18
8/13/2019 Lin, Chen, 2003 http://slidepdf.com/reader/full/lin-chen-2003 1/18 COINCIDENCE THEOREMS FOR FAMILIES OF MULTIMAPS AND THEIR APPLICATIONS TO EQUILIBRIUM PROBLEMS LAI-JIU LIN AND HSIN I CHEN Received 30 October 2001 We apply some continuous selection theorems to establish coincidence theorems for a family of multimaps under various conditions. Then we apply these coin- cidence theorems to study the equilibrium problem with  m  families of players and 2m families of constraints on strategy sets. We establish the existence theo- rems of equilibria of this problem and existence theorem of equilibria of abstract economics with two families of players. 1. Introduction For multimaps  :  X   and S :   X , a point (x, y )  X ×  is called a coin- cidence point of  and S if  y () and S(  y ). In 1937, Neumann [19] and in 1966 Fan [8] established the well-known coincidence theorems. In 1984, Brow- der [4] combined Kakutani-Fan fixed-point theorem and Fan-Browder fixed- point theorem to obtain a coincidence theorem. So many authors gave some coincidence theorems and applied them in various fields as equilibrium prob- lem, minimax theorem, quasi-variational inequalities, game theory, mathemat- ical economics, and so on, see [ 15691118] and references therein. In 1991, Horvath [10, Theorem 3.2] obtained a continuous selection theorem. In [21, Theorem 1], Wu and Shen established another continuous selection theorem. Let  I  and  J  be any index sets. For each  i  and  j  ∈ J , let  X i  and  Y  j  be nonempty sets and  j  :  X = i X i  j ; i  :  =  j  J  j  X i  be multimaps. A point (¯ x,  ¯  y )  X × , where ¯ = i ) i and ¯  y =  y  j )  j  J  is called a coincidence point of two families of multimaps, if  ¯  y  j  ∈  j ) and ¯ i i  y ) for each  i and  j  J . In this paper, we apply the continuous selection theorem of Horvath [10] and the fixed-point theorem of Park [ 17] to derive the coincidence theo- rems for two families of multimaps. Our coincidence theorems for two families of multimaps include Fan-Browder fixed-point theorem [3] and Browder coin- cidence theorem [4] as special cases. Copyright © 2003 Hindawi Publishing Corporation Abstract and Applied Analysis 2003:5 (2003) 295–309 2000 Mathematics Subject Classification: 54H25, 46N10, 91A13, 91B50 URL: http://dx.doi.org/10.1155/S1085337503210034

Lin, Chen, 2003

Embed Size (px)

Citation preview

Page 1: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 1/18

COINCIDENCE THEOREMS FOR FAMILIESOF MULTIMAPS AND THEIR APPLICATIONSTO EQUILIBRIUM PROBLEMS

LAI-JIU LIN AND HSIN I CHEN

Received 30 October 2001

We apply some continuous selection theorems to establish coincidence theoremsfor a family of multimaps under various conditions. Then we apply these coin-

cidence theorems to study the equilibrium problem with  m  families of players

and 2m families of constraints on strategy sets. We establish the existence theo-

rems of equilibria of this problem and existence theorem of equilibria of abstract

economics with two families of players.

1. Introduction

For multimaps F  : X  Y  and S : Y   X , a point (x, y )∈ X ×Y  is called a coin-

cidence point of F  and S if  y ∈ F (x ) and x ∈ S( y ). In 1937, Neumann [19] and in1966 Fan [8] established the well-known coincidence theorems. In 1984, Brow-

der [4]  combined Kakutani-Fan fixed-point theorem and Fan-Browder fixed-

point theorem to obtain a coincidence theorem. So many authors gave some

coincidence theorems and applied them in various fields as equilibrium prob-

lem, minimax theorem, quasi-variational inequalities, game theory, mathemat-

ical economics, and so on, see [1, 5, 6, 9, 11, 18] and references therein. In 1991,

Horvath [10,  Theorem 3.2] obtained a continuous selection theorem. In [21,

Theorem 1], Wu and Shen established another continuous selection theorem.

Let   I   and   J   be any index sets. For each   i ∈ I   and   j  ∈ J , let   X i   and   Y  j   benonempty sets and H  j : X =

i∈I  X i Y  j ; T i : Y  =

 j∈ J Y  j  X i be multimaps.

A point (x, ¯ y )∈ X ×Y , where x = (x i)i∈I  and ¯ y = ( ¯ y  j ) j∈ J 

 is called a coincidence

point of two families of multimaps, if   ¯ y  j  ∈ H  j (x ) and  x i ∈ T i( ¯ y ) for each i ∈ I 

and   j ∈ J . In this paper, we apply the continuous selection theorem of Horvath

[10] and the fixed-point theorem of Park [17] to derive the coincidence theo-

rems for two families of multimaps. Our coincidence theorems for two families

of multimaps include Fan-Browder fixed-point theorem [3] and Browder coin-

cidence theorem [4] as special cases.

Copyright © 2003 Hindawi Publishing CorporationAbstract and Applied Analysis 2003:5 (2003) 295–309

2000 Mathematics Subject Classification: 54H25, 46N10, 91A13, 91B50

URL: http://dx.doi.org/10.1155/S1085337503210034

Page 2: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 2/18

296 Coincidence theorems with applications

We will employ our results on coincidence theorems for two families of mul-

timaps to consider the equilibrium problem with  m  families of players and 2mfamilies of constraints on the strategy sets introduced by Lin et al. [ 14]. We con-

sider the following problem: let I  be any index set and for each  k ∈ I , let J k  be

a finite index set,  X k j  denote the strategy set of   jth player in  kth family,  Y k  = j∈ J k X k j , Y  =

k∈I Y k , Y k =

l ∈I,l =k Y l , and Y  = Y k ×Y k. Let F k j   : X k j ×Y k

Rl k j be the payoff of the j th player in the kth family, let Ak j   : Y k  X k j  be the con-

straint which restricts the strategy of the jth player in the kth family to the subset

 Ak j (Y k) of  X k j  when all players in other families have chosen their strategies  x i j ,

i ∈ I , i = k, and   j ∈ J i, and let Bk : Y k Y k be the constraint which restricts the

strategies of all the families except  kth family to the subset Bk(Y k) of  Y k when

all the players in the  k  family have chosen their strategies  y k  = (x k j ) j∈ J k , k ∈ I .

Our problem is to find a strategies combination   ¯ y  = ( ¯ y k)k∈I  ∈

k∈I Y k  = Y ,u = (uk)k∈I  ∈ Y ,   ¯ y k  = (x k j ) j∈ J k ,   ¯ y k  ∈  Ak( ¯ y k),  uk ∈ Bk( ¯ y k), and  z k j  ∈ F k j (x k j , uk)

such that

z k j − z k j  ∈ − intRl k j

+   ,   (1.1)

for all z k j  ∈ F k j (x k j , uk), x k j  ∈ Ak j ( ¯ y k), and for all  k ∈ I  and   j ∈ J k. In the Nash

equilibrium problem, the strategy of each player is subject to no constraint. In

the Debreu equilibrium problem, the strategy of each player is subject to a con-straint which is a function of the strategies of the other players. For the special

case of our problem, if each of the families contain one player, we find that the

strategy of each player is subject a constraint which is a function of strategies

of the other players, and for each k ∈ I , where I  is the index set of players, the

strategies combination of the players other than the  kth player is a function of 

strategy of kth player. Therefore, our problem is diff erent from the Nash equilib-

rium problem and their generalizations. As we note from  Remark 4.8, for each

k ∈ I , if  J k = {k} be a singleton set, then the above problem reduces to the prob-

lem which is diff erent from the Debreu social equilibrium problem [6] and theNash equilibrium problem [19]. Lin et al. [14] demonstrate the following ex-

ample of this kind of equilibrium problem in our real life. Let  I  = {1 , 2 , . . . ,m}denote the index set of the companies. For each k ∈ I , let J k  = {1 , 2 , . . . , nk} de-

note the index set of factories in the kth company, F k j  denote the payoff function

of the   jth factory in the kth company. We assume that the products between the

factories in the same company are diff erent, and the financial systems and man-

agement systems are independent between the factories in the same company,

while some collections of products are the same and some collections of prod-

ucts are diff erent between diff erent factories in diff erent companies. Therefore,

the strategy of the   jth factory in the kth company depends on the strategies of 

all factories in diff erent companies. The payoff  function F k j  of the   jth factory in

the kth company depends on its strategy and the strategies of factories in other

Page 3: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 3/18

L.-J. Lin and H. I Chen 297

companies. We also assume that for each  k ∈ I , the strategies of the  k  company 

influence the strategies of all other companies. With this strategies combination,

each factory can choose a collection of products, and from these collection of 

products, there exists a product that minimizes the loss of each factory. In this

type of abstract economic problem with two families of players, the strategy and

the preference correspondence of each player in family  A  depend on the strate-

gies combination of all players in family B, but does not depend on the strategies

combination of the players in family  A. The same situation occurs to each player

of family B. The abstract economic problem studied in the literature, the strategy 

and preference correspondence of each player depend on the strategies combi-

nation of all the players. Therefore, the abstract economic problem, we studied

in this paper, is diff erent from the abstract economic studied in the literature.

In some economic model with two companies (say  A  and  B), the strategy of each factory of company  A depend on the strategies combination of factories in

company  B. The same case occurs in company  B. We can use this example to

explain the abstract economic problem we study in this paper. We also apply the

coincidence theorems for a family of multimaps to consider the abstract eco-

nomic problem with two families of players. In this paper, we want to establish

the existence theorems of equilibria of constrained equilibrium problems with

m  families of players and 2m  families of constraints and existence theorem of 

equilibria of abstract economic with two families of players.

2. Preliminaries

In order to establish our main results, we first give some concepts and notations.

Throughout this paper, all topological spaces are assumed to be Hausdorff .

Let A  be a nonempty subset of topological vector space (t.v.s.)  X , we denote by 

int A  the interior of  A, by   ¯ A  the closure of  A  in  X , by co A  the convex hull of 

 A, and by  co A the closed convex hull of A. Let X , Y , and Z  be nonempty sets.

A multimap (or map) T  :  X  Y  is a function from X  into the power set of  Y 

and T − : Y   X  is defined by  x ∈ T −( y ) if and only if  y ∈ T (x ). Let B ⊂ Y , we

define T −

(B) = {x ∈ X  : T (x )∩B =∅}. Given two multimaps F  : X 

Y   andG : Y   Z , the composite  GF  :  X   Z   is defined by  GF (x ) = G(F (x )) for all

x ∈ X .

Let X   and Y  be two topological spaces, a multimap  T  :  X  Y   is said to be

compact if there exists a compact subset K  ⊂ Y  such that T ( X )⊂K ; to be closed

if its graph  Gr (T ) = {(x, y ) | x ∈ X, y ∈ T (x )}  is closed in  X × Y ; to have lo-

cal intersection property if, for each x ∈ X  with T (x ) =∅, there exists an open

neighborhood  N (x ) of  x  such that

z ∈N (x ) T (z ) =∅; to be upper semicontin-

uous (u.s.c.) if  T −( A) is closed in  X  for each closed subset A  of  Y ; to be lower

semicontinuous (l.s.c.) if  T −(G) is open in X  for each open subset G  of  Y , and

to be continuous if it is both u.s.c. and l.s.c.

A topological space is said to be  acyclic  if all of its reduced  Cech homology 

groups vanish. In particular, any convex set is  acyclic .

Page 4: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 4/18

298 Coincidence theorems with applications

Definition 2.1  (see [15]). Let  X  be a nonempty convex subset of a t.v.s.  E. A

multimap G : X R is said to be R+-quasiconvex  if, for any  α ∈R, the set

x ∈ X  : there is a  y ∈G(x ) such that α− y ≥ 0

  (2.1)

is convex.

Definition 2.2 (see [15]). Let Z  be a real t.v.s. with a convex solid cone C  and  Abe a nonempty subset of  Z . A point  ¯ y ∈ A is called a weak vector minimal point

of  A if, for any  y ∈ A, y − ¯ y ∈− int C . Moreover, the set of weak vector minimal

points of  A is denoted by wMinC  A.

Lemma 2.3.   Let  I  be any index set and {Ei}i∈I  be a family of locally convex t.v.s.

For each   i ∈ I  , let  X i  be a nonempty convex subset of  Ei ,  F i ,  H i   such that  X  :=i∈I  X i  X i be multimaps satisfying the following conditions:

(i) for each x ∈ X  , co F i(x )⊂H i(x ) ;(ii) X =

{int F −i   (x i) : x i ∈ X i} ;

(iii) H i is compact.

Then there exists a point  x = (x i)i∈I  ∈ X  such that  x ∈H (x ) :=

i∈I H i(x ) ; that is,

x i ∈H i(x ) for each i ∈ I .

Proof.  Lemma 2.3 follows immediately from [12, Proposition 1] and [21, Theo-

rem 2].  

3. Coincidence theorems for families of multivalued maps

Theorem 3.1.   Let I  and  J  be any index sets, and let {U i}i∈I  and {V  j} j∈ J  be families

of locally convex t.v.s. For each i ∈ I  and   j ∈ J  , let  X i  and  Y  j  be nonempty convex 

subsets, each in  U i   and  V  j , respectively. Let  F  j ,  H  j   : X  :=

i∈I  X i Y  j ;  Si ,  T i :

Y  :=

 j∈ J Y  j  X i be multimaps satisfying the following conditions:

(i) for each x ∈ X  , co F  j (x )⊂H  j (x ) ;

(ii) X ={int F  j

−( y  j ) : y  j  ∈ Y  j} ;

(iii) for each  y ∈ Y  , co Si( y )⊂ T i( y ) ;

(iv) Y  ={int Si−(x i) : x i ∈ X i} ;

(v) T i is compact.

Then there exist  x = (x i)i∈I  ∈ X   and   ¯ y = ( ¯ y  j ) j∈ J  ∈ Y   such that   ¯ y  j  ∈ H  j (x ) and 

x i ∈ T i( ¯ y ) for each i ∈ I  and   j ∈ J .

Proof.  Since for each i ∈ I , T i is compact, there exists a compact subset Di ⊂ X isuch that  T i(Y ) ⊂ Di   for each   i ∈ I . Let  D =

i∈I Di   and  K  = coD, it follows

from [7, Lemma 1] that K  is a nonempty paracompact convex subset in X . For

each i ∈ I , let K i  be the ith projection of  K . By assumption (iii), Si, T i : Y   K iand co Si( y ) ⊂ T i( y ) for each  y ∈ Y . By (i), for each x ∈ K , coF  j  |K  (x ) ⊂ H  j  |K 

(x ). By (ii), K  ={intK F  j−( y  j ) : y  j  ∈ Y  j}.

By [12, Proposition 1] and [21, Theorem 1], H  j  |K  (x ) has a continuous selec-

tion, that is, for each   j ∈ J , there exists a continuous function   f  j  : K  → Y  j  such

Page 5: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 5/18

L.-J. Lin and H. I Chen 299

that   f  j (x ) ∈H  j (x ) for all x ∈ K . Let   f   : K  → Y  be defined by   f (x ) =

 j∈ J   f  j (x )

and  P i,  W i :  K   K i  be defined by  W i(x ) = Si( f (x )) and  P i(x ) = T i( f (x )) for

all x ∈ K . It is easy to see that W i−(x i) =   f −1(Si

−(x i)) for all x i ∈ K i  and for all

i ∈ I . By assumption (iii), for all i ∈ I  and for all x ∈ X , co W i(x )= coSi( f (x ))⊂

T i( f (x )) = P i(x ). Since Si(Y )⊂ T i(Y ) ⊂K i, it follows from assumption (iv) and

the continuity of   f   that

K  =   f −1(Y )=   f −1

int Si−

x i

: x i ∈ X i

=   f −1

int Si−

x i

: x i ∈K i

int f −1

Si−

x i

: x i ∈K i

= intW i

−x i :

x i∈

K i⊂

K.

(3.1)

Hence,

K  =

int W i−

x i

: x i ∈K i

.   (3.2)

Then by  Lemma 2.3,   there exists a point  x = (x i)i∈I  ∈ K  ⊂  X   such that  x i  ∈

P i(x ) = T i( f (x )) for each  i ∈ I . Let   ¯ y = ( ¯ y  j ) j∈ J  ∈ Y   such that   ¯ y =   f (x ), then,

for each i ∈ I  and   j ∈ J ,   ¯ y  j  =   f  j (x ) ∈ H  j (x ) and  x i ∈ T i( ¯ y ). The proof is com-

plete.  

Corollary 3.2 [22, Theorem 8].   In Theorem 3.1 , if the condition (v) is replaced by (v ), then the conclusion is still true, where (v ) X i is compact.

Proof.   Since  X i  is compact,  T i   is compact and the conclusion of  Corollary 3.2

follows from Theorem 3.1.  

Remark 3.3.  Theorem 3.1 improves [15, Theorem 8].

Theorem  3.4.   Let  I  and  J  be any index sets, let {U i}i∈I  and  {V  j} j∈ J  be families

of locally convex t.v.s. For each i ∈ I  and   j ∈ J  , let  X i  and  Y  j  be nonempty convex 

subsets of  U i  and  V  j , respectively, and let  D j  be a nonempty compact metrizable

subset of  Y  j . For each i ∈ I  and   j ∈ J  , let  S j , T  j  :  X  :=

i∈I  X i D j ; F i , H i : Y  := j∈ J Y  j  X i be multimaps satisfying the following conditions:

(i) for each x ∈ X  ,  coS j (x )⊂ T  j (x ) and  S j (x ) =∅ ;

(ii) S j  is l.s.c.;

(iii) for each  y ∈ Y  , co F i( y )⊂H i( y ) ;

(iv) Y  ={int F i

−(x i) : x i ∈ X i} ;

(v) H i is compact.

Then there exist  x = (x i)i∈I  ∈ X  and   ¯ y = ( ¯ y  j ) j∈ J  ∈ D :=

 j∈ J D j  such that   ¯ y  j  ∈

T  j (x ) and  x i ∈H i( ¯ y ) for each i ∈ I  and   j ∈ J .

Proof.  Since for each i ∈ I , H i  is compact, there exists a compact subset C i ⊂ X isuch that  H i(Y ) ⊂ C i   for each   i ∈ I . Let  C =

i∈I C i   and  D :=

 j∈ J D j , then

coC  and  K  = coD are nonempty paracompact convex subsets each in X  and Y ,

Page 6: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 6/18

300 Coincidence theorems with applications

respectively by [7, Lemma 1]. By assumptions (i), (ii), and following the same

argument as in the proof of [20, Theorem 1], there exists an u.s.c. multimap  P  j :

coC  D j  with nonempty compact convex values such that  P  j (x ) ⊂ T  j (x ) for

all x ∈ coC . Define P  : co C D by  P (x ) =

 j∈ J P  j (x ) for all x ∈ coC . Then it

follows from [8, Lemma 3] that P  is an u.s.c. multimap with nonempty compact

convex values.

By [12, Proposition 1] and [21, Theorem 1], for each  i ∈ I , H i |K  ( y ) has a

continuous selection   f i :  K  → C i  such that   f i( y ) ∈ H i( y ) for all   y ∈ K . Let   f   :

K  → C  be defined by   f ( y ) =

i∈I   f i( y ) for all   y ∈ K , and let  W   : K   D  be

defined by  W ( y ) = P |C  ( f ( y )) for all  y ∈ K . It is easy to see that W  is an u.s.c.

multimap with nonempty closed convex values. Then, by [17, Theorem 7], there

exists ¯ y ∈D such that ¯ y ∈W ( ¯ y )= P |C  ( f ( ¯ y )). Let x ∈ C such that x =   f ( ¯ y ) and

¯ y ∈ P |C  (x ), then for each i ∈ I  and   j ∈ J ,   ¯ y  j  ∈ P  j (x ) ⊂ T  j (x ) and x i =   f i( ¯ y ) ∈H i( ¯ y ).  

Theorem  3.5.   Let  I  and  J  be any index sets. For each i ∈ I  and   j ∈ J  , let  X i  and 

Y  j be nonempty convex subsets in locally convex t.v.s. U i and V  j , respectively, let D j

be a nonempty compact metrizable subset of  Y  j , and let  C i be a nonempty compact 

metrizable subset of  X i. For each i ∈ I  and   j ∈ J  , let S j , T  j : X  :=

i∈I  X i D j ; F i ,

H i : Y  :=

 j∈ J Y  j C i be multimaps satisfying the following conditions:

(i) for each x ∈ X  ,  coS j (x )⊂ T  j (x ) and  S j (x ) =∅ ;

(ii) S j  is l.s.c.;

(iii) for each  y ∈ Y  ,  coF i( y )⊂H i( y ) and  F i( y ) =∅ ;

(iv) F i is l.s.c.

Then there exist   x  =  (x i)i∈I  ∈ coC   := co

i∈I C i   and   ¯ y  = ( ¯ y  j ) j∈ J  ∈ coD   :=

co

 j∈ J D j  such that   ¯ y  j  ∈ T  j (x ) and  x i ∈H i( ¯ y ) for each i ∈ I  and   j ∈ J .

Proof.  Following the same argument as in the proof of [20, Theorem 1], for

each   i ∈ I   and   j  ∈ J , there are two u.s.c. multimaps  P  j   : co C  D j   and  Qi  :

coD C i  with nonempty closed convex values such that  P  j (x ) ⊂ T  j (x ) for all

x ∈ coC , and Qi( y ) ⊂H i( y ) for all  y ∈ coD. Define P  : co C D, Q : coD C 

by P (x )=

 j∈ J P  j (x ) for all x ∈ coC , and Q( y )=

i∈I Qi( y ) for all y ∈ coD. By [8, Lemma 3], P  and Q  both are u.s.c. multimaps with nonempty closed con-

vex values. Let  W  : co C × coD C ×D  be defined by  W (x, y ) = (Q( y ) , P (x ))

for (x, y ) ∈ (coC )× (coD). It is easy to see that  W   is an u.s.c. multimap with

nonempty closed convex values. Therefore, by [17, Theorem 7], there exist  x =(x i)i∈I  ∈ coC  and   ¯ y = ( ¯ y  j ) j∈ J  ∈ coD such that (x, ¯ y ) ∈ W (x, ¯ y ). Then for each

i ∈ I  and   j ∈ J ,  ¯ y  j  ∈ P  j (x )⊂ T  j (x ) and x i ∈Qi( ¯ y )⊂H i( ¯ y ).  

Remark 3.6.   In Theorem 3.1, we do not assume that { X i} and {Y  j} are metriz-

able for each i ∈ I  and   j ∈ J .

Theorem 3.7.   Let  I  and  J  be finite index sets, let {U i}i∈I  be a family of t.v.s., and 

let {V  j} j∈ J  be a family of locally convex t.v.s. For each i ∈ I  and   j ∈ J  , let  X i  be a

nonempty convex subset of  U i , let  Y  j  be a nonempty compact convex subset of  V  j ,

Page 7: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 7/18

L.-J. Lin and H. I Chen 301

and let  F  j  :  X  :=

i∈I  X i Y  j  and let  Gi : Y  :=

 j∈ J Y  j   X i  be two multimaps

satisfying the following conditions:

(i) F  j  is an u.s.c. multimap with nonempty closed acyclic values;(ii) Y  =

{int Gi

−(x i) : x i ∈ X i} and  Gi( y ) is convex for all  y ∈ Y .

Then there exist  x = (x i)i∈I  ∈ X   and   ¯ y = ( ¯ y  j ) j∈ J  ∈ Y   such that   ¯ y  j  ∈ F  j (x )  and 

x i ∈Gi( ¯ y ) for each i ∈ I  and   j ∈ J .

Proof.   By [12, Proposition 1] and [21, Theorem 1], Gi has a continuous selection

 g i :  Y  → X i  such that  g i( y ) ∈ Gi( y ) for all   y ∈ Y . Let  g  :  Y  → X  be defined by 

 g ( y )=

i∈I  g i( y ) for all y ∈ Y , then g  is also continuous. Define P  j  : Y   Y  j and

P  : Y   Y  by  P  j ( y ) = F  j ( g ( y )), and P ( y ) =

 j∈ J P  j ( y ) for all  y ∈ Y , then P  j  :

Y   Y  j  is an u.s.c. multimap with nonempty closed acyclic values. By Kunneth

formula (see [16] and [8, Lemma 3]), P  : Y   Y   is also an u.s.c. multimap withnonempty closed acyclic values. Therefore, by [17, Theorem 7], there exists   ¯ y ∈

Y  such that  ¯ y ∈ P ( ¯ y ) =

 j∈ J P  j ( ¯ y )=

 j∈ J F  j ( g ( ¯ y )). Let x = g ( ¯ y ) such that  ¯ y i ∈

F i(x ), then x i = g i( ¯ y )∈Gi( ¯ y ) and ¯ y  j  ∈ F  j (x ) for all i ∈ I  and   j ∈ J .  

Remark 3.8.  (i) In particular, if  I  = J  is a singleton, X  = Y , E = V , and F = I  X ,

the identity mapping on X  in the above theorem, then we can obtain well-known

Browder fixed-point theorem [3].

(ii) If  I = J  is a singleton, F  is an u.s.c. multimap with nonempty closed con-

vex values, G( y ) is nonempty for all  y ∈ Y , and G−(x ) is open for all x ∈ X , then

Theorem 3.7 reduces to Browder coincidence theorem [4].

Theorem 3.9.   Let  I  and  J  be finite index sets, {U i}i∈I  and {V  j} j∈ J  be families of 

locally convex t.v.s. For each i ∈ I  and  j ∈ J  , let  X i be a nonempty convex metrizable

compact subsets of  U i and let  Y  j  be a nonempty compact convex subsets of  V  j . For 

each i ∈ I  and  j ∈ J  , let F  j  : X  :=

i∈I  X i Y  j and Gi : Y  :=

 j∈ J Y  j  X i be two

multimaps satisfying the following conditions:

(i) F  j  is an u.s.c. multimap with nonempty closed acyclic values;

(ii) Gi is a l.s.c. multimap with nonempty closed convex values.

Then there exist  x = (x i)i∈I  ∈ X   and   ¯ y = ( ¯ y  j ) j∈ J  ∈ Y   such that   ¯ y  j  ∈ F  j (x )  and x i ∈Gi( ¯ y ) for each i ∈ I  and   j ∈ J .

Proof.   Since Y  j  is compact for each   j ∈ J , Y  =

 j∈ J Y  j  is compact. By assump-

tion (ii) and following the same argument as in the proof of [ 20, Theorem 1],

for each i ∈ I , there exists an u.s.c. multimap ϕi : Y   X i with nonempty closed

convex values such that ϕi( y ) ⊂ Gi( y ) for all  y ∈ Y . Let ϕ : Y   X  defined by 

ϕ( y )=

i∈I ϕi( y ) for all y ∈ Y , then ϕ is u.s.c. with nonempty convex compact

values. Define a multimap  F  :  X  Y   by  F (x ) =

 j∈ J F  j (x ) for all x ∈ X , then

F  : X  Y  is also an u.s.c. multimap with nonempty closed acyclic values.

Define a multimap W  : X ×Y   X ×Y  by  W (x, y )= (ϕ( y ) , F (x )) for all x ∈

 X  and for all  y ∈ Y . It is easy to see that  W  is a compact u.s.c. multimap with

nonempty closed acyclic values. It follows from [17, Theorem 7] that there exists

Page 8: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 8/18

302 Coincidence theorems with applications

(x, ¯ y ) ∈ X ×Y  such that x ∈ ϕ( ¯ y ) and  ¯ y ∈ F (x ). Therefore,  x i ∈ Gi( ¯ y ) and   ¯ y  j  ∈

F  j (x ) for each i ∈ I  and   j ∈ J .  

Remark 3.10.  In Theorem 3.5, if  F  j  is an u.s.c. multimap with nonempty closedconvex values for each   j ∈ J , then J  may be any index set.

Let  I  be any index set and, for each  i ∈ I , let  {U i}i∈I  be a family of locally 

convex t.v.s. For each i ∈ I , let X i  be a nonempty convex subset in t.v.s.  Ei   for

each i ∈ I . Let X =

i∈I  X i, X i =

 j∈I, j=i X  j  and we write X = X i × X i. For each

x ∈ X , x i ∈ X i denotes the ith coordinate and x i ∈ X i the projection of x  onto X i,

and we also write x = (x i , x i).

Theorem  3.11.   Let  I  be a finite index set and let  {U i}i∈I  be a family of locally 

convex t.v.s. For each i∈

I  , let 

 X i be a nonempty compact convex subset of 

 U i and 

let F i : X i  X i and Gi : X i  X i be multimaps satisfying the following conditions:

(i) F i is an u.s.c. multimap with nonempty closed acyclic values;

(ii) X i ={int X i G−

i  (x i) : x i ∈ X i} and  Gi(x i) is convex for all  x i ∈ X i.

Then there exist  x = (x i)i∈I  ∈ X   and  u = (ui)i∈I  ∈ X   such that  x i  ∈ F i(ui)  and 

ui ∈Gi(x i) for all  i ∈ I .

Proof.   Since X i ={int X i G−

i  (x i) : x i ∈ X i}, by [12, Proposition 1] and [21, The-

orem 1], Gi has a continuous selection g i : X i → X i.

Define multimaps P i : X  X i and P  : X  X  by P i(x )= F i( g i(x i)) and P (x )=i∈I P i(x ) for all x = (x i)i∈I  ∈ X , then P i  is an u.s.c. multimap with nonempty 

closed acyclic values for all i∈ I . Therefore, P  : X  X  is also an u.s.c. multimap

with nonempty closed acyclic values. Since  X   is a nonempty compact convex 

subset in a locally convex t.v.s. E =

i∈I Ei, it follows from [17, Theorem 7] that

there exists  x = (x i)i∈I  ∈  X   such that  x ∈ P (x ) =

i∈I P i(x ) =

i∈I F i( g i(x i)),

that is, for all   i ∈ I ,  x i  ∈ F i( g i(x i)). For all   i ∈ I , let  ui = g i(x i), then  ui ∈ X i.

Hence,  ui = g i(x i)∈Gi(x i) and x i ∈ F i(ui) for all i ∈ I .  

Remarks 3.12.   (i) In Theorem 3.11, if  F i  is an u.s.c. multimap with nonempty 

closed convex values for each i ∈ I , then I  may be any index set.(ii) The proofs and conditions between Theorem 3.7 and  Theorem 3.11 are

somewhat diff erent.

4. Applications of coincidence theorem for families of multimaps

to equilibrium problems

In this section, we establish the existence theorem of equilibrium problem with

m families of players and 2m families of constraints on strategy sets which has

been introduced by Lin et al. [14].

Let I  be a finite index set and for each  k ∈ I   and   j  ∈ J k, let  X k j ,  Y k,  Y k , Y ,F k j , and Ak j  be the same as in introduction. For each  k ∈ I  and   j ∈ J k, let W k j  ∈

Rl k j

+  \{0}  and  W k  =

 j∈ J k W k j . For each  k ∈ I , let  Ak :  Y k Y k  be defined by 

Page 9: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 9/18

L.-J. Lin and H. I Chen 303

 Ak( y k) =

 j∈ J k Ak j ( y k) where  y k  = (x k j ) j∈ J k  ∈ Y k  and  y k = ( y l )l ∈I,l =k  ∈ Y k. Let

SW k : Y k ×Y k R be defined by 

SW k y k , y k

=

 j∈ J k

W k j ·F k j

x k j , y k

=

u : u=

 j∈ J k

W k j · z k j ,   for z k j  ∈ F k j

x k j , y k

.

(4.1)

For each k ∈ I , let M W k : Y k Y k be defined by 

 M W k y k= y k ∈ Ak

 y k

: inf SW k y k , y k

= inf SW k

 Ak

 y k , y k

 ,

 M ( y )=k∈I  M 

W k y 

k.

  (4.2)

Throughout the paper, we will use the above mentioned notations, unless

otherwise specified.

Theorem  4.1.   For each k ∈ I  and   j ∈ J k , let  X k j  be a nonempty compact convex 

subset of a locally convex t.v.s. Ek j  satisfying the following conditions:

(i) the multimap SW k is continuous with compact values;

(ii) Ak j   : Y k  X k j  is a continuous multimap with nonempty closed convex val-

ues;(iii) for all  y k ∈ Y k , M W k ( y k) is an acyclic set; and 

(iv) for each  k ∈ I  , let  Bk  : Y k   Y k be a multimap with convex values and 

Y k ={intY k B−1

k   ( y k) : y k ∈ Y k}.

Then there exist   ¯ y = ( ¯ y k)k∈I  ∈ Y  ,   ¯ y k  = (x k j ) j∈ J k ,  u = (uk)k∈I  ∈ Y  ,   ¯ y k  ∈ Ak(uk) ,

uk ∈ Bk( ¯ y k) , and  z k j  ∈ F k j (x k j , uk) such that 

z k j − z k j  ∈ − intRl k j

+   ,   (4.3)

 for all  z k j  ∈ F k j (x k j , uk

) , x k j  ∈ Ak j (uk

) and for all  k ∈ I  ,   j ∈ J k.Proof.   By assumptions (i), (ii), (iii), and following the same argument as in the

proof of  [13, Theorem 3.2], we show that  M W k : Y k Y k  is an u.s.c. multimap

with nonempty compact acyclic values. Since  Bk( y k) is convex for each  k ∈ I ,

 y k  ∈ Y k, and   Y k  ={intY k B−1

k   ( y k) :  y k ∈ Y k}, it follows from  Theorem 3.11

that there exist (uk)k∈I  ∈ Y  and ( ¯ y k)k∈I  ∈ Y   such that   ¯ y k  ∈ M W k (uk) and  uk ∈

Bk( ¯ y k) for all k ∈ I . Therefore, for each k ∈ I , ¯ y k ∈ Ak(uk), and minSW k ( ¯ y k , uk)=

min SW k ( Ak(uk) , uk) ≤ min SW k ( pk , uk) for all   pk  ∈ Ak(uk). Let   ¯ y k  = (x k j ) j∈ J k  ∈

 Ak(uk). Following the same argument as in the proof of [13, Theorem 3.1], then

we show  Theorem 4.1.  

Remark 4.2.   It is easy to see that the conclusion of  Theorem 4.1 remains true if 

condition (iii) is replaced by 

Page 10: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 10/18

304 Coincidence theorems with applications

(iii) for each k ∈ I  and for each fixed y k ∈ Y k , the multimap uk SW k (uk , y k)

is R+-quasiconvex.

As a simple consequence of  Theorem 4.1, we give a simple proof of the fol-lowing corollaries.

Corollary 4.3 ([14]).  For each k ∈ I  and   j ∈ J k , let  X k j  be a nonempty compact 

convex subset of a locally convex t.v.s. Ek j , let  Ak j   : Y k  X k j  be a multimap with

nonempty convex values such that for each x k j  ∈ X k j , A−1k j

(x k j ) is open in Y k and 

¯ Ak j   is an u.s.c. multimap. For each  k ∈ I  , let  Bk :  Y k   Y k be a multimap with

convex values satisfying the following conditions:

(i) Y k =

{intY k B−1

k   ( y k) : y k ∈ Y k} ;

(ii) SW k

: Y k×

Y k R

is a continuous multimap with compact values;(iii) for any  y k ∈ Y k , uk SW k (uk , y k) is R+-quasiconvex.

Then there exist   ¯ y = ( ¯ y k)k∈I  ∈ Y  ,  u = (uk)k∈I  ∈ Y  ,   ¯ y k  ∈   ¯ Ak(uk) ,   ¯ y k  = (x k j ) j∈ J k ,

uk ∈ Bk( ¯ y k) , and  z k j  ∈ F k j (x k j , uk) such that 

z k j − z k j  ∈ − intRl k j

+   ,   (4.4)

 for all  z k j  ∈ F k j (x k j , uk) , x k j  ∈  ¯ Ak j (uk) and for all  k ∈ I  ,   j ∈ J k.

Proof.   Since A

−1

k j (x k j ) is open in Y k

for each x k j ∈

 X k j , Ak j  is a l.s.c. multimap. Itis easy to see that  ¯ Ak j   is also a l.s.c. multimap. By assumption,   ¯ Ak j  is an u.s.c. mul-

timap. Therefore,   ¯ Ak j  is a continuous multimap with nonempty convex closed

values. Let   ¯ Ak =

 j∈ J k¯ Ak j . Applying assumption (iii) and following the same ar-

gument as in [13, Theorem 3.3], it is easy to see that  H W k ( y k) is an convex set

for all y k ∈ Y k, where

H W k y k= y k ∈   ¯ Ak

 y k

: inf SW k y k , y k

= inf SW k

 ¯ Ak

 y k , y k

.   (4.5)

By Theorem 4.1, there exist ¯ y =( ¯ y k)k∈I ∈Y , u=(uk)k∈I  ∈ Y  with ¯ y k = (x k j ) j∈ J k

∈   ¯ Ak(uk), and uk ∈ Bk( ¯ y k), z k j  ∈ F k j (x k j , uk) such that

z k j − z k j  ∈ − intRl k j

+   (4.6)

for all z k j  ∈ F k j (x k j , uk), x k j  ∈  ¯ Ak j (uk) and for all k ∈ I ,   j ∈ J k.  

Corollary 4.4.  For each k ∈ I  and   j ∈ J k , let  X k j  be a nonempty compact convex 

subset of a locally convex t.v.s. Ek j  satisfying the following conditions:

(i) SW k is a continuous multimap with compact values;

(ii) for each   j ∈ J k , Ak j   : Y k  X k j  is a continuous multimap with nonempty 

closed convex values;

(iii) for all  y k ∈ Y k , M W k ( y k) is an acyclic set.

Page 11: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 11/18

L.-J. Lin and H. I Chen 305

Then there exist   ¯ y = ( ¯ y k)k∈I  ∈ Y  ,  u = (uk)k∈I  ∈ Y  ,   ¯ y k  = (x k j ) j∈ J k  ∈ Ak(uk) , and 

z k j  ∈ F k j (x k j , uk) such that 

z k j − z k j  ∈ − intRl k j

+   ,   (4.7)

 for all  z k j  ∈ F k j (x k j , uk) , x k j  ∈  ¯ Ak j (uk) and for all  k ∈ I  ,   j ∈ J k.

Proof.   For each k ∈ I , let Bk : Y k Y k be defined by  Bk( y k) = Y k , then all the

conditions of  Theorem 4.1 are satisfied. Therefore, there exist   ¯ y = ( ¯ y k)k∈I  ∈ Y ,

u= (uk)k∈I  ∈ Y ,  ¯ y k = (x k j ) j∈ J k  ∈  ¯ Ak(uk), uk ∈ Bk( ¯ y k), and z k j  ∈ F k j (x k j , uk) such

that

z k j − z k j  ∈ − intRl k j

+   ,   (4.8)

for all z k j  ∈ F k j (x k j , uk), x k j  ∈  ¯ Ak j (uk) and for all k ∈ I ,   j ∈ J k.  

Theorem  4.5.   For each k ∈ I  and   j ∈ J k , let  X k j  be a nonempty compact convex 

subset of a locally convex t.v.s. Ek j  satisfying the following conditions:

(i) F k j  is a continuous multimap with nonempty closed values;

(ii) Ak j

  : Y k  X k j

 is a continuous multimap with nonempty closed values;

(iii)  for all  y k ∈ Y k , {x k j  ∈ Ak j ( y k) : F k j (x k j , y k)∩wMinF k j ( Ak j ( y k) , y k) =∅}

is an acyclic set;

(iv) for each k ∈ I  , Bk :  Y k Y k is a multimap with convex values and  Y k  ={intY k B−1

k   ( y k) : y k ∈ Y k}.

Then there exist   ¯ y = ( ¯ y k)k∈I  ∈ Y  ,  u = (uk)k∈I  ∈ Y  ,   ¯ y k = (x k j ) j∈ J k  ∈  ¯ Ak(uk) ,  uk ∈

Bk( ¯ y k) , and  z k j  ∈ F k j (x k j , uk) such that 

z k j − z k j  ∈ − intR

l k j

+   ,   (4.9)

 for all  z k j  ∈ F k j (x k j , uk) , x k j  ∈ Ak j (uk) and for all  k ∈ I  ,   j ∈ J k.

Proof.  Define a multimap M k j   : Y k  X k j  by  M k j ( y k) = {x k j  ∈ Ak j ( y k) : F k j (x k j ,

 y k)∩wMinF k j ( Ak j ( y k) , y k) =∅} for all  y k ∈ Y k and for each k ∈ I  and   j ∈ J k.

Since F k j  is a continuous multimap and X k j  is compact for each k ∈ I  and   j ∈

 J k, it follows from [2, Proposition 3, page 42] that F k j  is a compact continuous

multimap with closed values. By [2,  Proposition 2, page 41],  M k j   is a closed

compact u.s.c. multimap for each k ∈ I  and   j ∈ J k. Moreover, for each k ∈ I  and

 j ∈ J k , M k j  is an u.s.c. multimap with compact acyclic values. Define a multimap

 M k : Y k Y k   by  M k( y k) =

 j∈ J k M k j ( y k) for all   y k ∈ Y k and for each  k ∈ I .

Then M k is also an u.s.c. multimap with compact acyclic values for each  k ∈ I .

Page 12: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 12/18

306 Coincidence theorems with applications

By  Theorem 3.11,  there exist (uk)k∈I  ∈ Y   and ( ¯ y k)k∈I  ∈ Y   such that   ¯ y k  ∈

 M k(uk)and uk ∈ Bk( ¯ y k) for all k ∈ I . Let ¯ y k=(x k j ) j∈ J k ∈ M k(uk)=

 j∈ J k M k j (uk),

then  x k j  ∈ M k j (uk) for each  k ∈ I   and   j  ∈ J k. This implies, there exists  z k j  ∈

F k j (x k j , uk) such that

z k j − z k j  ∈ − intRl k j

+   ,   (4.10)

for all z k j  ∈ F k j (x k j , uk), x k j  ∈ Ak j (uk) and for all k ∈ I ,   j ∈ J k.  

Applying Theorem 4.5 and following the same argument as in the proof of 

Corollary 4.3, we have the following corollary.

Corollary

 4.6.  For each k∈

I  and   j∈

 J k , let  X k j  be a nonempty compact convex subset of a locally convex t.v.s. Ek j  satisfying the following conditions:

(i) F k j  is a continuous multimap with nonempty closed values;

(ii) Ak j   : Y k  X k j  is a multimap with nonempty convex values such that for 

each x k j  ∈ X k j , A−1k j

(x k j ) is open in Y k and   ¯ Ak j  is an u.s.c. multimap;

(iii) for all  y k ∈ Y k , {x k j  ∈ Ak j ( y k) : F k j (x k j , y k)∩wMinF k j ( Ak j ( y k) , y k) =∅}

is an acyclic set; and 

(iv) for each  k ∈ I  , let  Bk  : Y k   Y k be a multimap with convex values and 

Y k ={intY k B−1k   ( y k) : y k ∈ Y k}.

Then there exist   ¯ y = ( ¯ y k)k∈I  ∈ Y  ,  u = (uk)k∈I  ∈ Y  ,   ¯ y k = (x k j ) j∈ J k  ∈   ¯ Ak(uk) ,  uk ∈Bk( ¯ y k) , and  z k j  ∈ F k j (x k j , uk) such that 

z k j − z k j  ∈ − intRl k j

+   ,   (4.11)

 for all  z k j  ∈ F k j (x k j , uk) , x k j  ∈  ¯ Ak j (uk) and for all  k ∈ I  ,   j ∈ J k.

Corollary 4.7.   Let  I  be a finite index set. For each  k ∈ I  , let  X k  be a nonempty 

compact convex subset of a locally convex t.v.s. and let   f k :  X  → R be a continuous

 function, and for each x k

∈ X k

 , the function x k  →   f k(x k , x k

) is quasiconvex. Thenthere exist  x = (x k)k∈I  ∈ X  and   ¯ y = ( ¯ y k)k∈I  ∈ X  ,

 f k

x k , ¯ y k≥   f k

x k , ¯ y k

 ,   (4.12)

 for all  x k ∈ X k and for all  k ∈ I .

Proof.  For each  k ∈ I ,  J k  is a singleton. By assumption,  {x k  ∈ X k :   f k(x k , y k) =

Min f k( X k , y k)}  is a convex set. The conclusion of  Corollary 4.7 follows from

Corollary 4.6 by taking Ak(x k)= X k and  Bk(x k)= X k for all k ∈ I .  

Remark 4.8.  (i) The index  I  in Corollary 4.7 can be any index set.(ii) The conclusion between  Corollary 4.7   and Nash equilibrium theorem

[16] is somewhat diff erent.

Page 13: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 13/18

L.-J. Lin and H. I Chen 307

5. Abstract economics with two families of players

In this section, we consider the following abstract economics with two families

of players.Let I   and J  be any index sets and let  {U i}i∈I   and  {V  j} j∈ J  be families of lo-

cally convex t.v.s. For each   i ∈ I   and   j  ∈ J , let  X i   and  Y  j   be nonempty con-

vex subsets each in  U i   and  V  j , respectively. Two families of abstract economy 

Γ = ( X i , Ai , Bi , P i , Y  j , C  j , D j , Q j ), where   Ai , Bi : Y   :=

 j∈ J Y  j   X i, and   C  j , D j   :

 X  :=

i∈I  X i Y  j are constraint correspondences, P i : Y   X i and Q j : X  Y  jare preference correspondences. An equilibrium for  Γ is to find  x = (x i)i∈I  ∈ X 

and   ¯ y = ( ¯ y  j ) j∈ J  ∈ Y  such that for each  i ∈ I   and   j  ∈  J ,  x i ∈ Bi( ¯ y ),   ¯ y  j  ∈ D j (x ),

 Ai( ¯ y )∩P i( ¯ y )=∅, and C  j (x )∩Q j (x )=∅.

With the above notation, we have the following theorem.

Theorem 5.1.  Let Γ= ( X i , Ai , Bi , P i , Y  j , C  j , D j , Q j )i∈I, j∈ J  be two families of abstract 

economics satisfying the following conditions:

(i) for each i ∈ I  and  y ∈ Y  , co( Ai( y ))⊂ Bi( y ) and  Ai( y ) is nonempty;

(ii) for each   j ∈ J  and  x ∈ X  , co(C  j (x ))⊂D j (x ) and  C  j (x ) is nonempty;

(iii) for each i ∈ I  , Y  =

x i∈ X i intY [{(coP i)−(x i)∪ (Y \H i)}∩ A−i  (x i)] , where

H i = { y ∈ Y  : Ai( y )∩P i( y ) =∅} ;

(iv) for each j ∈ J  , X =

 y  j∈Y  j int X [{(coQ j )−( y  j )∪( X \ M  j )}∩C − j  ( y  j )] , where

 M  j  = {x ∈ X  : C  j (x )∩Q j (x ) =∅} ;

(v) for each i∈I  , j ∈ J  and each x = (x i)i∈I ∈ X  , y =( y  j ) j∈ J  ∈ Y  , x i∈co(P i( y )) ,and  y i ∈ coQ j (x ) ;

(vi) D j  is compact.

Then there exist  x = (x i)i∈I  ∈ X   and   ¯ y = ( ¯ y  j ) j∈ J  ∈ Y  such that  x i ∈ Bi( ¯ y ) ,   ¯ y  j  ∈

D j (x ) , Ai( ¯ y )∩P i( ¯ y )=∅ , and  C  j (x )∩Q j (x )=∅ for all  i ∈ I  and   j ∈ J .

Proof.  For each i ∈ I  and   j ∈ J , we define multivalued maps Si, T i : Y   X i by 

Si( y )=coP i( y )∩ Ai( y ) ,   for y ∈H i ,

 Ai( y ) ,   for y ∈ Y \H i ,

T i( y )=

coP i( y )∩Bi( y ) ,   for y ∈H i ,

Bi( y ) ,   for y ∈ Y \H i ,

(5.1)

and F  j , G j : X  Y i by 

F  j (x )=

coQ j (x )∩C  j (x ) ,   for x ∈ M  j ,

C  j (x ) ,   for x ∈ X \ M  j ,

G j (x )=

coQ j (x )∩D j (x ) ,   for x ∈ M  j ,

D j (x ) ,   for x ∈ X \ M  j .

(5.2)

Page 14: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 14/18

308 Coincidence theorems with applications

Then for each i ∈ I ,   j ∈ J , x ∈ X , y ∈ Y , co Si( y )⊆ T i( y ), Si( y ) is nonempty, and

coF  j (x )⊆G j (x ), F  j (x ) is nonempty.

For each i ∈ I ,   j ∈ J , x ∈ X , and  y ∈ Y , it is easy to see that

S−i

x i=

coP i−

x i∪

Y \H i

∩ A−i

x i

  (5.3)

and F − j  ( y  j )= [{(coQ j )−( y  j )∪ ( X \ M  j )}]∩C − j  ( y  j ). From (iii),

Y  =

x i∈ X i

intY 

coP i

−x i∪

Y \H i∩ A−

i

x i=

x i∈ X i

intY  S−i

x i

.   (5.4)

From (iv),

 X =

 y  j∈Y  j

int X 

coQ j− y  j∪ X \ X  j

∩C − j

 y  j=

 y  j∈Y  j

int X F − j y  j

.

(5.5)

Then all conditions of  Theorem 3.1 are satisfied. It follows from Theorem 3.1,

there exist  x = (x i)i∈I  ∈ X   and   ¯ y = ( ¯ y  j ) j∈ J  ∈ Y   such that  x i  ∈ T i( ¯ y ) and   ¯ y  j  ∈

G j (x ) for all   i ∈ I   and   j  ∈ J . By (v), we have  x i  ∈ Bi( ¯ y ),   ¯ y  j  ∈ D j (x ),  Ai( ¯ y )∩

P i( ¯ y )=∅, and C  j (x )∩Q j (x )=∅.  

AcknowledgmentThis research was supported by the National Science Council of Taiwan.

References

[1] Q. H. Ansari, A. Idzik, and J.-C. Yao, Coincidence and fixed point theorems with ap-

 plications, Topol. Methods Nonlinear Anal. 15 (2000), no. 1, 191–202.

[2] J.-P. Aubin and A. Cellina, Di ff erential Inclusions, Grundlehren der Mathematischen

Wissenschaften, vol. 264, Springer-Verlag, Berlin, 1984.

[3] F. E. Browder,  The fixed point theory of multi-valued mappings in topological vector 

spaces, Math. Ann. 177 (1968), 283–301.

[4] , Coincidence theorems, minimax theorems, and variational inequalities, Con-

ference in Modern Analysis and Probability (New Haven, Conn, 1982), Con-

temporary Mathematics, vol. 26, American Mathematical Society, Rhode Island,

1984, pp. 67–80.

[5] S. S. Chang, Coincidence theorems and variational inequalities for fuzzy mappings ,

Fuzzy Sets and Systems 61 (1994), no. 3, 359–368.

[6] G. Debreu,  A social equilibrium existence theorem, Proc. Nat. Acad. Sci. U.S.A.  38

(1952), 886–893.

[7] X. P. Ding, W. K. Kim, and K.-K. Tan, A selection theorem and its applications, Bull.

Austral. Math. Soc. 46 (1992), no. 2, 205–212.

[8] K. Fan, Applications of a theorem concerning sets with convex sections, Math. Ann. 163(1966), 189–203.

[9] A. Granas and F. C. Liu, Coincidences for set-valued maps and minimax inequalities,

J. Math. Pures Appl. (9) 65 (1986), no. 2, 119–148.

Page 15: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 15/18

L.-J. Lin and H. I Chen 309

[10] C. D. Horvath,  Contractibility and generalized convexity , J. Math. Anal. Appl.  156

(1991), no. 2, 341–357.

[11] H. M. Ko and K.-K. Tan, A coincidence theorem with applications to minimax inequal-

ities and fixed point theorems, Tamkang J. Math. 17 (1986), no. 2, 37–45.[12] L. J. Lin, Applications of a fixed point theorem in G-convex space, Nonlinear Anal. 46

(2001), no. 5, Ser. A: Theory Methods, 601–608.

[13] ,  On the systems of constrained competitive equilibrium theorems, Nonlinear

Anal. 47 (2001), 637–648.

[14] L. J. Lin, S. F. Cheng, X. Y. Liu, and Q. H. Ansari,  On the constrained equilibrium

 problems with finite families of players, to appear in Nonlinear Anal.

[15] D. T. Lu. c and C. Vargas, A saddlepoint theorem for set-valued maps, Nonlinear Anal.

18 (1992), no. 1, 1–7.

[16] W. S. Massey,   Singular Homology Theory , Graduate Texts in Mathematics, vol. 70,

Springer-Verlag, New York, 1980.

[17] S. Park, Some coincidence theorems on acyclic multifunctions and applications to KKM 

theory , Fixed Point Theory and Applications (Halifax, NS, 1991) (K. K. Tan, ed.),

World Scientific Publishing, New Jersey, 1992, pp. 248–277.

[18] S. Park and H. Kim, Coincidence theorems on a product of generalized convex spaces

and applications to equilibria, J. Korean Math. Soc. 36 (1999), no. 4, 813–828.

[19] J. von Neumann,  Uber ein okonomisches Gleichungssystem und eine Verallgemeinerung 

des Brouwerschen Fixpunktsatzes, Ergebnisse eines Math. Kolloquiums  8  (1937),

73–83 (German).

[20] X. Wu, A new fixed point theorem and its applications, Proc. Amer. Math. Soc.  125

(1997), no. 6, 1779–1783.

[21] X. Wu and S. Shen, A further generalization of Yannelis-Prabhakar’s continuous selec-tion theorem and its applications, J. Math. Anal. Appl. 197 (1996), no. 1, 61–74.

[22] Z. T. Yu and L. J. Lin, Continuous selection and fixed point theorems, Nonlinear Anal.

52 (2003), no. 2, 445–455.

Lai-Jiu Lin: Department of Mathematics, National Changhua University of Education,

Changhua 50058, Taiwan

E-mail address: [email protected] 

Hsin I Chen: Department of Mathematics, National Changhua University of Education,

Changhua 50058, Taiwan

E-mail address:  [email protected]

Page 16: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 16/18

Hindawi Publishing Corporation

410 Park Avenue, 15th Floor, #287 pmb, New York, NY 10022, USA

http://www.hindawi.com/journals/denm/

Differential Equations& Nonlinear Mechanics

Website: http://www.hindawi.com/journals/denm/

Aims and Scope

Differential equations play a central role in describing natural phenomenaas well as the complex processes that arise from science and technology.Differential Equations & Nonlinear Mechanics (DENM) will provide aforum for the modeling and analysis of nonlinear phenomena. One of theprincipal aims of the journal is to promote cross-fertilization between thevarious subdisciplines of the sciences: physics, chemistry, and biology, as

well as various branches of engineering and the medical sciences.Special efforts will be made to process the papers in a speedy and fairfashion to simultaneously ensure quality and timely publication.

DENM will publish original research papers that are devoted to modeling,analysis, and computational techniques. In addition to original full-lengthpapers, DENM will also publish authoritative and informative reviewarticles devoted to various aspects of ordinary and partial differentialequations and their applications to sciences, engineering, and medicine.

Open Access SupportThe Open Access movement is a relatively recent development inacademic publishing. It proposes a new business model for academicpublishing that enables immediate, worldwide, barrier-free, open accessto the full text of research articles for the best interests of the scientificcommunity. All interested readers can read, download, and/or print anyOpen Access articles without requiring a subscription to the journal inwhich these articles are published.

In this Open Access model, the publication cost should be covered by the

author’s institution or research funds. These Open Access charges replacesubscription charges and allow the publishers to give the publishedmaterial away for free to all interested online visitors.

Instructions for Authors

Original articles are invited and should be submitted through theDENM manuscript tracking system at http://www.mstracking.com/ denm/. Only pdf files are accepted. If, for some reason, submissionthrough the manuscript tracking system is not possible, you can [email protected].

Associate EditorsN. Bellomo Italy  J. L. Bona USA J. R. Cannon USA

S.-N. Chow USAB. S. Dandapat IndiaE. DiBenedetto USAR. Finn USAR. L. Fosdick USA J. FrehseGermany 

A. FriedmanUSAR. Grimshaw UK  J. Malek Czech Republic J. T. OdenUSAR. Quintanilla SpainK. R. Rajagopal

USAG. SaccomandiItaly Y. Shibata JapanIvar Stakgold USASwaroop DarbhaUSAA. Tani JapanS. Turek

Germany A. Wineman USA

Editor-in-Chief K. VajraveluUSA

 An Open Access Journal 

Page 17: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 17/18

Contemporary Mathematics and Its Applications

“Contemporary Mathematics and Its Applications” is a book series of monographs, textbooks,

and edited volumes in all areas of pure and applied mathematics. Authors and/or editors should

send their proposals to the Series Editors directly. For general information about the series,

please contact [email protected].

For more information and online orders please visit http://www.hindawi.com/books/cmia/volume-1

For any inquires on how to order this title please contact [email protected]

CMIA Book Series, Volume 1, ISBN: 977-5945-19-4

DISCRETE OSCILLATION THEORY

Ravi P. Agarwal, Martin Bohner, Said R. Grace, and Donal O’Regan

T

his book is devoted to a rapidly developing

 branch of the qualitative theory of difference

equations with or without delays. It presents the

theory of oscillation of difference equations, exhibitingclassical as well as very recent results in that area. While

there are several books on difference equations and also

on oscillation theory for ordinary differential equations,

there is until now no book devoted solely to oscillation

theory for difference equations. This book is filling the

gap, and it can easily be used as an encyclopedia and

reference tool for discrete oscillation theory.

In nine chapters, the book covers a wide range of

subjects, including oscillation theory for second-order linear difference equations, systems of difference

equations, half-linear difference equations, nonlinear

difference equations, neutral difference equations, delay

difference equations, and differential equations with

piecewise constant arguments. This book summarizes

almost 300 recent research papers and hence covers

all aspects of discrete oscillation theory that have been

discussed in recent journal articles. The presented

theory is illustrated with 121 examples throughout the book. Each chapter concludes with a section that

is devoted to notes and bibliographical and historical remarks.

The book is addressed to a wide audience of specialists such as mathematicians, engineers, biologists,

and physicists. Besides serving as a reference tool for researchers in difference equations, this book can

also be easily used as a textbook for undergraduate or graduate classes. It is written at a level easy to

understand for college students who have had courses in calculus.

Page 18: Lin, Chen, 2003

8/13/2019 Lin, Chen, 2003

http://slidepdf.com/reader/full/lin-chen-2003 18/18

Editorial Board

Topics: The conference will cover all the major 

research areas in analysis and dynamics with focuses on

applications, modeling and computations.

Format: There will be one-hour plenary talks, and 30-

minute special session and contributed session talks

The conference will be diversified in subject so as to attract

all researchers in relevant fields; while it is concentrated

enough in each chosen subfield so as to sustain a largenumber of strong special sessions.

Deadlines: March 1, 2006, for registration and abstracts.

 A proceedings will be published as a special edition of 

DCDS. All papers will be refereed.

Funding from various sources including NSF may beavailable to qualified graduate students and youngresearchers.

Detailed program and updates will be posted athttp://aimSciences.orgFor updated information, contact

Alain Miranville, Chair of Organizing Committee (France)

Tel: (33) (0)5 49 49 68 91, Fax: (33) (0)5 49 49 69 01

 [email protected] 

Xin Lu, Conference Coordinator (USA)Tel: 910-962-3673, Fax: [email protected]

2006

6th AIMS INTERNATIONAL CONFERENCE ON

 Dynamical Systems, DifferentialEquations Applications

Sunday-Wednesday June 25 - 28

Alberto Bressan(USA)

Odo Diekmann(Netherlands)

Pierre-Louis Lions(France)

Alexander Mielke(Germany)

Masayasu Mimura(Japan)

Peter Polacik(USA)

Patrizia Pucci(Italy)

Björn Sandstede(UK)

Lan Wen(China)

   I   N   V   I   T   E   D   P

   L   E   N   A   R   Y

   S   P   E   A   K   E   R   S

P r o c e e d i n g s

F u n d i n g

University of Poitiers

Poitiers, France

Organized by:

  American Institute of Mathematical Sciences (AIMS)

  Department of Mathematics, University of Poitiers.

Organizing Committee:Alain Miranville (Chair)Laurence CherfilsHassan EmamiradMorgan PierrePhilippe RogeonArnaud Rougirel

A I M S

&

Scientific Committee:

Shouchuan Hu (Chair)Antonio AmbrosettiJerry BonaMichel ChipotTom HouTatsien LiCarlangelo LiveraniHiroshi MatanoAlain MiranvilleWei-Ming NiJuergen SprekelsRoger Temam

   C   O   M   M   I   T   T   E   E   S

P r o g r a m a n d T o p i c s

C o n t a c t I n f o r m a t i o n