52
Linear Programming (LP) • Decision Variables • Objective (MIN or MAX) • Constraints • Graphical Solution

Linear Programming (LP)

  • Upload
    addo

  • View
    60

  • Download
    0

Embed Size (px)

DESCRIPTION

Linear Programming (LP). Decision Variables Objective (MIN or MAX) Constraints Graphical Solution. History of LP. World War II shortages Limited resources Research at RAND in Santa Monica Examples: limited number of machines Limited number of skilled workers Budget limits - PowerPoint PPT Presentation

Citation preview

Page 1: Linear Programming (LP)

Linear Programming (LP)

• Decision Variables• Objective (MIN or MAX)• Constraints• Graphical Solution

Page 2: Linear Programming (LP)

History of LP

• World War II shortages• Limited resources• Research at RAND in Santa Monica• Examples: limited number of machines• Limited number of skilled workers• Budget limits• Time restrictions (deadlines)• Raw materials

Page 3: Linear Programming (LP)

LP Requirements

• Single objective: MAX or MIN• Objective must be linear function• Linear constraints

Page 4: Linear Programming (LP)

Linear Programming

• I. Profit maximization example• II. Cost minimization example

Page 5: Linear Programming (LP)

I. Profit MAX Example

• Source: Render and Stair, Quantitative Analysis for Management , Ch 2

• Furniture factory• Decision variables: • X1 = number of tables to make• X2 = number of chairs to make

Page 6: Linear Programming (LP)

Objective: MAX profit

• Each table: $ 7 profit• Each chair: $ 5 profit• Total profit = 7X1 + 5X2

Page 7: Linear Programming (LP)

Carpenter Constraint

Labor Constraint • 240 hours available per week • Each table requires 4 hours from carpenter• Each chair requires 3 hours from carpenter• 4X1 + 3X2 < 240

Page 8: Linear Programming (LP)

Painter Constraint

• 100 hours available per week• Each table requires 2 hours from painter• Each chair requires 1 hour from painter• 2X1 + X2 < 100

Page 9: Linear Programming (LP)

Non-negativity constraints

• X1 > 0• X2 > 0• Can’t have negative production

Page 10: Linear Programming (LP)

Graphical Solution

Non-negativity constraints imply positive (northeast) quadrant

Page 11: Linear Programming (LP)

X1

X2

0,0

Page 12: Linear Programming (LP)

Plot carpenter constraint

• Temporarily convert to equation• 4X1 + 3X2 = 240• Intercept on X1 axis: X2 =0• 4X1 + 3(0) = 240• 4X1 = 240• X1= 240/4 = 60• Coordinate (60,0)

Page 13: Linear Programming (LP)

X1

X2

0,0 60,0

Page 14: Linear Programming (LP)

Plot carpenter constraint

• Temporarily convert to equation• 4X1 + 3X2 = 240• Intercept on X2 axis: X1 =0• 4(0) + 3X2 = 240• 3X2 = 240• X2= 240/3 = 80• Coordinate (0,80)

Page 15: Linear Programming (LP)

X1=tables

X2 =chairs

0,0

(0,80).

(60,0) .

Page 16: Linear Programming (LP)

X1=tables

X2 =chairs

0,0

(0,80).

(60,0) .

Page 17: Linear Programming (LP)

Convert back to inequality

4X1 + 3X2 < 240

Page 18: Linear Programming (LP)

X1=tables

X2 =chairs

0,0

(0,80).

(60,0) .

Page 19: Linear Programming (LP)

Plot painter constraint

• Equation: 2X1 + X2 = 100

Page 20: Linear Programming (LP)

2X1 + X2 = 100

X1 X2

0 100

100/2 = 50 0

Page 21: Linear Programming (LP)

X1=tables

X2 =chairs

0,0

(0,80).

(60,0) .

0,100

50,0

Page 22: Linear Programming (LP)

Feasible Region

• Decision: how many tables and chairs to make

• Feasible allocation: satisfies all constraints

Page 23: Linear Programming (LP)

MAXIMUM PROFIT

• Must be on boundary• If not on boundary, could increase profit by

making more tables or chairs• Must be feasible• “Corner Point”

Page 24: Linear Programming (LP)

X1=tables

X2 =chairs

0,0

(0,80).

(60,0) .

0,100

50,0

NOT FEASIBLE

NOT FEASIBLE

CORNER POINTS3

Page 25: Linear Programming (LP)

3RD CORNER POINT• Intersection of 2 constraints• Temporarily convert to equations• (1) 4X1 + 3X2 = 240• (2) 2X1 + X2 = 100• Solve 2 equations in 2 unknowns• (2)*3implies 6X1 + 3X2 = 300• Subtract (1) - 4X1 - 3X2 = -240• 2X1 = 60• X1 = 30

Page 26: Linear Programming (LP)

Substitute into equation

• (1) 4X1 + 3X2 = 240• 4(30) + 3X2 = 240

120 + 3X2 = 240 3X2 = 240 – 120 = 120 X2 = 120/3 = 403rd corner point: (30,40)

Page 27: Linear Programming (LP)

X1=tables

X2 =chairs

0,0

(0,80).

(60,0) .

0,100

50,0

NOT FEASIBLE

NOT FEASIBLE

(30,40)

Page 28: Linear Programming (LP)

MAXIMUM PROFIT

X1=tables X2=chairs Interpret Profit=7X1+5X2

50 0 Make tables only

7(50)+0=$ 350

0 80 Make chairs only

7(0)+5(80)= $ 400

30 40 Mix of tables, chairs

7(30)+5(40)= $ 410 =MAX

Page 29: Linear Programming (LP)

Exam Format

Make 30 tables and 40 chairs for $410 profit

Page 30: Linear Programming (LP)

II. Cost minimization example

• Diet problem• Decision variables: number of pounds of

brand #1 and brand #2 to buy to prepare processed food

• Objective Function: MINIMIZE cost• Each pound of brand #1 costs 2 cents,

pound of brand #2 costs 3 cents• Objective: MIN 2X1 + 3X2

Page 31: Linear Programming (LP)

CONSTRAINTS

• Each pound of brand #1 has 5 ounces of ingredient A, 4 ounces of ingredient B, and 0.5 ounces of ingr C

• Each pound of brand #2 has 10 ounces of ingr A and 3 ounces of ingr B

• We need at least 90 ounces of ingr A, 48 ounces of ingr B, and 1.5 ounces of ingr C

Page 32: Linear Programming (LP)

CONSTRAINTS

• (A) 5X1 + 10X2 > 90• (B) 4X1 + 3X2 > 48• (C) 0.5X1 > 1.5• (D) X1 > 0• (E) X2 > 0

Page 33: Linear Programming (LP)

X1

X2

Page 34: Linear Programming (LP)

(A) 5X1+10X2>90

X1 X2 INTERCEPT

0 90/10=9 (0,9)

90/5=18 0 (18,0)

Page 35: Linear Programming (LP)

X1

X2

0,9

18,0A

Page 36: Linear Programming (LP)

(B) 4X1+3X2>48

X1 X2

0 48/3=16

48/4=12 0

Page 37: Linear Programming (LP)

X1

X2

0,9

18,0A

0,16

12,0

B

Page 38: Linear Programming (LP)

(C) 0.5X1 > 1.5

X1 X2

0 1.5/0 undefined, so no intercept on vertical axis

1.5/.5= 3 0

Page 39: Linear Programming (LP)

(C) Must be vertical line

.5X1 = 1.5X1= 3

Page 40: Linear Programming (LP)

X1

X2

0,9

18,0A

0,16

12,0

B

C

Page 41: Linear Programming (LP)

X1

X2

0,9

18,0A

0,16

12,0

B

C FEASIBLE REGION UNBOUNDED

Page 42: Linear Programming (LP)

CORNER POINTS

• Only 1 intercept feasible: (18,0)• Solve 2 equations in 2 unknowns:• B and C• A and B

Page 43: Linear Programming (LP)

B and C

• B: 4X1 + 3X2 = 48• C: X1 = 3• Substitute X1=3 into B• B: 4(3) + 3X2 = 48• 12 + 3X2 = 48• 3X2 = 36• X2 = 12

Page 44: Linear Programming (LP)

X1

X2

18,0A

B

C FEASIBLE REGION UNBOUNDED

3,12

Page 45: Linear Programming (LP)

A and B

• A: 5X1 + 10X2 = 90• B: 4X1 + 3X2 = 48• (A)(4): 20X1+ 40X2 = 360• (B)(5): 20X1 + 15X2 = 240• Subtract: 25X2 = 120• X2 = 4.8• Substitute5X1 + 10(4.8) = 90• X1 = 8.4

Page 46: Linear Programming (LP)

X1

X2

18,0A

B

C FEASIBLE REGION UNBOUNDED

3,12

8.4,4.8

Page 47: Linear Programming (LP)

MINIMIZE COSTX1=BRAND #1

X2=BRAND #2

COST=2X1+3X2

18 0 BRAND#1ONLY

2(18)+3(0)= 36 CENTS

3 12 2(3)+3(12)=42 CENTS

8.4 4.8 2(8.4)+3(4.8)=31=MIN

Page 48: Linear Programming (LP)

EXAM FORMAT

• BUY 8.4 POUNDS OF BRAND #1 AND 4.8 POUNDS OF BRAND #2 AT COST OF 31 CENTS

Page 49: Linear Programming (LP)

COMPUTER OUTPUT

• If computer output says “no feasible solution”, no feasible region

• Reason #1: unrealistic constraints• Reason #2: computer input error

Page 50: Linear Programming (LP)

No feasible region

Page 51: Linear Programming (LP)

MULTIPLE OPTIMA

• If 2 corner points have same objective function value, ok to pick midway point

Page 52: Linear Programming (LP)

X2

0,0

$ 100 .

.$ 80

NOT FEASIBLE

NOT FEASIBLE

$ 100

Any point between 2 $100 points is MAX

X1