pharmacology, University Hospital Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany

#Corresponding authorEmail: [email protected]: +49 711 8101 3700Fax: +49 711 85 92 95

1

Page 2: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

Supplementary Table 1 Extended list of effects of ABCB1 polymorphisms on pharmacokinetics

Drug Article

C1236T

G2677T/A

C3435T

Haplotypes

Other SN

Ps

No. of patients Ethnicity Parameters EffectAnalgeticFentanyl Kim et al. [1] X X 196 patients, post-op Korean D NSMethadone Levran et al. [2] X X X X 11,15,33

44,47,48109 former heroin addicts Jewish

ancestryD 1236TT/2677TT/3435TT: D

AnticancerDocetaxel Fajac et al. [3] X X X X 8,10 86 patients, breast cancer Mixed AUC 3435TT: AUC in premenopausal

womenKim et al. [4] X X X 216 patients, breast cancer Korean AUC, AE, OS 3435TT: OS, AUC for

docetaxel, neutropenia for docetaxel

Doxorubicin Lal et al. [5] X X X X 62 patients, advanced breast cancer

Asian CL, Cmax, AUC 1236CC/2677GG/3435CC: AUC, Cmax, CL

Voon et al. [6] X 51 151 patients, breast cancer Asian AUC, CL, Cmax, t1/2, OS, PFS, neutrophil count

2677T: CL; rs2235047G: neutrophils, OS

Erlotinib Fukudo et al. [7] X X X 88 patients, NSCLC Japanese C0, CL, response, AE

NS

Imatinib Gurney et al. [8] X X X 22 patients, gastrointestinal tumor

UK CL/F 1236TT, 2677TT, 3435TT: CL/F, toxicity-related dose reduction

Irinotecan Han et al. [9] X X X X 107 patients, NSCLC Korean AUC, CL 2677TT/3435TT: AUCZhou et al. [10] X X X 29 patients, nasopharyngeal

carcinomaAsian Cmax, AUC,

CL, t1/2

3435CC: Cmax

Paclitaxel de Graan et al. [11] X 261 cancer patients mainly Caucasian

CL, AUC, Cmax, C0, response, AE

NS

Fransson et al. [12] X X 33 patients, gynecological cancer

Caucasian CL 2677TT: CL

Green et al. [13] X X X 38 patients, ovarian cancer Caucasian AUC, Cmax, CL, AE

2677GA: CL

2

Page 3: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

Jiko et al. [14] X X 16 patients, urogenital cancer

Japanese CL, C0/D NS

Nakajima et al. [15] X X X 8 Japanese AUC 3435T: AUCSissung et al. [16] X X X 26 patients, advanced solid

tumorsCaucasian AUC, t1/2, 2677T, 3435T: neutrophils

Sunitinib Mizuno et al. [17] X X X 19 patients, renal carcinoma Japanese AUC24, AUC4 NSVincristine Guilhaumou et al.

[18]X X X X 20 children, solid tumor Caucasian C, C

intracellular, AE

NS

Bicalutamide Kim et al. [19] X X X 27 healthy subjects Korean C NSAntiepilepticCarbamazepine Meng et al. [20] X X X X 84 patients, epilepsy Chinese C0 3435TT: C0

Ozgon et al. [21] X 97 patients Turkish C0/D, response NSPuranik et al. [22] X X X 41,45 90 patients, epilepsy Mixed CL, t1/2 1236T: CL (in African

Americans)Seo et al. [23] X X X X 8 210 patients, epilepsy Japanese CL/F,

responder status

2677TT, 3435TT, 1236T/2677T/3435T: resistance

Zhu et al. [24] X X X 210 patients, epilepsy Chinese C0/D 3435CT: C0/DGabapentin Kang et al. [25] X 30 healthy subjects Korean Cmax, AUC, t1/2 NSLamotrigin Lovric et al. [26] X X X 222 patients, epilepsy Caucasian C0, C0/D 1236CC, 1236C/2677G/3435C:

C0/DPhenobarbital Basic et al. [27] X X 60 patients, generalized

epilepsyCaucasian CSF

concentration3435CT, 3435TT: CSF C

Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C0 3435CC: lower C0

Valproate Turgut et al. [29] X 104 patients, bipolar disorder

Turkish C0 NS

AntiinfectiousAtazanavir Rodriguez-Novoa et

al. [30]X 74 HIV patients Caucasian C0 3435CC: C0

Rodriguez-Novoa et al. [31]

X 118 HIV patients Caucasian C0 3435T: C0

Atazanavir/Ritonavir

D’Avolio et al. [32] X X X 35 HIV patients Caucasian C0 2677GG: C0

Azithromycin He et al. [33] X X X 20 Healthy subjects Chinese Cmax 2677TT/3435TT: Cmax

Cloxacilline Yin et al. [34] X X X 18 healthy subjects Chinese CL, C0, Cmax 1236CC: C0 ,Cmax

Dicloxacilline Beringer et al. [35] X 11 patients, cystic fibrosis/ Caucasian CL 3435TT: CL

3

Page 4: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

11 controlsPutnam et al. [36] X 18 healthy subjects Caucasian Cmax, AUC,

CLNS

Efavirenz Elens et al. [37] X 1 50 HIV patients Caucasian c.*193G: accumulation in peripheral mononuclear cells

Mukonzo et al. [38] X X X 12,20,21,23,26,28,30,36,38,53

121 healthy subjects African F c.*193G: F

Mukonzo et al. [39] X 53 99 HIV patients African CL/F, F, AUC c.*193G: FNgaimisi et al. [40] X 53 494 HIV patients African C0 c.*193G: C0

Efavirenz/ Lopinavir Winzer et al. [41] X 43/ 32 HIV patients Caucasian C12, C0 NSEfavirenz/ Nelfinavir

Fellay et al. [42] X 69/ 54 HIV patients Caucasian C0 3435TT: C0

Indinavir Curras et al. [43] X 21 HIV-infected children South American

C0, CL, C0/D 3435CC: C0/D

Solas et al. [44] X X X 28 HIV patients Caucasian C0, CL, absorption rate constant

3435CT vs CC: absorption rate constant

Lopinavir/ Atazanavir

Ma et al. [45] X X 103 HIV patients Mixed C0 NS

Lopinavir/ Ritonavir Estrela et al. [46] X X X X 113 HIV patients Brazilian C0 NSNelfinavir Colombo et al. [47] X X X X 28 HIV patients Caucasian cellular C,

AUC3435TT: cellular AUC

Saitoh et al. [48] X X X 23 152 HIV-infected children Mixed CL/F NSSaquinavir Frohlich et al. [49] X X 8 healthy subjects Caucasian AUC, Cmax,

tmax, t1/2, CLNS

Valacyclovir Zhang et al. [50] X X X X 200 healthy subjects Chinese AUC, Cmax NSAntipsychoticClozapine Consoli et al. [51] X X X 60 patients, psychosis Caucasian D, C0 2677GG, 3545CC: C0, DOlanzapine Ghotbi et al. [52] X X 121 schizophrenic patients Caucasian AUC NSLevisulpiride Cho et al. [53] X X X 58 healthy subjects Korean AUC, Cmax 2677TT, 3435TT: AUC, Cmax

Risperidone Gunes et al. [54] X X X X 46 patients, schizophrenia Caucasian C0/D 1236T/2677T/3435T: C0/D of 9'-hydroxyrisperidone

Jovanovic et al. [55] X X X 83 patients, psychosis Caucasian C0/D, side effects

2677TT, 3435TT: C0/D; 2677TT/3435TT: extrapyramidal side effects

4

Page 5: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

Kastelic et al. [56] X X 59 patients, psychosis Caucasian C0, response NSXiang et al. [57] X X X 23 healthy subjects Chinese Cmax, tmax,

AUC, CL/F, t1/2

2677GA: tmax

Yasui-Furukori et al. [58]

X X X 85 schizophrenic patients Japanese C0 NS

Quetiapine Bakken et al. [59] X 289 schizophrenic patients Caucasian C0/D NSCardiacAmlodipine Kim et al. [60] X X X 26 healthy subjects Korean CL/F, AUC,

Cmax

2677TT/3435TT: AUC, Cmax, CL/F

Zuo et al. [61] X 60 patients; essential hypertension

Chinese CL/F, AUC 3435TT: CL/F

 Digoxin Aarnoudse et al. [62] X X X X 195 patients, digoxin user Caucasian C0 1236T, 2677T, 3435T, 1236T/2677T/3435T: C0

Gerloff et al. [63] X 50 healthy subjects Caucasian AUC4, Cmax, tmax

NS

Johne et al. [64] X X X 24 healthy subjects Caucasian AUC4, Cmax 3435TT: Cmax, AUC4; 2677G/3435T: AUC

Kurata et al. [65] X X X 15 healthy subjects Japanese CL, F 2677TT/3435TT: CL, FVerstuyft et al. [66] X X 32 healthy subjects Caucasian AUC4, AUC24 3435TT: AUC4, AUC24

Verstuyft et al. [67] X 12 healthy subjects Caucasian AUC4, AUC24, CL, Cmax

3435TT: AUC4, AUC24

Xu et al. [68] X X X X 23 20 healthy subjects Chinese AUC4, Cmax, tmax

1236TT/2677TT/3435TT: AUC4, Cmax, tmax

Losartan Yasar et al. [69] X 58 healthy subjects Turkish urine C NSTelmisartan Guo et al. [70] X 19 healthy subjects Chinese Cmax, tmax, t1/2,

AUC, CLNS

Verapamil Pan et al. [71] X X X 10 healthy subjects Korean AUC, Cmax, tmax NSZhao et al. [72] X X X 24 healthy subjects Chinese Cmax, CL, AUC 2677TT/3435TT: AUC

ImmunosuppressantsTacrolimus Anglicheau et al. [73] X X X X 8 81 renal recipients mainly

CaucasianD, C0/D 2677GG, 2677G/3435C: C0/D

Bonhomme-Faivre et al. [74]

X 42 liver recipients Caucasian C0/D 3545TT: C0/D 1-3 days post transplantation, not beyond

Cheung et al. [75] X X 103 renal recipients Chinese D, AUC12/D NSCho et al. [76] X X X X 70 renal recipients Korean C0 NS

5

Page 6: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

Choi et al. [77] X X X X 29 healthy subjects Korean Cmax, AUC12, tmax, t1/2

NS

Diaz-Molina et al. [78]

X 65 cardiac recipients Caucasian D NS

Elens et al. [79] X X X 10,23 150 liver recipients Caucasian C0/D, C0, C liver

1199A, 1236CC, 2677GG: C liver

Fredericks et al. [80] X X X X 206 renal recipients Mixed C0/D 2677GG, 3435CC: C0/DGervasini et al. [81] X X X X 103 renal recipients Caucasian D, CL/F, C0 NSGomez-Bravo et al. [82]

X X X 98 liver recipients Caucasian C0, C0/D, D NS

Goto et al. [83] X X X 69 liver recipients Japanese C0/D NSGoto et al. [84] X X 181 liver recipients, 114

donorsJapanese C0/D NS

Haufroid et al. [85] X X X 19 renal transplant candidates

Mixed C0, AUC NS

Hawwa et al. [86] X X X 51 paediatric liver recipients Caucasian D G2677TT, 3435TT, 1236T/2677T/3435T: D

Hesselink et al. [87] X 136 renal recipients mainly Caucasian

D, C0, C0/D, acute rejection

NS

Hosohata et al. [88] X X X 63 living-donor liver recipients

Japanese C0/D NS

Jun et al. [89] X X 506 liver/ renal recipients, 62 donors

Korean C0 NS

Kuypers et al. [90] X X 95 renal recipients Caucasian C0/D, AUC12/D, nephrotoxicity, acute rejection, survival.

NS

Kuypers et al. [91] X X 304 renal recipients Caucasian D, AUC, C0 NSLi et al. [92] X X 73 liver recipients, 73

donorsChinese CL/F NS

Li et al. [93] X X 70 liver recipients, 70 donors

Chinese D, C0/D NS

López-Montenegro et al. [94]

X X 35 renal recipients Caucasian C0/D 3435CC: C0/D

MacPhee et al. [95] X 180 renal recipients Mixed C0/D 3435CC: C0/DMacPhee et al. [96] X 178 renal recipients Mixed C0, C0/D NS

6

Page 7: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

Mai et al. [97] X X X 73 renal recipients Caucasian C0/D NSMin et al. [98] X X 62 renal recipients Japanese C0 NSMourad et al. [99] X X X 59 renal recipients mainly

CaucasianD, C0/D NS

Op den Buijsch et al. [100]

X X X X 63 renal recipients Caucasian D, C0/D, Cmax/D AUC12/D

NS

Provenzani et al. [101]

X X 32 liver recipients Caucasian D NS

Provenzani et al. [102]

X X 101 liver/ renal recipients Caucasian C0, D 2677T/A: D

Roy et al. [103] X X X 8,10 44 renal recipients mainly Caucasian

D, C0, C0/D -129C, 2677T, 3435T: C0/D when less than 3 copies of these SNPs

Shi et al. [104] X X 216 liver recipients Chinese D, C0/D, early renal injury

NS

Shilbayeh et al. [105] X 38 renal recipients Middle Eastern

t to attain target C

NS

Tada et al. [106] X 39 renal recipients Japanese D, AUC12/D, Cmax, tmax, t1/2, CL/F

NS

Tsuchiya et al. [107] X X 30 renal recipients Japanese D, AUC12/D, Cmax, Cmax/D, tmax, t1/2, CL/F

NS

Wang et al. [108] X X X X 91 lung recipients Caucasian C0/D 1236TT/2677TT/3435TT: C0/DWei-lin et al. [109] X 50 liver recipients, 50

donorsChinese C0/D 3435CC: C0/D

Zhang et al. [110] X 118 renal recipients Chinese D, C0, C0/D NSZheng et al. [111] X X 75 lung recipients mainly

CaucasianD, C0/D NS

Tacrolimus/ Sirolimus

Mourad et al. [112] X X X 24 renal recipients Caucasian D, C0, C0/D NS

Renders et al. [113] X X 134 renal recipients Caucasian D, C0, C0/D, AUC12, AUC24

NS

Everolimus Lemaitre et al. [114] X 59 cardiac recipients Caucasian CL, CL/F NSTacrolimus/ Cyclosporine

Bandur et al. [115] X X X X 407 Cy, 425 Tac renal recipients

Caucasian C0, C0/D, rejection

1236T/2677T/3435T: risk of rejection.

Haufroid et al. [116] X X X X 50 Cy, 50 Tac renal recipients

Caucasian D, C0, C0/D NS

7

Page 8: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

Hesselink et al. [117] X 110 Cy, 64 Tac renal recipients

Mixed D, C0, C0/D NS

Loh et al. [118] X 64 Cy, 18 Tac renal recipients

Mixed Asian D, C0, C0/D, C2 NS

Onizuka et al. [119] X X X 21 Cy, 37 Tac patients after HCST

Japanese NS

Singh et al. [120] X X X X 225 Cy, 75 Tac renal recipients

South Asian C0/D 2677GG, 3435CC: C0/D

Cyclosporine Anglicheau et al. [121]

X X X X 8 106 renal recipients White C0/D, Cmax/D, AUC4/D, AUC12/D, t1/2

1236C: Cmax/D, AUC4/D

Azarpira et al. [122] X 88 liver recipients Iranian D, C0, C0/D 3435TT: C0/DBonhomme-Faivre et al. [123]

X 44 liver recipients Caucasian D, C2, C2/D 3435TT: D, C2/D

Bouamar et al. [124] X X X 171 renal recipients Mixed C0, C2, rejection, renal function

NS

Chowbay et al. [125] X X X X 14 cardial recipients Mixed Asian C0, Cmax, AUC4, AUC12

1236T/2677T/3435T: AUC4, AUC12, Cmax, C0

Crettol et al. [126] X X X X 10,23 73 renal/ lung recipients Caucasian D, C0, C0/D, intracellular concentration

3435T: 1.7-fold intracellular C; 1199A: 1.8-fold intracellular C

Fanta et al. [127] X X X X 23 104 renal recipients mainly Finnish

D, CL, F 1236CC, 2677GG, 1199G/1236C/2677G/3435C: pre-hepatic ER, F

Foote et al. [128] X X 75 renal recipients Caucasian AUC4/D, C0 3435T: AUC4/DGarcia et al. [129] X X X 68 renal recipients Caucasian C0, AE 3435: nephrotoxicityHesselink et al. [130] X 151 cardial/ renal recipients Mainly

WhiteCL/F NS

Hu et al. [131] X 106 renal recipients Chinese D, C0, C0/D 3435C: C0/DKuzuya et al. [132] X X X 8 97 renal recipients Japanese AUC2 NSMai et al. [133] X X X 98 renal recipients Caucasian C0, C2, AUC12 NSMin et al. [134] X X X 16 healthy subjects mainly

African American

tmax, Cmax, t1/2, AUC, CL/F

NS

Press et al. X X X X 8 33 renal recipients mainly Caucasian

CL/F, AUC NS

Qiu et al. [135] X X X X 103 renal recipients Chinese C0/D, C2/D 1236CC, 1236C/2677A/3435C:

8

Page 9: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

C0/DTaegtmeyer et al. [136]

X X X X 337 cardial recipients Caucasian C0 1236CC, 12677GG, 3435CC: C0

Wang et al. [137] X X X X 112 renal recipients Chinese C0/D 2677TT, 1236T/2677T/3435C: C0/D

Yates et al. [138] X 18 renal recipients Mixed Cmax/D, AUC/D, tmax, CL/F

3435T: CL/F

Methotrexate Kim et al. [139] X 20 patients after HCST Korean CL 3435CC,CT: CLBudesonide Dilger et al. [140] X X 21 patients, primary biliary

cirrhosisCaucasian AUC, Cmax NS

Prednisolone Miura et al. [141] X X X 95 renal recipients Japanese Cmax, AUC24 NSPlatelet InhibitionClopidogrel Frelinger et al. [142] X 160 healthy subjects,

homozygous CYP2C19Mixed AUC, Cmax NS

Taubert et al. [143] X 60 patients, coronary artery disease

Caucasian AUC, Cmax 3435TT: Cmax, AUC

Karazniewicz-Lada [144]

X 42 patients undergoing coronary angiography

Caucasian AUC, Cmax 3435TT: Cmax, AUC

StatinsFluvastatin/ Pravastatin/ Lovastatin/ Rosuvastatin

Keskitalo et al. [145] X X X X 20 healthy subjects Caucasian AUC NS

MiscellaneousFexofenadine Drescher et al. [146] X 20 healthy subjects Caucasian AUCinf, Cmax NS

Kim 2001 [147] X X X X 50 healthy subjects Caucasian and African-American

AUC, C0 1236C/2677G/3435C: AUC

Lansoprazole Kodaira et al. [148] X 15 healthy subjects Japanese Cmax 3435TT: Cmax

Loperamide Pauli-Magnus et al. [149]

X 16 healthy subjects Caucasian AUC, tmax NS

Skarke et al. [150] X X X 21 healthy subjects Caucasian AUC6 NSRebamipide Cho et al. [151] X X 30 healthy subjects Korean AUC, Cmax NS

“X” denotes that this variant was tested. “Other SNPs” are found in supplementary Table 3. AE=adverse effects, AUC=area under concentration-time curve, AUCx=AUC from time 0 to x, C=concentration, C/D=dose dependent C, C0=trough concentration, C0/D= dose dependent C0, Cmax=maximum concentration, CSF=cerebrospinal fluid,

9

Page 10: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

Cx=concentration at time x, CL= apparent body clearance, CL/F=oral clearance, D=required dose, F=bioavailability, NS=not significant, OS=overall survival, PFS=progression free survival, t1/2=elimination half time, tmax=time to Cmax, increase, decrease.

10

Page 11: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

Supplementary Table 2 Extended list of effects of ABCB1 polymorphisms on pharmacodynamics

Drug References

C1236T

G2677T/A

C3435T

Haplotypes

Other SN

Ps

No. of patients Ethnicity Parameters EffectAnalgeticMethadone Coller et al. [152] X X X X 10,23 60 patients, opioid

dependentAustralian D 1236TT/2677TT/3435TT: D

Lotsch et al. [153] X X X 51 healthy subjects Caucasian pupil size 9h after administration

NS

Morphine Campa et al. [154] X 145 patients Caucasian pain relief 3435 associated with pain relief variability

Coulbault et al. [155]

X X X 74 patients, post-op Caucasian D, AE 2677GG/3435CC: AE

Fujita et al. [156] X X X 32 cancer patients Japanese AE 1236TT, 2677TT/3435TT: fatigueLotsch et al. [157] X X X 352 patients with chronic

painefficacy (24h-pain score), AE, D

3435TT: D

Ross et al. [158] X X X 8,20 228 cancer patients Caucasian efficacy, AE 2677G: AESia et al. [159] X X X women after C-section Chinese morphine

consumption, pain scores, AE

NS

 Oxycodon Zwisler et al. [160] X X 33 healthy subjects Caucasian efficacy (cold pressor test), AE

3435TT: less AE; 2677TT: AE, efficacy

Zwisler et al. [161] X X 256 patients, post-operative pain

Caucasian pain relief (NRS) NS

Anticancer5-FU/ Capecitabine Gonzales-Haba et al.

[162]X X X 141 patients, CRC Caucasian AE 1236, 3435, 2677: altered risks of

AE: hand-foot syndrome, leukopenia, diarrhea

5-FU+ epirubicin+ cyclophosphamide

Vulsteke et al. [163] X X X 991 patients, breast cancer

Caucasian survival 2677GT: survival

Cetuximab + Irinotecan

Paule et al. [164] X 23 patients, refractory liver metastatic CRC

Caucasian outcome 3435TT: outcome

Cisplatin Chen et al. [165] X X 8 95 patients, NSCLC Chinese response, AE 2677T: resistance;-129T/2677T/3435C: response

Docetaxel Sissung et al. [166] X X X X 73 patients, androgen mainly OS 1236C/2677G/3435C: OS

11

Page 12: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

independent prostate cancer

Caucasian

Tsai et al. [167] X X X 6,7 59 patients, breast cancer Chinese AE 2677GG: fever, febrile neutropenia

Choi et al. [168] X X X 92 patients, solid tumors Koreans AE, response 3435TT: neutropenia, anemia. 2677G/T: leucopenia, resistance

Etoposide + Cisplatin

Sohn et al. [169] X X X 54 patients, SCLC Japanese response 3435CC, 2677G/3435C: response

Gemcitabine Kasuya et al. [170] X X 48 patients, pancreatic cancer

Japanese outcome, AE NS

Imatinib Deenik et al. [171] X X X 46 patients, CML Caucasian resistance 1236TT, 1236CT, 2677TT, 3435TT: resistance

Dulucq et al. [172] X X X 90 patients, CML Caucasian response, C0 1236TT: C0, responseElghannam et al. [173]

X 96 patients, CML North African

response 2677TT: response

Ni et al. [174] X X X 52 patients, CML Chinese response 1236TT, 3435TT: resistanceIrinotecan + Cisplatin

Lara et al. [175] X 651 patients, SCLC Japanese AE 3435TT: diarrhea.

Irinotecan + Leukovirin + Cisplatin

De Mattia et al. [176]

X X X X 8,16,2223,27,29

250 patients, metastatic CRC

White response, AUC NS

 Paclitaxel Chang et al. [177] X X X 109 patients, metastatic breast cancer

Korean survival, chemoresistance

3435CT: survival. 2677GG: chemoresistance

Chang et al. [178] X X 43 patients, gastric cancer

Chinese PFS 3435TT: PFS

Hertz et al. [179] X X X X 111 patients, breast cancer

Mixed response, neurotoxicity

NS

Marsh et al. [180] X X X 914 patients, ovarian cancer

Caucasian response, AE NS

Sissung et al. [16] X X X 26 patients, advanced solid tumor

Caucasian AE NS

Paclitaxel + Carboplatin

Green et al. [181] X 23,25 51 patients, advanced ovarian cancer

Caucasian PFS 1199T/A: PFS

Green et al. [182] X X 53 patients, ovarian cancer

Caucasian response 2677TT, 2677TA: response

Sunitinib Beuselinck et al. [183]

X X X 88 patients, renal carcinoma

mainly Caucasian

PFS, OS 1236TT: OS, PFS

12

Page 13: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

Beuselinck et al [184]

X X X 96 patients, renal carcinoma

mainly Caucasian

time to dose reduction

1236TT: time to dose reduction

Garcia-Donas et al. [185]

X X X 101 patients, renal carcinoma

Caucasian AE, response NS

van Erp et al. [186] X X X X 219 patients, renal carcinoma

Caucasian AE 1236T/2677T/3435T: hand foot syndrome

Temozolomide Schaich et al. [187] X X X 119 patients, glioblastoma

Caucasian survival 1236CC: survival, independent of MGMT status

Vinorelbin + Cisplatin

Pan et al. [188] X X X 69 patients, NSCLC Chinese response 3435CC, 2677G/3435C: response

Methotrexate Zgheib et al. [189] X X X 127 patients, ALL Lebanese AE 3435T and 1236T: neutropeniaDoxorubicin+ vinvristine+ prednsisolone

Gregers et al. [190] X X X 522 patients, ALL Danish AE 3435TT: bone marrow toxicity

Methotrexate Gregers et al. [190] X X X 522 patients, ALL Danish AE 3435CC: liver toxicityAntidepressantAmitriptylin/ Citalopram/ Mirtazepine/ Paroxetin/ Venlafaxine

Uhr et al. [191] 16,35,3839,41-47

443 patients, major depression

Caucasian response (HAMD-17)

95 SNPs examined. Only SNPs with significant response are listed. NS for mirtazapine

Citalopram Karlsson et al. [192] X X X 23 112 forensic autopsy cases positive for citalopram

mainly Caucasian

rate of lethal intoxication

NS

Ozbey et al. [193] X 54 patients, major depression

Turkish response (HAMD-17)

NS

Escitalopram Lin et al. [194] X X X 3-6,11,1314,17-1932,37,3940,48,50-52

100 patients, major depression

Chinese response (HAMD-17)

rs1922242, rs1202184: association with severity of depressive symptoms; rs1882478/rs2235048/rs2235047/rs1045642/rs6949448 (TTTCC): remission

Paroxetin Kato et al. [195] X X X X Patients with major depression

Japanese response 1236T/2677G/3435C: response

Mihaljevic et al. [196]

X X 127 patients, major depression

Caucasian response (HAMD-17)

NS

Paroxetin/ Mirtazepine

Sarginson et al. [197]

X X 1,8-10,1622,23,26,27

246 patients, major depression

mainly Caucasian

response (HAMD-17)

Paroxetine: rs2032583C, 2235040A: earlier response; mirtazapine: NS

13

Page 14: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

31,34,44Venlafaxine Karlsson et al. [192] X X X 23 116 forensic autopsy

cases positive for venlafaxine

mainly Caucasian

rate of lethal intoxication

1236CC+CT, 3435CC+CT: intoxication

Fluoxetine Gassó et al. [198] X X X 83 children and adolescents

Caucasian response (CGII) 2677TT: response

Various drugs Menu et al. [199] X 117 patients, major depression

Caucasian response (HAMD-17, BDI, CGII, TI)

NS

AntiemeticDomperidone Parkman et al. [200] X X X 10 48 patients, gastroparesis Caucasian D 61G: DGranisetron/ Tropisetron/ Ondansetron

Babaoglu et al. [201]

X 216 cancer patients Turkish response (self-report)

3435TT: response

Granisetron + Dexamethasone

Tsuji et al. [202] X X 64 patients, breast cancer Japanese response (control of emesis)

2677TT: response

Ondansetron Choi et al. [203] X X 198 patients, postoperative

Korean vomiting after surgery

2677TT, 3435TT: vomiting 2h post-op; NS 24h post-op

Ondansetron + Metoclopramide

Perwitasari et al. [204]

X X X X 202 patients, cisplatin therapy

South Asian

nausea, vomiting 1236T/2677G/3435C: response

Ondansetron/ Granisetron

Zoto et al. [205] X X X 239 cancer patients Turkish response (control of emesis)

3435TT: response

AntiepilepticCarbamazepine Subenthiran et al.

[206]X 314 patients, focal

epilepsySouth Asian

responder status 2677TT: response

Phenytoin Ebid et al. [207] X 100 patients, epilepsy North African

response 3435CC: resistance

Valproic acid Haerian et al. [208] X X X X 249 patients, epilepsy South Asian

responder status NS

Various drugs Alpman et al. [209] X X X 39 children, epilepsy, 92 controls

Turkish resistant epilepsy NS

Bournissen et al. [210]

X 3371 patients, epilepsy, (MA)

Mixed responder status NS

Dong et al. [211] X X X 350 children, epilepsy Chinese responder status NSEmich-Widera et al. [212]

X 85 patients, epilepsy Caucasian responder status NS

Haerian et al. [213] X 6755 patients, epilepsy, (MA)

Mixed responder status NS

Haerian et al. [214] X X X X 7067 patients, epilepsy, Mixed responder status NS

14

Page 15: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

(MA)Hung et al. [215] X X X X 331 patients, epilepsy,

287 controlsAsian responder Status Complex haplotypic effects

Kwan et al. [216] X X X X 464 patients, epilepsy Chinese responder status 2677: related to drug resistanceLeschziner et al. [217]

X X X X 503 patients, epilepsy UK responder status NS

Sanchez et al. [218] X X 289 patients, epilepsy Caucasian responder status NSSiddiqui et al. [219] X 315 patients, epilepsy,

200 controlsmainly Caucasian

responder status 3435CC: resistance

Tan et al. [220] X 609 patients, epilepsy mainly Caucasian

responder status NS

Manna et al. [221] X 175 patients, epilepsy Caucasian response NSAntiinfectiousAtazanavir Park et al. [222] X X 129 HIV-patients Korean AE 2677TT: severe

hyperbilirubinemiaMefloquine Aarnoudse et al.

[223]X X X X 89 healthy travelers White neuropsychiatric

AE1236TT, 2677TT, 3435TT, 1236TT/2677TT/3435TT: AE

Nevirapine Ciccacci et al. [224] X 156 HIV-patients Caucasian hepatotoxicity 3435TT: hepatotoxicityHaas et al. [225] X 53 HIV-patients Mixed hepatotoxicity 3435T: hepatotoxicity

AntipsychoticOlanzapine Bozina et al. [226] X X 87 schizophrenic patients Caucasian response (PANSS) 2677T, 2677TT: response

Lin et al. [227] X X X 41 schizophrenic patients Caucasian response (BPRS), weight gain

NS

Risperidone Kuzman et al. [228] X X X 108 schizophrenic patients

Caucasian weight gain NS

Xing et al. [229] X X X 48 130 schizophrenic patients

Chinese response (BPRS) 1236TT: response

ImmunosuppressantAzathioprine Mendoza et al. [230] X X X 76 patients with Crohn's

diseaseBrazilian resistance 2677TT, 3435TT, 2677T/3435T:

resistance Colchicine Rustemoglu et al.

[231]X X X X 104 patients, Behcet's

diseaseTurkish response 3435TT: response

Saricaoglu et al. [232]

X 97 patients, Behcet's disease

Turkish response NS

Tufan et al. [233] X 120 patients, familial mediterranean fever

Turkish resistance 3435C: resistance

 Cyclosporine Grinyo et al. [234] X X X 10,53 237 renal recipients Caucasian graft rejection 2677T, 1236T/2677T/3435T: rejection

15

Page 16: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

Hauser et al. [235] X X 97 renal recipients, 97 donors

Caucasian C0/D, AE 3435TT: nephrotoxicity

van Ahsen 2001 [236]

X 124 renal recipients Caucasian graft rejection, C0 NS

Wang et al. [237] X X X 208 renal recipients Chinese response, AE NSWoillard et al. [238] X X X X 259 renal recipients, 227

donorsCaucasian graft rejection 1236T/2677T/3435T: rejection

 Cyclosporine/ Tacrolimus

Hebert et al. [239] X X X 120 liver recipients Caucasian chronic renal dysfunction

2677TT: risk; 2677G/3435C, 2677G/3435T: risk

Klauke et al. [240] X 106 renal recipients Caucasian nephrotoxicity NSYamauchi et al. [241]

X X X 7,8,53 17 liver recipients Japanese AE 2677TT: neurotoxicity

Yanagimachi et al. [242]

X X X X 30/ 33 patients after HSCT

Japanese neurotoxicity 1236T neurotoxicity

Zheng et al. [243] X X 117 lung recipients Mixed graft rejection 3435TT: rejectionMethotrexate Takatori et al. [244] X 124 patients, RA Japanese response, AE 3435TT: resistance

Samara et al. [245] X 159 patients, RA Middle Eastern

response, AE 3435T: hepatotoxicity

Methotrexate/ Sulfasalazine

Drozdzik et al. [246] X 174/ 81 patients, RA Caucasian remission Methotrexate: 3435T: remission

Steroids Chiou et al. [247] X X X 74 children, idopathic nephrotic syndrome

Chinese steroid resistance 1236T: resistance

Methylprednisolone Akin et al. [248] X 31 children, ITP Turkish response (platelet count)

NS

Platelet InhibitionClopidogrel Carlquist et al. [249] X 1034 patients, coronary

DESMixed cardiovascular

event rateNS

Simon et al. [250] X 2208 patients, acute myocardial infarction

mainly Caucasian

death of any cause, stroke or myocardial infarction

3435TT cardiovascular events

Singh et al. [251] X 19601 patients Mixed cardiovascular events

NS

Su et al. [252] X MA Mixed early/ long-term major cardiovascular events, platelet activity

3435T,TT: early/ long-term events

16

Page 17: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

Verschuren et al. [253]

X 1327 patients, STEMI Caucasian cardiac death, recurrent infarction

NS

Xie et al. [254] X 162 patients, coronary heart disease

Chinese platelet reactivity (VASP-PRI)

NS

Clopidogrel/ Prasugrel

Mega et al. [255] X X X X 2932 patients, acute coronary syndrome

mainly Caucasian

ischemic events Clopidogrel: 3435TT: ischemic events

Clopidogrel/ Ticagrelor

Wallentin et al. [256]

X 10285 patients, acute coronary syndrome

mainly Caucasian

ischemic/ bleeding events

Clopidogrel: 3435CC: ischemic events

StatinsAtorvastatin Hoenig et al. [257] X 117 patients Caucasian cholesterol

reduction3435CC: efficacy in LDL-C reduction

Shabana et al. [258] X 50 patients, high cholesterol

North African

change of HDL-, LDL-, total cholesterol

3435TT: HDL-C

Simvastatin Becker et al. [259] X X X X 85 patients, simvastatin user

Caucasian cholesterol reduction

1236T/2677T/3435T, 1236C/2677G/3435T: reduction of total cholesterol and LDL-C male subjects only

“X” denotes that this variant was tested. “Other SNPs” are found in supplementary Table 3. AE=adverse effects, ALL, acute lymphoblastic leukemia, AUC=area under the curve, AUCx=AUC from time 0 to x, BDI=Becks Depression Inventory, BPRS=Brief psychiatric rating scale, C=concentration, C0=trough concentration, CGII=Clinician Global Impression Improvement, CML=chronic myeloid leukemia, CRC=colorectal cancer, D=required dose, DES=drug eluting stent, HAMD-17=Hamilton Depression Rating Scale, HDL-C=high density lipoprotein cholesterol, HSCT=hematopoietic stem cell transplantation, ITP=idiopathic thrombocytopenic purpura, LDL-C=low density lipoprotein cholesterol, MA=metanalysis, NSCLC=non-small cell lung cancer, NRS=numeric rating scale, NS=not significant, OS=overall survival, PANSS=Positive and negative syndrome scale, PFS=progression free survival, RA=rheumatoid arthritis, SCLC=small cell lung cancer, STEMI=ST-elevation myocardial infarction, TI=Therapeutic Index, VASP PRI=platelet reactivity index VASP, increase, decrease.

17

Page 18: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

Supplementary Table 3 List of ABCB1 SNPs investigated in pharmacogenetic studies

Position Code Amino acid or effect

1. n.a. rs10245483 approximately 2.4 mb upstream of MDR1

2. c.-330-14566G>A rs13233308 Intron 1

3. c.-330-1517T>C rs28381796 Intron 1

4. c.-330-21247T>C rs1978095 Intron 1

5. c.-330-3655A>G rs4148732 Intron 1

6. c.-330-41A>G rs2188524 Intron 1

7. c.-145C>G rs34976462 5'UTR

8. c.-129T->C rs3213619 5'UTR

9. c.-1A->G rs2214102 5'UTR

10. c.61A->G rs9282564 Asn21Asp

11. c.117+4196T>C rs3789243 Intron 3

12. c.239C→A rs9282565 Ala80Glu

13. c.286+927G>A rs1202184 Intron 5

14. c.287-1234G>C rs10256836 Intron 5

15. c.287-1547G>A rs2520464 Intron 5

16. c.287-25G>T rs2235015 Intron 5

17. c.287-5940A>T rs1989831 Intron 5

18. c.338+123A>G rs2235018 Intron 6

19. c.338+76T>G rs2235016 Intron 6

20. c.530+139C>T rs1202168 Intron7

21. c.781A→G rs36008564 Ile261Val

22. c.1000-44G>A rs10276036 Intron 10

23. c.1199G→A rs2229109 Ser400Asn

24. c.1236C→T rs1128503 Gly412=25. c.1308A>G rs35068177 Thr436=

26. c.1350+44C>T rs2032588 Intron 13

27. c.1554+24T>C rs2235033 Intron 14

28. c.1659 G→C rs2235012 Leu554Leu

29. c.1725+38G>A rs2235013 Intron 15

30. c.1795C→T rs2235036 Ala599Thr

31. c.1887+38G>A rs28381916 Intron 16

32. c.2064+73A>G rs2235046 Intron 17

33. c.2065-76T>A rs1922242 Intron 17

34. c.2212-27A>G rs2235063 Intron 18

35. c.2320-695G>A rs12720067 Intron 19

36. c.2320-88G>A rs4728699 Intron 19

37. c.2397+557G>A rs3789246 Intron 20

38. c.2481+24G>A rs2235040 Intron 21

39. c.2481+788T>C rs10248420 Intron 21

40. c.2481+882A>T rs10234411 Intron 21

41. c.2482-236A>G rs4148739 Intron 21

42. c.2482-707A>G rs11983225 Intron 21

43. c.2677G→T/A rs2032582 Ser893Ala/Thr44. c.2685+49T>C rs2032583 Intron 22

18

Page 19: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

45. c.2686-1911T>C rs4148740 Intron 22

46. c.2686-3393T>G rs10280101 Intron 22

47. c.2786+170G>A rs2235067 Intron 23

48. c.3282+2733A>G rs6949448 Intron 26

49. c.3435C→T rs1045642 Ile1145=50. c.3489+1573G>A rs1882478 Intron 27

51. c.3489+59T>G rs2235047 Intron 27

52. c.3489+80C>T rs2235048 Intron 27

53. c.*193A>G rs3842 3′ UTR

19

Page 20: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

Supplementary References

1. Kim K-M, Kim H-S, Lim SH, Cheong SH, Choi E-J, Kang H, et al. Effects of genetic polymorphisms of OPRM1, ABCB1, CYP3A4/5 on postoperative fentanyl consumption in Korean gynecologic patients. Int J Clin Pharmacol Ther. 2013;51:383–92.

2. Levran O, O’Hara K, Peles E, Li D, Barral S, Ray B, et al. ABCB1 (MDR1) genetic variants are associated with methadone doses required for effective treatment of heroin dependence. Hum Mol Genet. 2008;17:2219–27.

3. Fajac A, Gligorov J, Rezai K, Lévy P, Lévy E, Selle F, et al. Effect of ABCB1 C3435T polymorphism on docetaxel pharmacokinetics according to menopausal status in breast cancer patients. Br J Cancer. 2010;103:560–6.

4. Kim H-J, Im S-A, Keam B, Ham HS, Lee KH, Kim TY, et al. ABCB1 polymorphism as prognostic factor in breast cancer patients treated with docetaxel and doxorubicin neoadjuvant chemotherapy. Cancer Sci. 2015;106:86–93.

5. Lal S, Wong ZW, Sandanaraj E, Xiang X, Ang PCS, Lee EJD, et al. Influence of ABCB1 and ABCG2 polymorphisms on doxorubicin disposition in Asian breast cancer patients. Cancer Sci. 2008;99:816–23.

6. Voon PJ, Yap HL, Ma C-Y-T, Lu F, Wong ALA, Sapari NS, et al. Correlation of aldo-ketoreductase (AKR) 1C3 genetic variant with doxorubicin pharmacodynamics in Asian breast cancer patients. Br J Clin Pharmacol. 2013;75:1497–505.

7. Fukudo M, Ikemi Y, Togashi Y, Masago K, Kim YH, Mio T, et al. Population pharmacokinetics/pharmacodynamics of erlotinib and pharmacogenomic analysis of plasma and cerebrospinal fluid drug concentrations in Japanese patients with non-small cell lung cancer. Clin Pharmacokinet. 2013;52:593–609.

8. Gurney H, Wong M, Balleine RL, Rivory LP, McLachlan AJ, Hoskins JM, et al. Imatinib disposition and ABCB1 (MDR1, P-glycoprotein) genotype. Clin Pharmacol Ther. 2007;82:33–40.

9. Han J-Y, Lim H-S, Yoo Y-K, Shin ES, Park YH, Lee SY, et al. Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer. 2007;110:138–47.

10. Zhou Q, Sparreboom A, Tan E-H, Cheung Y-B, Lee A, Poon D, et al. Pharmacogenetic profiling across the irinotecan pathway in Asian patients with cancer. Br J Clin Pharmacol. 2005;59:415–24.

11. De Graan A-JM, Elens L, Sprowl JA, Sparreboom A, Friberg LE, van der Holt B, et al. CYP3A4*22 genotype and systemic exposure affect paclitaxel-induced neurotoxicity. Clin Cancer Res. 2013;19:3316–24.

12. Fransson MN, Gréen H, Litton J-E, Friberg LE. Influence of Cremophor EL and genetic polymorphisms on the pharmacokinetics of paclitaxel and its metabolites using a mechanism-based model. Drug Metab Dispos. 2011;39:247–55.

13. Gréen H, Söderkvist P, Rosenberg P, Mirghani RA, Rymark P, Lundqvist EA, et al. Pharmacogenetic studies of Paclitaxel in the treatment of ovarian cancer. Basic Clin Pharmacol Toxicol. 2009;104:130–7.

14. Jiko M, Yano I, Sato E, Takahashi K, Motohashi H, Masuda S, et al. Pharmacokinetics and pharmacodynamics of paclitaxel with carboplatin or gemcitabine, and effects of CYP3A5 and MDR1 polymorphisms in patients with urogenital cancers. Int J Clin Oncol. 2007;12:284–90.

15. Nakajima M, Fujiki Y, Kyo S, Kanaya T, Nakamura M, Maida Y, et al. Pharmacokinetics of paclitaxel in ovarian cancer patients and genetic polymorphisms of CYP2C8, CYP3A4, and MDR1. J Clin Pharmacol. 2005;45:674–82.

16. Sissung TM, Mross K, Steinberg SM, Behringer D, Figg WD, Sparreboom A, et al. Association of ABCB1 genotypes with paclitaxel-mediated peripheral neuropathy and neutropenia. Eur J Cancer. 2006;42:2893–6.

20

Page 21: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

17. Mizuno T, Fukudo M, Terada T, Kamba T, Nakamura E, Ogawa O, et al. Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics. Drug Metab Pharmacokinet. 2012;27:631–9.

18. Guilhaumou R, Solas C, Bourgarel-Rey V, Quaranta S, Rome A, Simon N, et al. Impact of plasma and intracellular exposure and CYP3A4, CYP3A5, and ABCB1 genetic polymorphisms on vincristine-induced neurotoxicity. Cancer Chemother Pharmacol. 2011;68:1633–8.

19. Kim K-A, Cha Y-J, Lee H-M, Joo H-J, Park J-Y. Effects of the ABCG2 and ABCB1 drug transporter polymorphisms on the pharmacokinetics of bicalutamide in humans. Clin Chim Acta. 2015;438:7–11.

20. Meng H, Guo G, Ren J, Zhou H, Ge Y, Guo Y. Effects of ABCB1 polymorphisms on plasma carbamazepine concentrations and pharmacoresistance in Chinese patients with epilepsy. Epilepsy Behav. 2011;21:27–30.

21. Ozgon GO, Bebek N, Gul G, Cine N. Association of MDR1 (C3435T) polymorphism and resistance to carbamazepine in epileptic patients from Turkey. Eur Neurol. 2008;59:67–70.

22. Puranik YG, Birnbaum AK, Marino SE, Ahmed G, Cloyd JC, Remmel RP, et al. Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy. Pharmacogenomics. 2013;14:35–45.

23. Seo T, Ishitsu T, Ueda N, Nakada N, Yurube K, Ueda K, et al. ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients. Pharmacogenomics. 2006;7:551–61.

24. Zhu X, Yun W, Sun X, Qiu F, Zhao L, Guo Y. Effects of major transporter and metabolizing enzyme gene polymorphisms on carbamazepine metabolism in Chinese patients with epilepsy. Pharmacogenomics. 2014;15:1867–79.

25. Kang H-A, Cho H-Y, Lee Y-B. The effect of MDR1 G2677T/A polymorphism on pharmacokinetics of gabapentin in healthy Korean subjects. Arch Pharm Res. 2007;30:96–101.

26. Lovrić M, Božina N, Hajnšek S, Kuzman MR, Sporiš D, Lalić Z, et al. Association between lamotrigine concentrations and ABCB1 polymorphisms in patients with epilepsy. Ther Drug Monit. 2012;34:518–25.

27. Basic S, Hajnsek S, Bozina N, Filipcic I, Sporis D, Mislov D, et al. The influence of C3435T polymorphism of ABCB1 gene on penetration of phenobarbital across the blood-brain barrier in patients with generalized epilepsy. Seizure. 2008;17:524–30.

28. Ponnala S, Chaudhari JR, Jaleel MA, Bhiladvala D, Kaipa PR, Das UN, et al. Role of MDR1 C3435T and GABRG2 C588T gene polymorphisms in seizure occurrence and MDR1 effect on anti-epileptic drug (phenytoin) absorption. Genet Test Mol Biomarkers. 2012;16:550–7.

29. Turgut G, Kurt E, Sengul C, Alatas G, Kursunluoglu R, Oral T, et al. Association of MDR1 C3435T polymorphism with bipolar disorder in patients treated with valproic acid. Mol Biol Rep. 2009;36:495–9.

30. Rodríguez Nóvoa S, Barreiro P, Rendón A, Barrios A, Corral A, Jiménez-Nacher I, et al. Plasma levels of atazanavir and the risk of hyperbilirubinemia are predicted by the 3435C-->T polymorphism at the multidrug resistance gene 1. Clin Infect Dis. 2006;42:291–5.

31. Rodríguez-Nóvoa S, Martín-Carbonero L, Barreiro P, González-Pardo G, Jiménez-Nácher I, González-Lahoz J, et al. Genetic factors influencing atazanavir plasma concentrations and the risk of severe hyperbilirubinemia. AIDS. 2007;21:41–6.

32. D’Avolio A, Carcieri C, Cusato J, Simiele M, Calcagno A, Allegra S, et al. Intracellular accumulation of atazanavir/ritonavir according to plasma concentrations and OATP1B1, ABCB1 and PXR genetic polymorphisms. J Antimicrob Chemother. 2014;69:3061–6.

33. He X-J, Zhao L-M, Qiu F, Sun Y-X, Li-Ling J. Influence of ABCB1 gene polymorphisms on the pharmacokinetics of azithromycin among healthy Chinese Han ethnic subjects. Pharmacol Rep. 2009;61:843–50.

21

Page 22: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

34. Yin OQP, Tomlinson B, Chow MSS. Effect of multidrug resistance gene-1 (ABCB1) polymorphisms on the single-dose pharmacokinetics of cloxacillin in healthy adult Chinese men. Clin Ther. 2009;31:999–1006.

35. Beringer PM, Kriengkauykiat J, Zhang X, Hidayat L, Liu S, Louie S, et al. Lack of effect of P-glycoprotein inhibition on renal clearance of dicloxacillin in patients with cystic fibrosis. Pharmacotherapy. 2008;28:883–94.

36. Putnam WS, Woo JM, Huang Y, Benet LZ. Effect of the MDR1 C3435T variant and P-glycoprotein induction on dicloxacillin pharmacokinetics. J Clin Pharmacol. 2005;45:411–21.

37. Elens L, Vandercam B, Yombi J-C, Lison D, Wallemacq P, Haufroid V. Influence of host genetic factors on efavirenz plasma and intracellular pharmacokinetics in HIV-1-infected patients. Pharmacogenomics. 2010;11:1223–34.

38. Mukonzo JK, Röshammar D, Waako P, Andersson M, Fukasawa T, Milani L, et al. A novel polymorphism in ABCB1 gene, CYP2B6*6 and sex predict single-dose efavirenz population pharmacokinetics in Ugandans. British Journal of Clinical Pharmacology. 2009;68:690–9.

39. Mukonzo JK, Owen JS, Ogwal-Okeng J, Kuteesa RB, Nanzigu S, Sewankambo N, et al. Pharmacogenetic-based efavirenz dose modification: suggestions for an African population and the different CYP2B6 genotypes. PLoS ONE. 2014;9:e86919.

40. Ngaimisi E, Habtewold A, Minzi O, Makonnen E, Mugusi S, Amogne W, et al. Importance of ethnicity, CYP2B6 and ABCB1 genotype for efavirenz pharmacokinetics and treatment outcomes: a parallel-group prospective cohort study in two sub-Saharan Africa populations. PLoS ONE. 2013;8:e67946.

41. Winzer R, Langmann P, Zilly M, Tollmann F, Schubert J, Klinker H, et al. No influence of the P-glycoprotein genotype (MDR1 C3435T) on plasma levels of lopinavir and efavirenz during antiretroviral treatment. Eur J Med Res. 2003;8:531–4.

42. Fellay J, Marzolini C, Meaden ER, Back DJ, Buclin T, Chave JP, et al. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet. 2002;359:30–6.

43. Curras V, Hocht C, Mangano A, Niselman V, Mariño Hernández E, Cáceres Guido P, et al. Pharmacokinetic study of the variability of indinavir drug levels when boosted with ritonavir in HIV-infected children. Pharmacology. 2009;83:59–66.

44. Solas C, Simon N, Drogoul M-P, Quaranta S, Frixon-Marin V, Bourgarel-Rey V, et al. Minimal effect of MDR1 and CYP3A5 genetic polymorphisms on the pharmacokinetics of indinavir in HIV-infected patients. Br J Clin Pharmacol. 2007;64:353–62.

45. Ma Q, Brazeau D, Zingman BS, Reichman RC, Fischl MA, Gripshover BM, et al. Multidrug resistance 1 polymorphisms and trough concentrations of atazanavir and lopinavir in patients with HIV. Pharmacogenomics. 2007;8:227–35.

46. Estrela R de C, Ribeiro FS, Barroso PF, Tuyama M, Gregório SP, Dias-Neto E, et al. ABCB1 polymorphisms and the concentrations of lopinavir and ritonavir in blood, semen and saliva of HIV-infected men under antiretroviral therapy. Pharmacogenomics. 2009;10:311–8.

47. Colombo S, Soranzo N, Rotger M, Sprenger R, Bleiber G, Furrer H, et al. Influence of ABCB1, ABCC1, ABCC2, and ABCG2 haplotypes on the cellular exposure of nelfinavir in vivo. Pharmacogenet Genomics. 2005;15:599–608.

48. Saitoh A, Capparelli E, Aweeka F, Sarles E, Singh KK, Kovacs A, et al. CYP2C19 genetic variants affect nelfinavir pharmacokinetics and virologic response in HIV-1-infected children receiving highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2010;54:285–9.

49. Fröhlich M, Burhenne J, Martin-Facklam M, Weiss J, von Wolff M, Strowitzki T, et al. Oral contraception does not alter single dose saquinavir pharmacokinetics in women. Br J Clin Pharmacol. 2004;57:244–52.

22

Page 23: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

50. Zhang Y, Jiang X-H, Hu Y-Q, Li Z-R, Su L, Wang Z-G, et al. MDR1 genotypes do not influence the absorption of a single oral dose of 600 mg valacyclovir in healthy Chinese Han ethnic males. Br J Clin Pharmacol. 2008;66:247–54.

51. Consoli G, Lastella M, Ciapparelli A, Catena Dell’Osso M, Ciofi L, Guidotti E, et al. ABCB1 polymorphisms are associated with clozapine plasma levels in psychotic patients. Pharmacogenomics. 2009;10:1267–76.

52. Ghotbi R, Mannheimer B, Aklillu E, Suda A, Bertilsson L, Eliasson E, et al. Carriers of the UGT1A4 142T>G gene variant are predisposed to reduced olanzapine exposure--an impact similar to male gender or smoking in schizophrenic patients. Eur J Clin Pharmacol. 2010;66:465–74.

53. Cho HY, Yoo HD, Lee YB. Influence of ABCB1 genetic polymorphisms on the pharmacokinetics of levosulpiride in healthy subjects. Neuroscience. 2010;169:378–87.

54. Gunes A, Spina E, Dahl M-L, Scordo MG. ABCB1 polymorphisms influence steady-state plasma levels of 9-hydroxyrisperidone and risperidone active moiety. Ther Drug Monit. 2008;30:628–33.

55. Jovanović N, Božina N, Lovrić M, Medved V, Jakovljević M, Peleš AM. The role of CYP2D6 and ABCB1 pharmacogenetics in drug-naïve patients with first-episode schizophrenia treated with risperidone. Eur J Clin Pharmacol. 2010;66:1109–17.

56. Kastelic M, Koprivsek J, Plesnicar BK, Serretti A, Mandelli L, Locatelli I, et al. MDR1 gene polymorphisms and response to acute risperidone treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:387–92.

57. Xiang Q, Zhao X, Zhou Y, Duan JL, Cui YM. Effect of CYP2D6, CYP3A5, and MDR1 Genetic Polymorphisms on the Pharmacokinetics of Risperidone and Its Active Moiety. The Journal of Clinical Pharmacology. 2010;50:659–66.

58. Yasui-Furukori N, Mihara K, Takahata T, Suzuki A, Nakagami T, De Vries R, et al. Effects of various factors on steady-state plasma concentrations of risperidone and 9-hydroxyrisperidone: lack of impact of MDR-1 genotypes. Br J Clin Pharmacol. 2004;57:569–75.

59. Bakken GV, Molden E, Hermann M. Impact of Genetic Variability in CYP2D6, CYP3A5, and ABCB1 on Serum Concentrations of Quetiapine and N-desalkylquetiapine in Psychiatric Patients. Ther Drug Monit. 2015;37:256–61.

60. Kim K-A, Park P-W, Park J-Y. Effect of ABCB1 (MDR1) haplotypes derived from G2677T/C3435T on the pharmacokinetics of amlodipine in healthy subjects. Br J Clin Pharmacol. 2007;63:53–8.

61. Zuo X-C, Zhang W-L, Yuan H, Barrett JS, Hua Y, Huang Z-J, et al. ABCB1 Polymorphism and Gender Affect the Pharmacokinetics of Amlodipine in Chinese Patients with Essential Hypertension: A Population Analysis. Drug Metab Pharmacokinet. 2014;29:305–11.

62. Aarnoudse A-JLHJ, Dieleman JP, Visser LE, Arp PP, van der Heiden IP, van Schaik RHN, et al. Common ATP-binding cassette B1 variants are associated with increased digoxin serum concentration. Pharmacogenet Genomics. 2008;18:299–305.

63. Gerloff T, Schaefer M, Johne A, Oselin K, Meisel C, Cascorbi I, et al. MDR1 genotypes do not influence the absorption of a single oral dose of 1 mg digoxin in healthy white males. Br J Clin Pharmacol. 2002;54:610–6.

64. Johne A, Köpke K, Gerloff T, Mai I, Rietbrock S, Meisel C, et al. Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene. Clin Pharmacol Ther. 2002;72:584–94.

65. Kurata Y, Ieiri I, Kimura M, Morita T, Irie S, Urae A, et al. Role of human MDR1 gene polymorphism in bioavailability and interaction of digoxin, a substrate of P-glycoprotein. Clin Pharmacol Ther. 2002;72:209–19.

66. Verstuyft C, Schwab M, Schaeffeler E, Kerb R, Brinkmann U, Jaillon P, et al. Digoxin pharmacokinetics and MDR1 genetic polymorphisms. Eur J Clin Pharmacol. 2003;58:809–12.

23

Page 24: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

67. Verstuyft C, Strabach S, El-Morabet H, Kerb R, Brinkmann U, Dubert L, et al. Dipyridamole enhances digoxin bioavailability via P-glycoprotein inhibition. Clin Pharmacol Ther. 2003;73:51–60.

68. Xu P, Jiang Z-P, Zhang B-K, Tu J-Y, Li H-D. Impact of MDR1 haplotypes derived from C1236T, G2677T/A and C3435T on the pharmacokinetics of single-dose oral digoxin in healthy Chinese volunteers. Pharmacology. 2008;82:221–7.

69. Yasar U, Babaoglu MO, Bozkurt A. Disposition of a CYP2C9 phenotyping agent, losartan, is not influenced by the common 3435C > T variation of the drug transporter gene ABCB1 (MDR1). Basic Clin Pharmacol Toxicol. 2008;103:176–9.

70. Guo X, Chen X-P, Cheng Z-N, Luo X, Guo R, Chen L, et al. No effect of MDR1 C3435T polymorphism on oral pharmacokinetics of telmisartan in 19 healthy Chinese male subjects. Clin Chem Lab Med. 2009;47:38–43.

71. Pan W, Ryu JY, Shon JH, Song IS, Liu KH, Sunwoo YE, et al. Dietary salt does not influence the disposition of verapamil enantiomers in relation to efflux transporter ABCB1 genetic polymorphism in healthy Korean subjects. Xenobiotica. 2008;38:422–34.

72. Zhao L-M, He X-J, Qiu F, Sun Y-X, Li-Ling J. Influence of ABCB1 gene polymorphisms on the pharmacokinetics of verapamil among healthy Chinese Han ethnic subjects. Br J Clin Pharmacol. 2009;68:395–401.

73. Anglicheau D, Verstuyft C, Laurent-Puig P, Becquemont L, Schlageter M-H, Cassinat B, et al. Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients. J Am Soc Nephrol. 2003;14:1889–96.

74. Bonhomme-Faivre L, Picard V, Saliba F, Abbara C, Fodil M, Chaunoy M, et al. Effect of the ABCB1 3435C>T polymorphism on tacrolimus concentrations and dosage requirements in liver transplant recipients. Am J Health Syst Pharm. 2009;66:1645–51.

75. Cheung CY, Op den Buijsch RAM, Wong KM, Chan HW, Chau KF, Li CS, et al. Influence of different allelic variants of the CYP3A and ABCB1 genes on the tacrolimus pharmacokinetic profile of Chinese renal transplant recipients. Pharmacogenomics. 2006;7:563–74.

76. Cho J-H, Yoon Y-D, Park J-Y, Song E-J, Choi J-Y, Yoon S-H, et al. Impact of cytochrome P450 3A and ATP-binding cassette subfamily B member 1 polymorphisms on tacrolimus dose-adjusted trough concentrations among Korean renal transplant recipients. Transplant Proc. 2012;44:109–14.

77. Choi JH, Lee YJ, Jang SB, Lee J-E, Kim KH, Park K. Influence of the CYP3A5 and MDR1 genetic polymorphisms on the pharmacokinetics of tacrolimus in healthy Korean subjects. Br J Clin Pharmacol. 2007;64:185–91.

78. Díaz-Molina B, Tavira B, Lambert JL, Bernardo MJ, Alvarez V, Coto E. Effect of CYP3A5, CYP3A4, and ABCB1 genotypes as determinants of tacrolimus dose and clinical outcomes after heart transplantation. Transplant Proc. 2012;44:2635–8.

79. Elens L, Capron A, Kerckhove VV, Lerut J, Mourad M, Lison D, et al. 1199G>A and 2677G>T/A polymorphisms of ABCB1 independently affect tacrolimus concentration in hepatic tissue after liver transplantation. Pharmacogenet Genomics. 2007;17:873–83.

80. Fredericks S, Moreton M, Reboux S, Carter ND, Goldberg L, Holt DW, et al. Multidrug resistance gene-1 (MDR-1) haplotypes have a minor influence on tacrolimus dose requirements. Transplantation. 2006;82:705–8.

81. Gervasini G, Garcia M, Macias RM, Cubero JJ, Caravaca F, Benitez J. Impact of genetic polymorphisms on tacrolimus pharmacokinetics and the clinical outcome of renal transplantation. Transpl Int. 2012;25:471–80.

82. Gómez-Bravo MA, Salcedo M, Fondevila C, Suarez F, Castellote J, Rufian S, et al. Impact of donor and recipient CYP3A5 and ABCB1 genetic polymorphisms on tacrolimus dosage requirements and rejection in Caucasian Spanish liver transplant patients. J Clin Pharmacol. 2013;53:1146–54.

24

Page 25: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

83. Goto M, Masuda S, Saito H, Uemoto S, Kiuchi T, Tanaka K, et al. C3435T polymorphism in the MDR1 gene affects the enterocyte expression level of CYP3A4 rather than Pgp in recipients of living-donor liver transplantation. Pharmacogenetics. 2002;12:451–7.

84. Goto M, Masuda S, Kiuchi T, Ogura Y, Oike F, Okuda M, et al. CYP3A5*1-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation. Pharmacogenetics. 2004;14:471–8.

85. Haufroid V, Wallemacq P, VanKerckhove V, Elens L, De Meyer M, Eddour DC, et al. CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study. Am J Transplant. 2006;6:2706–13.

86. Hawwa AF, McKiernan PJ, Shields M, Millership JS, Collier PS, McElnay JC. Influence of ABCB1 polymorphisms and haplotypes on tacrolimus nephrotoxicity and dosage requirements in children with liver transplant. Br J Clin Pharmacol. 2009;68:413–21.

87. Hesselink DA, van Schaik RHN, van Agteren M, de Fijter JW, Hartmann A, Zeier M, et al. CYP3A5 genotype is not associated with a higher risk of acute rejection in tacrolimus-treated renal transplant recipients. Pharmacogenet Genomics. 2008;18:339–48.

88. Hosohata K, Masuda S, Yonezawa A, Katsura T, Oike F, Ogura Y, et al. MDR1 haplotypes conferring an increased expression of intestinal CYP3A4 rather than MDR1 in female living-donor liver transplant patients. Pharm Res. 2009;26:1590–5.

89. Jun KR, Lee W, Jang MS, Chun S, Song G-W, Park KT, et al. Tacrolimus concentrations in relation to CYP3A and ABCB1 polymorphisms among solid organ transplant recipients in Korea. Transplantation. 2009;87:1225–31.

90. Kuypers DRJ, de Jonge H, Naesens M, Lerut E, Verbeke K, Vanrenterghem Y. CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin Pharmacol Ther. 2007;82:711–25.

91. Kuypers DRJ, Naesens M, de Jonge H, Lerut E, Verbeke K, Vanrenterghem Y. Tacrolimus dose requirements and CYP3A5 genotype and the development of calcineurin inhibitor-associated nephrotoxicity in renal allograft recipients. Ther Drug Monit. 2010;32:394–404.

92. Li D, Zhu J-Y, Gao J, Wang X, Lou Y-Q, Zhang G-L. Polymorphisms of tumor necrosis factor-alpha, interleukin-10, cytochrome P450 3A5 and ABCB1 in Chinese liver transplant patients treated with immunosuppressant tacrolimus. Clin Chim Acta. 2007;383:133–9.

93. Li D, Lu W, Zhu J-Y, Gao J, Lou Y-Q, Zhang G-L. Population pharmacokinetics of tacrolimus and CYP3A5, MDR1 and IL-10 polymorphisms in adult liver transplant patients. J Clin Pharm Ther. 2007;32:505–15.

94. López-Montenegro Soria MA, Kanter Berga J, Beltrán Catalán S, Milara Payá J, Pallardó Mateu LM, Jiménez Torres NV. Genetic polymorphisms and individualized tacrolimus dosing. Transplant Proc. 2010;42:3031–3.

95. Macphee IAM, Fredericks S, Tai T, Syrris P, Carter ND, Johnston A, et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. Transplantation. 2002;74:1486–9.

96. MacPhee IAM, Fredericks S, Tai T, Syrris P, Carter ND, Johnston A, et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am J Transplant. 2004;4:914–9.

97. Mai I, Perloff ES, Bauer S, Goldammer M, Johne A, Filler G, et al. MDR1 haplotypes derived from exons 21 and 26 do not affect the steady-state pharmacokinetics of tacrolimus in renal transplant patients. Br J Clin Pharmacol. 2004;58:548–53.

25

Page 26: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

98. Min S-I, Kim SY, Ahn SH, Min S-K, Kim SH, Kim YS, et al. CYP3A5 *1 allele: impacts on early acute rejection and graft function in tacrolimus-based renal transplant recipients. Transplantation. 2010;90:1394–400.

99. Mourad M, Wallemacq P, De Meyer M, Brandt D, Van Kerkhove V, Malaise J, et al. The influence of genetic polymorphisms of cytochrome P450 3A5 and ABCB1 on starting dose- and weight-standardized tacrolimus trough concentrations after kidney transplantation in relation to renal function. Clin Chem Lab Med. 2006;44:1192–8.

100. Op den Buijsch RAM, Christiaans MHL, Stolk LML, de Vries JE, Cheung CY, Undre NA, et al. Tacrolimus pharmacokinetics and pharmacogenetics: influence of adenosine triphosphate-binding cassette B1 (ABCB1) and cytochrome (CYP) 3A polymorphisms. Fundam Clin Pharmacol. 2007;21:427–35.

101. Provenzani A, Notarbartolo M, Labbozzetta M, Poma P, Biondi F, Sanguedolce R, et al. The effect of CYP3A5 and ABCB1 single nucleotide polymorphisms on tacrolimus dose requirements in Caucasian liver transplant patients. Ann Transplant. 2009;14:23–31.

102. Provenzani A, Notarbartolo M, Labbozzetta M, Poma P, Vizzini G, Salis P, et al. Influence of CYP3A5 and ABCB1 gene polymorphisms and other factors on tacrolimus dosing in Caucasian liver and kidney transplant patients. Int J Mol Med. 2011;28:1093–102.

103. Roy JN, Barama A, Poirier C, Vinet B, Roger M. Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenet Genomics. 2006;16:659–65.

104. Shi Y, Li Y, Tang J, Zhang J, Zou Y, Cai B, et al. Influence of CYP3A4, CYP3A5 and MDR-1 polymorphisms on tacrolimus pharmacokinetics and early renal dysfunction in liver transplant recipients. Gene. 2013;512:226–31.

105. Shilbayeh S. The impact of genetic polymorphisms on time required to attain the target tacrolimus levels and subsequent pharmacodynamic outcomes in pediatric kidney transplant patients. Saudi J Kidney Dis Transpl. 2014;25:266–77.

106. Tada H, Tsuchiya N, Satoh S, Kagaya H, Li Z, Sato K, et al. Impact of CYP3A5 and MDR1(ABCB1) C3435T polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplant Proc. 2005;37:1730–2.

107. Tsuchiya N, Satoh S, Tada H, Li Z, Ohyama C, Sato K, et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation. 2004;78:1182–7.

108. Wang J, Zeevi A, McCurry K, Schuetz E, Zheng H, Iacono A, et al. Impact of ABCB1 (MDR1) haplotypes on tacrolimus dosing in adult lung transplant patients who are CYP3A5 *3/*3 non-expressors. Transpl Immunol. 2006;15:235–40.

109. Wei-lin W, Jing J, Shu-sen Z, Li-hua Wu, Ting-bo L, Song-feng Y, et al. Tacrolimus dose requirement in relation to donor and recipient ABCB1 and CYP3A5 gene polymorphisms in Chinese liver transplant patients. Liver Transpl. 2006;12:775–80.

110. Zhang X, Liu Z, Zheng J, Chen Z, Tang Z, Chen J, et al. Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation. Clin Transplant. 2005;19:638–43.

111. Zheng H, Zeevi A, Schuetz E, Lamba J, McCurry K, Griffith BP, et al. Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J Clin Pharmacol. 2004;44:135–40.

112. Mourad M, Mourad G, Wallemacq P, Garrigue V, Van Bellingen C, Van Kerckhove V, et al. Sirolimus and tacrolimus trough concentrations and dose requirements after kidney transplantation in relation to CYP3A5 and MDR1 polymorphisms and steroids. Transplantation. 2005;80:977–84.

113. Renders L, Frisman M, Ufer M, Mosyagin I, Haenisch S, Ott U, et al. CYP3A5 genotype markedly influences the pharmacokinetics of tacrolimus and sirolimus in kidney transplant recipients. Clin Pharmacol Ther. 2007;81:228–34.

26

Page 27: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

114. Lemaitre F, Bezian E, Goldwirt L, Fernandez C, Farinotti R, Varnous S, et al. Population pharmacokinetics of everolimus in cardiac recipients: comedications, ABCB1, and CYP3A5 polymorphisms. Ther Drug Monit. 2012;34:686–94.

115. Bandur S, Petrasek J, Hribova P, Novotna E, Brabcova I, Viklicky O. Haplotypic structure of ABCB1/MDR1 gene modifies the risk of the acute allograft rejection in renal transplant recipients. Transplantation. 2008;86:1206–13.

116. Haufroid V, Mourad M, Van Kerckhove V, Wawrzyniak J, De Meyer M, Eddour DC, et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics. 2004;14:147–54.

117. Hesselink DA, van Schaik RHN, van der Heiden IP, van der Werf M, Gregoor PJHS, Lindemans J, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther. 2003;74:245–54.

118. Loh PT, Lou HX, Zhao Y, Chin YM, Vathsala A. Significant impact of gene polymorphisms on tacrolimus but not cyclosporine dosing in Asian renal transplant recipients. Transplant Proc. 2008;40:1690–5.

119. Onizuka M, Kunii N, Toyosaki M, Machida S, Ohgiya D, Ogawa Y, et al. Cytochrome P450 genetic polymorphisms influence the serum concentration of calcineurin inhibitors in allogeneic hematopoietic SCT recipients. Bone Marrow Transplant. 2011;46:1113–7.

120. Singh R, Srivastava A, Kapoor R, Mittal RD. Do drug transporter (ABCB1) SNPs influence cyclosporine and tacrolimus dose requirements and renal allograft outcome in the posttransplantation period? J Clin Pharmacol. 2011;51:603–15.

121. Anglicheau D, Thervet E, Etienne I, Hurault De Ligny B, Le Meur Y, Touchard G, et al. CYP3A5 and MDR1 genetic polymorphisms and cyclosporine pharmacokinetics after renal transplantation. Clin Pharmacol Ther. 2004;75:422–33.

122. Azarpira N, Aghdaie MH, Behzad-Behbahanie A, Geramizadeh B, Behzadi S, Malekhoseinie SA, et al. Association between cyclosporine concentration and genetic polymorphisms of CYP3A5 and MDR1 during the early stage after renal transplantation. Exp Clin Transplant. 2006;4:416–9.

123. Bonhomme-Faivre L, Devocelle A, Saliba F, Chatled S, Maccario J, Farinotti R, et al. MDR-1 C3435T polymorphism influences cyclosporine a dose requirement in liver-transplant recipients. Transplantation. 2004;78:21–5.

124. Bouamar R, Hesselink DA, van Schaik RHN, Weimar W, Macphee IAM, de Fijter JW, et al. Polymorphisms in CYP3A5, CYP3A4, and ABCB1 are not associated with cyclosporine pharmacokinetics nor with cyclosporine clinical end points after renal transplantation. Ther Drug Monit. 2011;33:178–84.

125. Chowbay B, Cumaraswamy S, Cheung YB, Zhou Q, Lee EJD. Genetic polymorphisms in MDR1 and CYP3A4 genes in Asians and the influence of MDR1 haplotypes on cyclosporin disposition in heart transplant recipients. Pharmacogenetics. 2003;13:89–95.

126. Crettol S, Venetz J-P, Fontana M, Aubert J-D, Ansermot N, Fathi M, et al. Influence of ABCB1 genetic polymorphisms on cyclosporine intracellular concentration in transplant recipients. Pharmacogenet Genomics. 2008;18:307–15.

127. Fanta S, Niemi M, Jönsson S, Karlsson MO, Holmberg C, Neuvonen PJ, et al. Pharmacogenetics of cyclosporine in children suggests an age-dependent influence of ABCB1 polymorphisms. Pharmacogenet Genomics. 2008;18:77–90.

128. Foote CJ, Greer W, Kiberd BA, Fraser A, Lawen J, Nashan B, et al. MDR1 C3435T polymorphisms correlate with cyclosporine levels in de novo renal recipients. Transplant Proc. 2006;38:2847–9.

27

Page 28: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

129. García M, Macías RM, Cubero JJ, Benítez J, Caravaca F, Gervasini G. ABCB1 polymorphisms are associated with cyclosporine-induced nephrotoxicity and gingival hyperplasia in renal transplant recipients. Eur J Clin Pharmacol. 2013;69:385–93.

130. Hesselink DA, van Gelder T, van Schaik RHN, Balk AHMM, van der Heiden IP, van Dam T, et al. Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clin Pharmacol Ther. 2004;76:545–56.

131. Hu Y-F, Qiu W, Liu Z-Q, Zhu L-J, Liu Z-Q, Tu J-H, et al. Effects of genetic polymorphisms of CYP3A4, CYP3A5 and MDR1 on cyclosporine pharmacokinetics after renal transplantation. Clin Exp Pharmacol Physiol. 2006;33:1093–8.

132. Kuzuya T, Kobayashi T, Moriyama N, Nagasaka T, Yokoyama I, Uchida K, et al. Amlodipine, but not MDR1 polymorphisms, alters the pharmacokinetics of cyclosporine A in Japanese kidney transplant recipients. Transplantation. 2003;76:865–8.

133. Mai I, Störmer E, Goldammer M, Johne A, Krüger H, Budde K, et al. MDR1 haplotypes do not affect the steady-state pharmacokinetics of cyclosporine in renal transplant patients. J Clin Pharmacol. 2003;43:1101–7.

134. Min DI, Ellingrod VL, Marsh S, McLeod H. CYP3A5 polymorphism and the ethnic differences in cyclosporine pharmacokinetics in healthy subjects. Ther Drug Monit. 2004;26:524–8.

135. Qiu X-Y, Jiao Z, Zhang M, Zhong L-J, Liang H-Q, Ma C-L, et al. Association of MDR1, CYP3A4*18B, and CYP3A5*3 polymorphisms with cyclosporine pharmacokinetics in Chinese renal transplant recipients. Eur J Clin Pharmacol. 2008;64:1069–84.

136. Taegtmeyer AB, Breen JB, Smith J, Burke M, Leaver N, Pantelidis P, et al. ATP-binding cassette subfamily B member 1 polymorphisms do not determine cyclosporin exposure, acute rejection or nephrotoxicity after heart transplantation. Transplantation. 2010;89:75–82.

137. Wang Y, Wang C, Li J, Wang X, Zhu G, Chen X, et al. Effect of genetic polymorphisms of CYP3A5 and MDR1 on cyclosporine concentration during the early stage after renal transplantation in Chinese patients co-treated with diltiazem. Eur J Clin Pharmacol. 2009;65:239–47.

138. Yates CR, Zhang W, Song P, Li S, Gaber AO, Kotb M, et al. The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients. J Clin Pharmacol. 2003;43:555–64.

139. Kim I-W, Yun H, Choi B, Han N, Park S-Y, Lee ES, et al. ABCB1 C3435T genetic polymorphism on population pharmacokinetics of methotrexate after hematopoietic stem cell transplantation in Korean patients: a prospective analysis. Clin Ther. 2012;34:1816–26.

140. Dilger K, Cascorbi I, Grünhage F, Hohenester S, Sauerbruch T, Beuers U. Multidrug resistance 1 genotype and disposition of budesonide in early primary biliary cirrhosis. Liver Int. 2006;26:285–90.

141. Miura M, Satoh S, Inoue K, Kagaya H, Saito M, Inoue T, et al. Influence of CYP3A5, ABCB1 and NR1I2 polymorphisms on prednisolone pharmacokinetics in renal transplant recipients. Steroids. 2008;73:1052–9.

142. Frelinger AL, Bhatt DL, Lee RD, Mulford DJ, Wu J, Nudurupati S, et al. Clopidogrel pharmacokinetics and pharmacodynamics vary widely despite exclusion or control of polymorphisms (CYP2C19, ABCB1, PON1), noncompliance, diet, smoking, co-medications (including proton pump inhibitors), and pre-existent variability in platelet function. J Am Coll Cardiol. 2013;61:872–9.

143. Taubert D, von Beckerath N, Grimberg G, Lazar A, Jung N, Goeser T, et al. Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther. 2006;80:486–501.

144. Karaźniewicz-Łada M, Danielak D, Rubiś B, Burchardt P, Komosa A, Lesiak M, et al. Impact of common ABCB1 polymorphism on pharmacokinetics and pharmacodynamics of clopidogrel and its metabolites. J Clin Pharm Ther. 2015;40:226–31.

28

Page 29: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

145. Keskitalo JE, Kurkinen KJ, Neuvonen M, Backman JT, Neuvonen PJ, Niemi M. No significant effect of ABCB1 haplotypes on the pharmacokinetics of fluvastatin, pravastatin, lovastatin, and rosuvastatin. Br J Clin Pharmacol. 2009;68:207–13.

146. Drescher S, Schaeffeler E, Hitzl M, Hofmann U, Schwab M, Brinkmann U, et al. MDR1 gene polymorphisms and disposition of the P-glycoprotein substrate fexofenadine. Br J Clin Pharmacol. 2002;53:526–34.

147. Kim RB, Leake BF, Choo EF, Dresser GK, Kubba SV, Schwarz UI, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther. 2001;70:189–99.

148. Kodaira C, Sugimoto M, Nishino M, Yamade M, Shirai N, Uchida S, et al. Effect of MDR1 C3435T polymorphism on lansoprazole in healthy Japanese subjects. Eur J Clin Pharmacol. 2009;65:593–600.

149. Pauli-Magnus C, Feiner J, Brett C, Lin E, Kroetz DL. No effect of MDR1 C3435T variant on loperamide disposition and central nervous system effects. Clin Pharmacol Ther. 2003;74:487–98.

150. Skarke C, Jarrar M, Schmidt H, Kauert G, Langer M, Geisslinger G, et al. Effects of ABCB1 (multidrug resistance transporter) gene mutations on disposition and central nervous effects of loperamide in healthy volunteers. Pharmacogenetics. 2003;13:651–60.

151. Cho H-Y, Yoon H, Park G-K, Lee Y-B. Pharmacokinetics and bioequivalence of two formulations of rebamipide 100-mg tablets: a randomized, single-dose, two-period, two-sequence crossover study in healthy Korean male volunteers. Clin Ther. 2009;31:2712–21.

152. Coller JK, Barratt DT, Dahlen K, Loennechen MH, Somogyi AA. ABCB1 genetic variability and methadone dosage requirements in opioid-dependent individuals. Clin Pharmacol Ther. 2006;80:682–90.

153. Lötsch J, Skarke C, Wieting J, Oertel BG, Schmidt H, Brockmöller J, et al. Modulation of the central nervous effects of levomethadone by genetic polymorphisms potentially affecting its metabolism, distribution, and drug action. Clin Pharmacol Ther. 2006;79:72–89.

154. Campa D, Gioia A, Tomei A, Poli P, Barale R. Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther. 2008;83:559–66.

155. Coulbault L, Beaussier M, Verstuyft C, Weickmans H, Dubert L, Trégouet D, et al. Environmental and genetic factors associated with morphine response in the postoperative period. Clin Pharmacol Ther. 2006;79:316–24.

156. Fujita K, Ando Y, Yamamoto W, Miya T, Endo H, Sunakawa Y, et al. Association of UGT2B7 and ABCB1 genotypes with morphine-induced adverse drug reactions in Japanese patients with cancer. Cancer Chemother Pharmacol. 2010;65:251–8.

157. Lötsch J, von Hentig N, Freynhagen R, Griessinger N, Zimmermann M, Doehring A, et al. Cross-sectional analysis of the influence of currently known pharmacogenetic modulators on opioid therapy in outpatient pain centers. Pharmacogenet Genomics. 2009;19:429–36.

158. Ross JR, Riley J, Taegetmeyer AB, Sato H, Gretton S, du Bois RM, et al. Genetic variation and response to morphine in cancer patients: catechol-O-methyltransferase and multidrug resistance-1 gene polymorphisms are associated with central side effects. Cancer. 2008;112:1390–403.

159. Sia AT, Sng BL, Lim EC, Law H, Tan EC. The influence of ATP-binding cassette sub-family B member -1 (ABCB1) genetic polymorphisms on acute and chronic pain after intrathecal morphine for caesarean section: a prospective cohort study. Int J Obstet Anesth. 2010;19:254–60.

160. Zwisler ST, Enggaard TP, Noehr-Jensen L, Mikkelsen S, Verstuyft C, Becquemont L, et al. The antinociceptive effect and adverse drug reactions of oxycodone in human experimental pain in relation to genetic variations in the OPRM1 and ABCB1 genes. Fundam Clin Pharmacol. 2010;24:517–24.

29

Page 30: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

161. Zwisler ST, Enggaard TP, Mikkelsen S, Verstuyft C, Becquemont L, Sindrup SH, et al. Lack of Association of OPRM1 and ABCB1 Single-Nucleotide Polymorphisms to Oxycodone Response in Postoperative Pain. J Clin Pharmacol. 2011;

162. Gonzalez-Haba E, García MI, Cortejoso L, López-Lillo C, Barrueco N, García-Alfonso P, et al. ABCB1 gene polymorphisms are associated with adverse reactions in fluoropyrimidine-treated colorectal cancer patients. Pharmacogenomics. 2010;11:1715–23.

163. Vulsteke C, Pfeil AM, Schwenkglenks M, Pettengell R, Szucs TD, Lambrechts D, et al. Impact of genetic variability and treatment-related factors on outcome in early breast cancer patients receiving (neo-) adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide, and docetaxel. Breast Cancer Res Treat. 2014;147:557–70.

164. Paule B, Castagne V, Picard V, Saffroy R, Adam R, Guettier C, et al. MDR1 polymorphism role in patients treated with cetuximab and irinotecan in irinotecan refractory colorectal cancer. Med Oncol. 2010;27:1066–72.

165. Chen S, Huo X, Lin Y, Ban H, Lin Y, Li W, et al. Association of MDR1 and ERCC1 polymorphisms with response and toxicity to cisplatin-based chemotherapy in non-small-cell lung cancer patients. Int J Hyg Environ Health. 2010;213:140–5.

166. Sissung TM, Baum CE, Deeken J, Price DK, Aragon-Ching J, Steinberg SM, et al. ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel. Clin Cancer Res. 2008;14:4543–9.

167. Tsai S-M, Lin C-Y, Wu S-H, Hou LA, Ma H, Tsai L-Y, et al. Side effects after docetaxel treatment in Taiwanese breast cancer patients with CYP3A4, CYP3A5, and ABCB1 gene polymorphisms. Clin Chim Acta. 2009;404:160–5.

168. Choi JR, Kim J-O, Kang DR, Shin J-Y, Zhang XH, Oh JE, et al. Genetic Variations of Drug Transporters Can Influence on Drug Response in Patients Treated with Docetaxel Chemotherapy. Cancer Res Treat. 2014;

169. Sohn JW, Lee SY, Lee SJ, Kim EJ, Cha SI, Kim CH, et al. MDR1 polymorphisms predict the response to etoposide-cisplatin combination chemotherapy in small cell lung cancer. Jpn J Clin Oncol. 2006;36:137–41.

170. Kasuya K, Tsuchida A, Nagakawa Y, Suzuki Y, Suzuki M, Aoki T, et al. Prediction of a side effect and efficacy of adjuvant chemotherapy with gemcitabine for post operative patient of pancreatic cancer by a genetic polymorphism analysis. Hepatogastroenterology. 2012;59:1609–13.

171. Deenik W, van der Holt B, Janssen JJWM, Chu IWT, Valk PJM, Ossenkoppele GJ, et al. Polymorphisms in the multidrug resistance gene MDR1 (ABCB1) predict for molecular resistance in patients with newly diagnosed chronic myeloid leukemia receiving high-dose imatinib. Blood. 2010;116:6144–5; author reply 6145–6.

172. Dulucq S, Bouchet S, Turcq B, Lippert E, Etienne G, Reiffers J, et al. Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood. 2008;112:2024–7.

173. Elghannam DM, Ibrahim L, Ebrahim MA, Azmy E, Hakem H. Association of MDR1 gene polymorphism (G2677T) with imatinib response in Egyptian chronic myeloid leukemia patients. Hematology. 2014;19:123–8.

174. Ni L-N, Li J-Y, Miao K-R, Qiao C, Zhang S-J, Qiu H-R, et al. Multidrug resistance gene (MDR1) polymorphisms correlate with imatinib response in chronic myeloid leukemia. Med Oncol. 2011;28:265–9.

175. Lara PN, Natale R, Crowley J, Lenz HJ, Redman MW, Carleton JE, et al. Phase III trial of irinotecan/cisplatin compared with etoposide/cisplatin in extensive-stage small-cell lung cancer: clinical and pharmacogenomic results from SWOG S0124. J Clin Oncol. 2009;27:2530–5.

176. De Mattia E, Toffoli G, Polesel J, D’Andrea M, Corona G, Zagonel V, et al. Pharmacogenetics of ABC and SLC transporters in metastatic colorectal cancer patients receiving first-line FOLFIRI treatment. Pharmacogenet Genomics. 2013;23:549–57.

30

Page 31: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

177. Chang H, Rha SY, Jeung H-C, Im C-K, Ahn JB, Kwon WS, et al. Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C>T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann Oncol. 2009;20:272–7.

178. Chang H, Rha SY, Jeung H-C, Im CK, Noh SH, Kim JJ, et al. Association of the ABCB1 3435C>T polymorphism and treatment outcomes in advanced gastric cancer patients treated with paclitaxel-based chemotherapy. Oncol Rep. 2010;23:271–8.

179. Hertz DL, Motsinger-Reif AA, Drobish A, Winham SJ, McLeod HL, Carey LA, et al. CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel. Breast Cancer Res Treat. 2012;134:401–10.

180. Marsh S, Paul J, King CR, Gifford G, McLeod HL, Brown R. Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the Scottish Randomised Trial in Ovarian Cancer. J Clin Oncol. 2007;25:4528–35.

181. Gréen H, Söderkvist P, Rosenberg P, Horvath G, Peterson C. ABCB1 G1199A polymorphism and ovarian cancer response to paclitaxel. J Pharm Sci. 2008;97:2045–8.

182. Gréen H, Söderkvist P, Rosenberg P, Horvath G, Peterson C. mdr-1 single nucleotide polymorphisms in ovarian cancer tissue: G2677T/A correlates with response to paclitaxel chemotherapy. Clin Cancer Res. 2006;12:854–9.

183. Beuselinck B, Karadimou A, Lambrechts D, Claes B, Wolter P, Couchy G, et al. Single-nucleotide polymorphisms associated with outcome in metastatic renal cell carcinoma treated with sunitinib. Br J Cancer. 2013;108:887–900.

184. Beuselinck B, Lambrechts D, Van Brussel T, Wolter P, Cardinaels N, Joniau S, et al. Efflux pump ABCB1 single nucleotide polymorphisms and dose reductions in patients with metastatic renal cell carcinoma treated with sunitinib. Acta Oncol. 2014;53:1413–22.

185. Garcia-Donas J, Esteban E, Leandro-García LJ, Castellano DE, del Alba AG, Climent MA, et al. Single nucleotide polymorphism associations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line sunitinib: a multicentre, observational, prospective study. Lancet Oncol. 2011;12:1143–50.

186. Van Erp NP, Eechoute K, van der Veldt AA, Haanen JB, Reyners AKL, Mathijssen RHJ, et al. Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol. 2009;27:4406–12.

187. Schaich M, Kestel L, Pfirrmann M, Robel K, Illmer T, Kramer M, et al. A MDR1 (ABCB1) gene single nucleotide polymorphism predicts outcome of temozolomide treatment in glioblastoma patients. Ann Oncol. 2009;20:175–81.

188. Pan J, Han J, Wu J, Sheng L, Huang H, Yu Q. MDR1 single nucleotide polymorphisms predict response to vinorelbine-based chemotherapy in patients with non-small cell lung cancer. Respiration. 2008;75:380–5.

189. Zgheib NK, Akra-Ismail M, Aridi C, Mahfouz R, Abboud MR, Solh H, et al. Genetic polymorphisms in candidate genes predict increased toxicity with methotrexate therapy in Lebanese children with acute lymphoblastic leukemia. Pharmacogenet Genomics. 2014;24:387–96.

190. Gregers J, Gréen H, Christensen IJ, Dalhoff K, Schroeder H, Carlsen N, et al. Polymorphisms in the ABCB1 gene and effect on outcome and toxicity in childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2015;

191. Uhr M, Tontsch A, Namendorf C, Ripke S, Lucae S, Ising M, et al. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron. 2008;57:203–9.

31

Page 32: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

192. Karlsson L, Green H, Zackrisson AL, Bengtsson F, Jakobsen Falk I, Carlsson B, et al. ABCB1 gene polymorphisms are associated with fatal intoxications involving venlafaxine but not citalopram. Int J Legal Med. 2013;127:579–86.

193. Ozbey G, Yucel B, Taycan SE, Kan D, Bodur NE, Arslan T, et al. ABCB1 C3435T polymorphism is associated with susceptibility to major depression, but not with a clinical response to citalopram in a Turkish population. Pharmacol Rep. 2014;66:235–8.

194. Lin K-M, Chiu Y-F, Tsai I-J, Chen C-H, Shen WW, Liu SC, et al. ABCB1 gene polymorphisms are associated with the severity of major depressive disorder and its response to escitalopram treatment: Pharmacogenetics and Genomics. 2010;1.

195. Kato M, Fukuda T, Serretti A, Wakeno M, Okugawa G, Ikenaga Y, et al. ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:398–404.

196. Mihaljevic Peles A, Bozina N, Sagud M, Rojnic Kuzman M, Lovric M. MDR1 gene polymorphism: therapeutic response to paroxetine among patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1439–44.

197. Sarginson JE, Lazzeroni LC, Ryan HS, Ershoff BD, Schatzberg AF, Murphy GM. ABCB1 (MDR1) polymorphisms and antidepressant response in geriatric depression: Pharmacogenetics and Genomics. 2010;20:467–75.

198. Gassó P, Rodríguez N, Mas S, Pagerols M, Blázquez A, Plana MT, et al. Effect of CYP2D6, CYP2C9 and ABCB1 genotypes on fluoxetine plasma concentrations and clinical improvement in children and adolescent patients. Pharmacogenomics J. 2014;14:457–62.

199. Menu P, Gressier F, Verstuyft C, Hardy P, Becquemont L, Corruble E. Antidepressants and ABCB1 gene C3435T functional polymorphism: a naturalistic study. Neuropsychobiology. 2010;62:193–7.

200. Parkman HP, Jacobs MR, Mishra A, Hurdle JA, Sachdeva P, Gaughan JP, et al. Domperidone treatment for gastroparesis: demographic and pharmacogenetic characterization of clinical efficacy and side-effects. Dig Dis Sci. 2011;56:115–24.

201. Babaoglu MO, Bayar B, Aynacioglu AS, Kerb R, Abali H, Celik I, et al. Association of the ABCB1 3435C>T polymorphism with antiemetic efficacy of 5-hydroxytryptamine type 3 antagonists. Clin Pharmacol Ther. 2005;78:619–26.

202. Tsuji D, Kim Y-I, Nakamichi H, Daimon T, Suwa K, Iwabe Y, et al. Association of ABCB1 polymorphisms with the antiemetic efficacy of granisetron plus dexamethasone in breast cancer patients. Drug Metab Pharmacokinet. 2013;28:299–304.

203. Choi EM, Lee MG, Lee SH, Choi KW, Choi SH. Association of ABCB1 polymorphisms with the efficacy of ondansetron for postoperative nausea and vomiting. Anaesthesia. 2010;65:996–1000.

204. Perwitasari DA, Wessels JAM, van der Straaten RJHM, Baak-Pablo RF, Mustofa M, Hakimi M, et al. Association of ABCB1, 5-HT3B receptor and CYP2D6 genetic polymorphisms with ondansetron and metoclopramide antiemetic response in Indonesian cancer patients treated with highly emetogenic chemotherapy. Jpn J Clin Oncol. 2011;41:1168–76.

205. Zoto T, Kilickap S, Yasar U, Celik I, Bozkurt A, Babaoglu MO. Improved Anti-Emetic Efficacy of 5-HT3 Receptor Antagonists in Cancer Patients with Genetic Polymorphisms of ABCB1 (MDR1) Drug Transporter. Basic Clin Pharmacol Toxicol. 2015;116:354–60.

206. Subenthiran S, Abdullah NR, Muniandy PK, Joseph JP, Cheong KC, Ismail Z, et al. G2677T polymorphism can predict treatment outcome of Malaysians with complex partial seizures being treated with Carbamazepine. Genet Mol Res. 2013;12:5937–44.

32

Page 33: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

207. Ebid A-HIM, Ahmed MMM, Mohammed SA. Therapeutic drug monitoring and clinical outcomes in epileptic Egyptian patients: a gene polymorphism perspective study. Ther Drug Monit. 2007;29:305–12.

208. Haerian BS, Lim KS, Tan HJ, Mohamed EHM, Tan CT, Raymond AA, et al. Association between ABCB1 polymorphism and response to sodium valproate treatment in Malaysian epilepsy patients. Epileptic Disord. 2011;13:65–75.

209. Alpman A, Ozkinay F, Tekgul H, Gokben S, Pehlivan S, Schalling M, et al. Multidrug resistance 1 (MDR1) gene polymorphisms in childhood drug-resistant epilepsy. J Child Neurol. 2010;25:1485–90.

210. Bournissen FG, Moretti ME, Juurlink DN, Koren G, Walker M, Finkelstein Y. Polymorphism of the MDR1/ABCB1 C3435T drug-transporter and resistance to anticonvulsant drugs: a meta-analysis. Epilepsia. 2009;50:898–903.

211. Dong L, Luo R, Tong Y, Cai X, Mao M, Yu D. Lack of association between ABCB1 gene polymorphisms and pharmacoresistant epilepsy: an analysis in a western Chinese pediatric population. Brain Res. 2011;1391:114–24.

212. Emich-Widera E, Likus W, Kazek B, Niemiec P, Balcerzyk A, Sieroń AL, et al. CYP3A5*3 and C3435T MDR1 polymorphisms in prognostication of drug-resistant epilepsy in children and adolescents. Biomed Res Int. 2013;2013:526837.

213. Haerian BS, Roslan H, Raymond AA, Tan CT, Lim KS, Zulkifli SZ, et al. ABCB1 C3435T polymorphism and the risk of resistance to antiepileptic drugs in epilepsy: a systematic review and meta-analysis. Seizure. 2010;19:339–46.

214. Haerian BS, Lim KS, Tan CT, Raymond AA, Mohamed Z. Association of ABCB1 gene polymorphisms and their haplotypes with response to antiepileptic drugs: a systematic review and meta-analysis. Pharmacogenomics. 2011;12:713–25.

215. Hung C-C, Tai JJ, Lin C-J, Lee M-J, Liou H-H. Complex haplotypic effects of the ABCB1 gene on epilepsy treatment response. Pharmacogenomics. 2005;6:411–7.

216. Kwan P, Wong V, Ng PW, Lui CHT, Sin NC, Poon WS, et al. Gene-wide tagging study of association between ABCB1 polymorphisms and multidrug resistance in epilepsy in Han Chinese. Pharmacogenomics. 2009;10:723–32.

217. Leschziner G, Jorgensen AL, Andrew T, Pirmohamed M, Williamson PR, Marson AG, et al. Clinical factors and ABCB1 polymorphisms in prediction of antiepileptic drug response: a prospective cohort study. Lancet Neurol. 2006;5:668–76.

218. Sánchez MB, Herranz JL, Leno C, Arteaga R, Oterino A, Valdizán EM, et al. Genetic factors associated with drug-resistance of epilepsy: relevance of stratification by patient age and aetiology of epilepsy. Seizure. 2010;19:93–101.

219. Siddiqui A, Kerb R, Weale ME, Brinkmann U, Smith A, Goldstein DB, et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med. 2003;348:1442–8.

220. Tan NCK, Heron SE, Scheffer IE, Pelekanos JT, McMahon JM, Vears DF, et al. Failure to confirm association of a polymorphism in ABCB1 with multidrug-resistant epilepsy. Neurology. 2004;63:1090–2.

221. Manna I, Gambardella A, Labate A, Mumoli L, Ferlazzo E, Pucci F, et al. Polymorphism of the multidrug resistance 1 gene MDR1/ABCB1 C3435T and response to antiepileptic drug treatment in temporal lobe epilepsy. Seizure. 2015;24:124–6.

222. Park WB, Choe PG, Song K-H, Jeon JH, Park SW, Kim HB, et al. Genetic factors influencing severe atazanavir-associated hyperbilirubinemia in a population with low UDP-glucuronosyltransferase 1A1*28 allele frequency. Clin Infect Dis. 2010;51:101–6.

33

Page 34: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

223. Aarnoudse ALHJ, van Schaik RHN, Dieleman J, Molokhia M, van Riemsdijk MM, Ligthelm RJ, et al. MDR1 gene polymorphisms are associated with neuropsychiatric adverse effects of mefloquine. Clin Pharmacol Ther. 2006;80:367–74.

224. Ciccacci C, Borgiani P, Ceffa S, Sirianni E, Marazzi MC, Altan AMD, et al. Nevirapine-induced hepatotoxicity and pharmacogenetics: a retrospective study in a population from Mozambique. Pharmacogenomics. 2010;11:23–31.

225. Haas DW, Bartlett JA, Andersen JW, Sanne I, Wilkinson GR, Hinkle J, et al. Pharmacogenetics of nevirapine-associated hepatotoxicity: an Adult AIDS Clinical Trials Group collaboration. Clin Infect Dis. 2006;43:783–6.

226. Bozina N, Kuzman MR, Medved V, Jovanovic N, Sertic J, Hotujac L. Associations between MDR1 gene polymorphisms and schizophrenia and therapeutic response to olanzapine in female schizophrenic patients. J Psychiatr Res. 2008;42:89–97.

227. Lin Y-C, Ellingrod VL, Bishop JR, Miller DD. The relationship between P-glycoprotein (PGP) polymorphisms and response to olanzapine treatment in schizophrenia. Ther Drug Monit. 2006;28:668–72.

228. Kuzman MR, Medved V, Bozina N, Hotujac L, Sain I, Bilusic H. The influence of 5-HT(2C) and MDR1 genetic polymorphisms on antipsychotic-induced weight gain in female schizophrenic patients. Psychiatry Res. 2008;160:308–15.

229. Xing Q, Gao R, Li H, Feng G, Xu M, Duan S, et al. Polymorphisms of the ABCB1 gene are associated with the therapeutic response to risperidone in Chinese schizophrenia patients. Pharmacogenomics. 2006;7:987–93.

230. Mendoza JL, Urcelay E, Lana R, Martín MC, López N, Guijarro LG, et al. MDR1 polymorphisms and response to azathioprine therapy in patients with Crohn’s disease. Inflamm Bowel Dis. 2007;13:585–90.

231. Rustemoglu A, Gül Ü, Gümüş-Akay G, Gönül M, Yiğit S, Bozkurt N, et al. MDR1 gene polymorphisms may be associated with Behçet’s disease and its colchicum treatment response. Gene. 2012;505:333–9.

232. Saricaoglu H, Yilmaz M, Karkucak M, Ozturk HZY, Yakut T, Gulten T, et al. Investigation of ABCB1 gene polymorphism with colchicine response in Behçet’s disease. Genet Mol Res. 2011;10:1–6.

233. Tufan A, Babaoglu MO, Akdogan A, Yasar U, Calguneri M, Kalyoncu U, et al. Association of drug transporter gene ABCB1 (MDR1) 3435C to T polymorphism with colchicine response in familial Mediterranean fever. J Rheumatol. 2007;34:1540–4.

234. Grinyó J, Vanrenterghem Y, Nashan B, Vincenti F, Ekberg H, Lindpaintner K, et al. Association of four DNA polymorphisms with acute rejection after kidney transplantation. Transpl Int. 2008;21:879–91.

235. Hauser IA, Schaeffeler E, Gauer S, Scheuermann EH, Wegner B, Gossmann J, et al. ABCB1 genotype of the donor but not of the recipient is a major risk factor for cyclosporine-related nephrotoxicity after renal transplantation. J Am Soc Nephrol. 2005;16:1501–11.

236. Von Ahsen N, Richter M, Grupp C, Ringe B, Oellerich M, Armstrong VW. No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin Chem. 2001;47:1048–52.

237. Wang Y-Y, Zhang M, Lu F-M, Jiao Z, Qiu X-Y. CYP3A4 genetic polymorphisms predict cyclosporine-related clinical events in Chinese renal transplant recipients. Chin Med J. 2012;125:4233–8.

238. Woillard J-B, Rerolle J-P, Picard N, Rousseau A, Guillaudeau A, Munteanu E, et al. Donor P-gp polymorphisms strongly influence renal function and graft loss in a cohort of renal transplant recipients on cyclosporine therapy in a long-term follow-up. Clin Pharmacol Ther. 2010;88:95–100.

34

Page 35: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

239. Hebert MF, Dowling AL, Gierwatowski C, Lin YS, Edwards KL, Davis CL, et al. Association between ABCB1 (multidrug resistance transporter) genotype and post-liver transplantation renal dysfunction in patients receiving calcineurin inhibitors. Pharmacogenetics. 2003;13:661–74.

240. Klauke B, Wirth A, Zittermann A, Bohms B, Tenderich G, Körfer R, et al. No association between single nucleotide polymorphisms and the development of nephrotoxicity after orthotopic heart transplantation. J Heart Lung Transplant. 2008;27:741–5.

241. Yamauchi A, Ieiri I, Kataoka Y, Tanabe M, Nishizaki T, Oishi R, et al. Neurotoxicity induced by tacrolimus after liver transplantation: relation to genetic polymorphisms of the ABCB1 (MDR1) gene. Transplantation. 2002;74:571–2.

242. Yanagimachi M, Naruto T, Tanoshima R, Kato H, Yokosuka T, Kajiwara R, et al. Influence of CYP3A5 and ABCB1 gene polymorphisms on calcineurin inhibitor-related neurotoxicity after hematopoietic stem cell transplantation. Clin Transplant. 2010;24:855–61.

243. Zheng HX, Zeevi A, McCurry K, Schuetz E, Webber S, Ristich J, et al. The impact of pharmacogenomic factors on acute persistent rejection in adult lung transplant patients. Transpl Immunol. 2005;14:37–42.

244. Takatori R, Takahashi KA, Tokunaga D, Hojo T, Fujioka M, Asano T, et al. ABCB1 C3435T polymorphism influences methotrexate sensitivity in rheumatoid arthritis patients. Clin Exp Rheumatol. 2006;24:546–54.

245. Samara SA, Irshaid YM, Mustafa KN. Association of MDR1 C3435T and RFC1 G80A polymorphisms with methotrexate toxicity and response in Jordanian rheumatoid arthritis patients. Int J Clin Pharmacol Ther. 2014;52:746–55.

246. Drozdzik M, Rudas T, Pawlik A, Kurzawski M, Czerny B, Gornik W, et al. The effect of 3435C>T MDR1 gene polymorphism on rheumatoid arthritis treatment with disease-modifying antirheumatic drugs. Eur J Clin Pharmacol. 2006;62:933–7.

247. Chiou Y-H, Wang L-Y, Wang T-H, Huang S. Genetic polymorphisms influence the steroid treatment of children with idiopathic nephrotic syndrome. Pediatr Nephrol. 2012;27:1511–7.

248. Akin M, Turgut S, Ayada C, Polat Y, Balci YI, Erdoğan F. Relation between 3435C>T multidrug resistance 1 gene polymorphism with high dose methylprednisolone treatment of childhood acute idiopathic thrombocytopenic purpura. Gene. 2011;487:80–3.

249. Carlquist JF, Knight S, Horne BD, Huntinghouse JA, Rollo JS, Muhlestein JB, et al. Cardiovascular risk among patients on clopidogrel anti-platelet therapy after placement of drug-eluting stents is modified by genetic variants in both the CYP2C19 and ABCB1 genes. Thromb Haemost. 2013;109:744–54.

250. Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E, Méneveau N, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med. 2009;360:363–75.

251. Singh M, Shah T, Adigopula S, Molnar J, Ahmed A, Khosla S, et al. CYP2C19*2/ABCB1-C3435T polymorphism and risk of cardiovascular events in coronary artery disease patients on clopidogrel: is clinical testing helpful? Indian Heart J. 2012;64:341–52.

252. Su J, Xu J, Li X, Zhang H, Hu J, Fang R, et al. ABCB1 C3435T polymorphism and response to clopidogrel treatment in coronary artery disease (CAD) patients: a meta-analysis. PLoS ONE. 2012;7:e46366.

253. Verschuren JJW, Boden H, Wessels JAM, van der Hoeven BL, Trompet S, Heijmans BT, et al. Value of platelet pharmacogenetics in common clinical practice of patients with ST-segment elevation myocardial infarction. Int J Cardiol. 2013;167:2882–8.

254. Xie C, Ding X, Gao J, Wang H, Hang Y, Zhang H, et al. The effects of CES1A2 A(-816)C and CYP2C19 loss-of-function polymorphisms on clopidogrel response variability among Chinese patients with coronary heart disease. Pharmacogenet Genomics. 2014;24:204–10.

35

Page 36: link. · Web view60 patients, generalized epilepsy Caucasian CSF concentration 3435CT, 3435TT: CSF C Phenytoin Ponnala et al. [28] X 127 patients, epilepsy Mixed C 0 3435CC: lower

255. Mega JL, Close SL, Wiviott SD, Shen L, Walker JR, Simon T, et al. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet. 2010;376:1312–9.

256. Wallentin L, James S, Storey RF, Armstrong M, Barratt BJ, Horrow J, et al. Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial. Lancet. 2010;376:1320–8.

257. Hoenig MR, Walker PJ, Gurnsey C, Beadle K, Johnson L. The C3435T polymorphism in ABCB1 influences atorvastatin efficacy and muscle symptoms in a high-risk vascular cohort. J Clin Lipidol. 2011;5:91–6.

258. Shabana MF, Mishriki AA, Issac MSM, Bakhoum SWG. Do MDR1 and SLCO1B1 polymorphisms influence the therapeutic response to atorvastatin? A study on a cohort of Egyptian patients with hypercholesterolemia. Mol Diagn Ther. 2013;17:299–309.

259. Becker ML, Visser LE, van Schaik RHN, Hofman A, Uitterlinden AG, Stricker BHC. Common genetic variation in the ABCB1 gene is associated with the cholesterol-lowering effect of simvastatin in males. Pharmacogenomics. 2009;10:1743–51.

36