19
Lecture Lecture Lecture Lecture – 11 11 11 11 Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) – II II II II Prof. Radhakant Padhi Prof. Radhakant Padhi Prof. Radhakant Padhi Prof. Radhakant Padhi Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Optimal Control, Guidance and Estimation OPTIMAL CONTROL, GUIDANCE AND ESTIMATION Prof. Radhakant Padhi, AE Dept., IISc-Bangalore 2 Outline Summary of LQR design Stability of closed-loop system in LQR Optimum value of the cost function Extension of LQR design For cross-product term in cost function Rate of state minimization Rate of control minimization LQR design with prescribed degree of stability LQR for command tracking LQR for inhomogeneous systems

Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

  • Upload
    others

  • View
    54

  • Download
    8

Embed Size (px)

Citation preview

Page 1: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

Lecture Lecture Lecture Lecture –––– 11111111

Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) –––– IIIIIIII

Prof. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant Padhi

Dept. of Aerospace Engineering

Indian Institute of Science - Bangalore

Optimal Control, Guidance and Estimation

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore2

Outline

� Summary of LQR design

� Stability of closed-loop system in LQR

� Optimum value of the cost function

� Extension of LQR design• For cross-product term in cost function

• Rate of state minimization

• Rate of control minimization

• LQR design with prescribed degree of stability

� LQR for command tracking

� LQR for inhomogeneous systems

Page 2: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

Summary of LQR DesignSummary of LQR DesignSummary of LQR DesignSummary of LQR Design

Prof. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant Padhi

Dept. of Aerospace Engineering

Indian Institute of Science - Bangalore

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore4

LQR Design:

Problem Statement

� Performance Index (to minimize):

� Path Constraint:

� Boundary Conditions:

( )( )

( )( )

0

,

1 1

2 2

f

f

t

T T T

f f f

t

L X UX

J X S X X Q X U RU dt

ϕ

= + +∫������� ���������

X A X BU= +ɺ

( )

( )00 :Specified

: Fixed, : Freef f

X X

t X t

=

Page 3: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore5

LQR Design:Necessary Conditions of Optimality

� Terminal penalty:

� Hamiltonian:

� State Equation:

� Costate Equation:

� Optimal Control Eq.:

� Boundary Condition:

( ) ( )1

2

T T TH X Q X U RU AX BUλ= + + +

( ) ( )1

2

T

f f f fX X S Xϕ =

X AX BU= +ɺ

( ) ( )/T

H X QX Aλ λ= − ∂ ∂ = − +ɺ

( ) 1/ 0 TH U U R B λ−∂ ∂ = ⇒ = −

( )/f f f fX S Xλ ϕ= ∂ ∂ =

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore6

LQR Design:

Derivation of Riccati Equation

Guess ( ) ( ) ( )t P t X tλ =

( )

( )

( )

1

1

T

T

PX PX

PX P AX BU

PX P AX BR B

PX P AX BR B PX

λ

λ−

= +

= + +

= + −

= + −

ɺ ɺ ɺ

ɺ

ɺ

ɺ

( ) ( )

( )

1

1 0

T T

T T

QX A PX P PA PBR B P X

P PA A P PBR B P Q X

− + = + −

+ + − + =

ɺ

ɺ

Page 4: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore7

LQR Design:

Derivation of Riccati Equation

� Riccati equation

� Boundary condition

1 0T TP PA A P PBR B P Q

−+ + − + =ɺ

( ) ( ) is freef f f f f

P t X S X X=

( )f fP t S=

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore8

LQR Design:

Infinite Time Regulator Problem

Theorem (By Kalman)

Algebraic Riccati Equation (ARE)

Final Control Solution:

1 0T TPA A P PBR B P Q

−+ − + =

As , for constant and matrices, 0ft Q R P t→ ∞ → ∀ɺ

( )1 TU R B P X K X

−= − = −

Page 5: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

Stability of closedStability of closedStability of closedStability of closed----loop system in LQRloop system in LQRloop system in LQRloop system in LQR

Prof. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant Padhi

Dept. of Aerospace Engineering

Indian Institute of Science - Bangalore

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore10

LQR Design:

Stability of Closed Loop System

� Closed loop system

� Lyapunov function

( )X AX BU A BK X= + = −ɺ

( ) TV X X PX=

( ) ( )

( ) ( )

( )

1 1

1 1

1

T T

T T

TT T T

T T T T

T T

V X PX X PX

A BK X PX X P A BK X

X A BR B P P P A BR B P X

X PA A P PBR B P Q Q PBR B P X

X Q PBR B P X

− −

− −

= +

= − + −

= − + −

= + − + − −

= − −

ɺ ɺ ɺ

00

Page 6: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore11

LQR Design:

Stability of Closed Loop System

( )

( )

1

-1

-1

For 0, 0. Also 0

So 0

Also 0.

Hence, 0

0

Hence, the closed loop system is

always asymptotically stable!

T

T

R R P

PBR B P

Q

PBR B P Q

V X

−> > >

>

+ >

∴ <ɺ

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore12

LQR Design:

Minimum value of cost function

( )

( ) ( )

( )

( ) [ ]

( )

0

0

0

0 0

0

1 1

1

0 0 0 0

1

2

1

2

1

2

1 1 1

2 2 2

1 1

2 2

T T

t

TT T T

t

T T

t

T

t tt

T T T

J X Q X U RU dt

X Q X R B PX R R B PX dt

X Q PBR B P X dt

V dt V X PX

X PX X PX X PX

− −

∞∞∞

∞ ∞

= +

= + − −

= +

= − = − = −

= − =

∫ ɺ

Page 7: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

Extensions of LQR DesignExtensions of LQR DesignExtensions of LQR DesignExtensions of LQR Design

Prof. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant Padhi

Dept. of Aerospace Engineering

Indian Institute of Science - Bangalore

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore14

LQR Extensions:

1. Cross Product Term in P.I.

( )0

12

2

T T T

tJ X QX X WU U RU dt

= + +∫

Let us consider the expression:

( ) ( ) ( )

( )

1 1 1

2

TT T T T

T T T T T

T T T

X Q WR W X U R W X R U R W X

X QX U RU U W X X WU

X QX X WU U RU

− − −− + + +

= + + +

= + +

Page 8: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore15

( ) ( ) ( )

( )

0

1 1

0

1 1 1

1 1 1

1

2

1

2

TT T T T

t

Q U

T T

t

J X Q WR W X U R W X R U R W X dt

X Q X U RU dt

∞− − −

= − + + +

= +

������� �������

( )

( )

1

1

1

1

1 1

T

T

X AX BU

AX B U R W X

A BR W X BU

A X BU

= +

= + −

= − +

= +

ɺ

1

Control Solution

U K X= −

( )

1

1

1

T

T

U U R W X

K R W X

= −

= − +

LQR Extensions:

1. Cross Product Term in P.I.

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore16

LQR Extensions:

2. Weightage on Rate of State

( )

( ) ( )

( ) ( ) ( )

0

0

0

1 1

0

1 1

1

2

1

2

1

2

12

2

12

2

T T T

t

TT T

t

T T T T T T

T T T Tt

Q R W

T T T T T T

t

T T

J X QX U RU X SX dt

X QX U RU AX BU S AX BU dt

X QX U RU X A S A X X A SBUdt

U B S A X U B SBU

X Q A SA X U R B SB U X A SB U dt

X Q X U RU

= + +

= + + + +

+ + +=

+ +

= + + + +

= + +

ɺ ɺ

����� ����� �����

( )0

T

tX WU dt

∫Leads to a cross product case

Page 9: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore17

LQR Extensions:

3. Weightage on Rate of Control

( )

( )

0

0

0

1 ˆ2

Let ,

01 ˆ02

1 ˆ ˆ2

T T T

T T

T T

J X QX U RU U RU dt

XV U

U

QJ V RV dt

R

J Q V RV dt

= + +

= =

= +

= +

X

X X

X X

ɺ ɺ

ɺ

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore18

LQR Extensions:

3. Weightage on Rate of Control

( )

{ }

0

ˆˆ

, 0

0ˆ ˆ

0 0

(1) The dimension of the problem has increased

from to ( )

(2) If , is controllable, it can be shown that

the new syste

BA

X AX BU X X

U V

A BV A BV

I

n n m

A B

= + =

=

= + = +

+

X X X

Note :

ɺ

ɺ

ɺ

�����

m is also controllable.

Page 10: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore19

[ ]

1

1

11 121 1

12 22

12 22

1 1

12 22

ˆ ˆ ˆ

ˆwhere is the solution of

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ 0

Hence

ˆ ˆˆ ˆ ˆ ˆ0

ˆ ˆ

ˆ ˆ ˆ ˆ

T

T T

T

T

T

V U R B P

P

A P PA PBR B P Q

P P XU R I R P P

UP P

R P X R P U

− −

− −

= = −

+ − + =

= − = −

= − −

Solution :

X

X

ɺ

ɺ

LQR Extensions:

3. Weightage on Rate of Control

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore20

1 1

12 22ˆ ˆ ˆ ˆHowever, is a dynamic

equation in and hence is not easy for implementation.

For this reason, we want an expression in the RHS

only as a function of and operations on it.

State

TU R P X R P U

U

X

− −= − −ɺ

( )( )

equation:

This suggests:

This is only an approximate solution, unless

X AX BU

U B X AX

m n

+

= +

= −

≥Note :

ɺ

ɺ

LQR Extensions:

3. Weightage on Rate of Control

Page 11: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore21

( )

( )

12

1 1 1

12 22 22

1 1

12 22 22

1 2

1 2 0

0Proportional Initial conditio

Itegral

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

Integrating this expression both sides,

T

T

KK

t

U R P X R P B X R P B AX

R P P B A X R P B X

K X K X

U K X K X z dz U

− − + − +

− + − +

= − − −

= − + −

= − −

= − − +∫

ɺ ɺ ɺ

ɺ��������������

ɺ

�����

n

0 can be obtained using a performance index

without the term

U

U

Note :

ɺ

LQR Extensions:

3. Weightage on Rate of Control

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore22

LQR Extensions:

4. Prescribed Degree of Stability

Condition: All the Eiganvalues of the closed loop system

should lie to the left of line AB

( )( )

0

0

0

21 where, 0

2

1

2

1

2

Let

t T T

t

T Tt t t t

t

T T

t

t

t

J e X QX U RU dt

e X Q e X e U R e U dt

X QX U RU dt

X e X

U e U

α

α α α α

α

α

α∞

= + ≥

= +

= +

=

=

∫ ɶ ɶ ɶ ɶ

ɶ

ɶ

Co-ordinate

transformationα

A

B

σ

Page 12: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore23

( )

( ) ( ) ( )

( )

t

t t

t

t t t

X e X e X

e AX BU e X

A e X B e U e X

X A I X BU

α

α α

α

α α α

α

α

α

α

= +

= + +

= + +

= + +

ɺɶ ɺ

ɺɶ ɶ ɶ

LQR Extensions:

4. Prescribed Degree of Stability

t t

U K X

e U K e X

U K X

α α

= −

= −

= −

ɶ ɶControl Solution:

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore24

LQR Extensions:

4. Prescribed Degree of Stability

( )

Modified System:

U K X

X A BK I Xα

= −

= − +

ɶ ɶ

ɺɶ ɶ ( )

Actual System:

U K X

X A BK X

= −

= −ɺ

( )

is designed in such a way that eigenvalues of

will lie in the left-half plane.

K

A BK Iα − +

( )Hence, eigenvalues of will lie to the left

of a line parallel to the imaginary axis, which is located

away by distance from the imaginary axis.

A BK

α

Page 13: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

LQR Design for Command TrackingLQR Design for Command TrackingLQR Design for Command TrackingLQR Design for Command Tracking

Prof. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant Padhi

Dept. of Aerospace Engineering

Indian Institute of Science - Bangalore

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore26

LQR Design for

Command Tracking

Problem:

To design such that a part of the state vector of the

linear system tracks a commanded reference signal.

i.e. , where TT c

N

U

X AX BU

XX r X

X

= +

→ =

ɺ

Solution:

1) Formulate a standard LQR problem.

However, select the matrix properly.

2) Implement the controller as T c

N

Q

X rU K

X

−= −

0Typically

0 0

TTQ

Q

=

Page 14: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore27

LQR Design for

Command Tracking

B

A

- K

+ Xɺ

+∫

LQ Regulation

XU

-

B

A

- K

+ Xɺ∫

+

T

N

X

X

( )

0

cr t

+

LQ Tracking

XU

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore28

LQR Design for Command

Tracking with Integral Feedback

Solution (with integral controller):

1) Augment the system dynamics with integral states

0

0

0 0 0

2) Select the matrix properly

(should penalize

T TT TN T T

N NT NN N N

I I

X A A X B

X A A X B U

X I X

Q

= +

ɺ

ɺ

ɺ

( ) ( )0

only and states)

3) Control solution

T I

TT

tT T

T c N T c

X X

U K X r X X r dt = − − −

Page 15: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

LQR Design for Inhomogeneous SystemsLQR Design for Inhomogeneous SystemsLQR Design for Inhomogeneous SystemsLQR Design for Inhomogeneous Systems

Prof. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant Padhi

Dept. of Aerospace Engineering

Indian Institute of Science - Bangalore

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore30

LQR Design for

Inhomogeneous Systems

Reference

Page 16: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore31

LQR Design for

Inhomogeneous Systems

� To derive the state of a linear (rather linearized) system to the origin by minimizing the following quadratic

performance index (cost function)

( ) ( )0

1 1

2 2

where

, 0 (psdf), 0 (pdf)

ft

T T T

f f f

t

f

J X S X X Q X U RU dt

S Q R

= + +

≥ >

X A X BU C= + +ɺX

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore32

LQR Design for

Inhomogeneous Systems

� Performance Index (to minimize):

� Path Constraint:

� Boundary Conditions:

( ) ( )0

1 1

2 2

ft

T T T

f f f

t

J X S X X Q X U RU dt= + +∫

X A X BU C= + +ɺ

( )

( )00 :Specified

: Fixed, : Freef f

X X

t X t

=

Page 17: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore33

LQR Design for

Inhomogeneous Systems

� Terminal penalty:

� Hamiltonian:

� State Equation:

� Costate Equation:

� Optimal Control Eq.:

� Boundary Condition:

( ) ( )1

2

T T TH X Q X U RU AX BU Cλ= + + + +

( ) ( )1

2

T

f f f fX X S Xϕ =

X AX BU C= + +ɺ

( ) ( )/ TH X QX Aλ λ= − ∂ ∂ = − +ɺ

( ) 1/ 0 TH U U R B λ−∂ ∂ = ⇒ = −

( )/f f f fX S Xλ ϕ= ∂ ∂ =

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore34

LQR Design for

Inhomogeneous Systems

Guess ( ) ( ) ( ) ( )t P t X t K tλ = +

( )

( )( )( ) ( )( )

1

1

T

T T

PX PX K

PX P AX BU C K

PX P AX BR B PC K

QX A PX K PX P AX BR B PX K PC K

λ

λ−

= + +

= + + + +

= + − + +

− + + = + − + + +

ɺ ɺ ɺ ɺ

ɺ ɺ

ɺ ɺ

ɺ ɺ

( )

( )

1

1 0

T T

T T

P PA A P PBR B P Q X

K A K PBR B P PC

+ + − +

+ + − + =

ɺ

ɺ

Page 18: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore35

LQR Design for

Inhomogeneous Systems

� Riccati equation

� Auxiliary equation

� Boundary conditions

1 0T TP PA A P PBR B P Q

−+ + − + =ɺ

( ) ( ) ( ) is freef f f f f f

P t X K t S X X+ =

( )f fP t S=

( )1 0T TK A PBR B K PC

−+ − + =ɺ

( ) 0f

K t =

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore36

LQR Design for

Inhomogeneous Systems

Control Solution:

Note: There is a residual controller even after

This part of the controller offsets the continuous disturbance.

0.X →

( )

1

1

1 1

T

T

T T

U R B

R B PX K

R B PX R B K

λ−

− −

= −

= − +

= − −

Page 19: Linear Quadratic Regulator (LQR) Linear Quadratic ... · Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) ––––IIIIIIII Prof. Radhakant Padhi Dept. of Aerospace

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore37

Thanks for the Attention….!!