Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

Embed Size (px)

Citation preview

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    1/20

    ELSEVIER Solar Energy Ma terials and So lar Cells 43 (199 6) 203-222~ S d w ~

    Lim iting ef f ic iencies for pho tovoltaic energyconv ers ion in m ultigap system s

    A n t o n i o M a r t i * , G e r a r d o L . A r a f i j oInstituto de Energ(a Solar, Universidad Politdcnica de Madrid, E.T.S.L de Telecoraunicaci6n, CiudadUniversitaria, 28040 Madrid, Spain

    Received 9 September 1995; revised 1 February 1996; accepted 25 M arch 1996

    A b s t r a c t

    M u l t i g a p s y s t e m s a r e b e t t e r m a t c h e d t o t h e s u n ' s s p e c t r u m t h a n s i n g l e g a p s y s t e m s a n d a r e ,the re fo re , m ore e f f i c ien t a s pho tovo l ta ic conver te r s . T h is paper r ev iews the d i f f e ren t thermody-namic a p p r o a c h e s u s e d i n t h e p a s t f o r c o m p u t i n g t h e l i m i t i n g e f fi c i e n c y fo r t h e c o n v e r s i o n o f s o l a re n e r g y i n t o w o r k . W i t h i n t h i s t h e r m o d y n a m i c c o n t e x t , t h e l i m i t r a n g e s f r o m 8 5 . 4 % t o 9 5 . 0 %d e p e n d i n g o n t h e a s s u m p t i o n s m a d e . D e t a i l e d b a l a n c e t h e o r y p r o v i d e s a m o r e a c c u r a t e m o d e l o fthe pho tov o l ta ic conver te r . I t leads to a l im i t o f 86 . 8% fo r a s ys tem wi th an in f in i t e num ber o fce l l s , a s a l r ead y po in ted ou t by o ther au thor s . In th i s work , how ever , we us e the conc ep ts o f anglea n d energy r es t r i c t ion to em phas ize tha t th i s l im i t i s independen t o f the l igh t concen t r a t ion .S y s t e m s w i t h a finite n u m b e r o f c e i l s a r e a l s o s t u d i e d a n d t h e i r li m i t i n g e f fi c i e n c y is f o u n d t o b eh i g h e r t h a n p r e v i o u s l y r e p o r t e d . D a t a f o r A M 1 . 5 D i r e c t s p e c t r u m , n e v e r c o m p u t e d b e f o r e , a r ei n c l u d e d .Keywords: Photovo ltaics; Mu ltigap; Limiting efficiency; Thermod ynam ics; Solar cells

    1 . I n t r o d u c t i o n

    A t o p i c o f i n te r e s t i n p h o t o v o l t a i c s is t he e l u c i d a t i o n o f th e m a x i m u m e f f i c i e n c y o ft h e p h o t o v o l t a i c c o n v e r s i o n p r o c e s s e s . A r e v i e w o f t h e l i te r a tu r e s h o w s t h a t th e d i f f e r e n ts t u d i e s c a n b e g r o u p e d i n t w o m a i n c a t e g o r i e s . I n t h e f i r s t , a u t h o r s s t u d i e d t h e l i m i t i n ge f f i c i e n c y o f single g a p s o l a r c e ll s . T h e p r e s e n t a u t h o r s d e v o t e d a s t u d y t o t h is s u b j e c t[1 ]. I n t h e s e c o n d c a t e g o r y , t h e l i m i t i n g e f fi c i e n c y o f m u l t i g a p s y s t e m s w a s u s e d a s a

    * Corresponding author. Email: [email protected]/96/$15.00 Copyright 1996 Elsevier Science B.V . All r ights reserved.PH S 0 9 2 7 - 0 2 4 8 ( 9 6 ) 0 0 0 1 5 - 3

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    2/20

    204 A. Mar ff , G .L Araf i jo / Solar Energy Mater ia l s and Solar Ce ll s 43 (1996) 203 -22 2

    w a y t o a p p r o a c h t h e a b s o l u t e l i m i t o f p h o t o v o l t a ic e n e r g y c o n v e r s i o n ( P V E C ) a n d t h is i st h e c a t e g o r y t o w h i c h t h is p a p e r b e lo n g s .

    A l t h o u g h t h e q u e s t i o n o f t h e li m i ti n g e f f i c i e n c y o f P V E C i s o n e t h a t o u g h t to h a v e aun iqu e an sw er , d i f f e ren t figures app ear in the l i t e r a tu re a s w i l l be de ta i l ed l a te r .S o m e t i m e s , a u t h o r s m a d e d i f f e r e n t a s s u m p t i o n s a n d u s e d d i f f e r e n t a p p r o a c h e s l e a d i n gt h e m t o d i f f e r e n t r e su l ts . M o s t o f t h e t i m e , t h e n e w f i g u r e a r o s e f r o m t h e c o n s i d e r a t i o no f a n e w a s p e c t p r e v i o u s l y o v e r l o o k e d w h i c h p r o g r e s s i v e l y c o m p l e t e d o u r u n d e r st a n d i n go f t h e p h o t o v o l t a i c p r o c e s se s .

    T w o c o m p l e m e n t a r y a p p r o a c h e s h a v e b e e n u s e d i n t h e p a s t t o a n s w e r t h e q u e s t io n o fth e l imiting efficiency. The f ir s t, b a s e d o n t h e r m o d y n a m i c s , is i n d e p e n d e n t o f t h e n a t u r eo f t h e c o n v e r t e r a n d i s b r i e f l y r e v i e w e d i n t h is p a p e r ~ n t h e f ir s t s e c t io n . T h e o t h e r,desc r ibed in S ec t ion 2 , i s based on detailed balance a rgum ent s . I t u ses a m ore r e f inedm o de l tha t m akes som e assum pt ions abo u t the na tu re o f the conve r t e r : t he so la r ce l l. InS e c t i o n 3 , w e m a k e s o m e r e m a r k s a b o u t t h e d i f f e r e n c e s , c o n c e r n i n g t h e l i m i t i n ge f f i c i e n c y , b e t w e e n a s y s t e m w i t h a n infinite n u m b e r o f c e l ls a n d a s y s t e m w i t h a f in i ten u m b e r o f c e l ls . T h e l im i t in g e f f i c i e n c y f o r t h e f in i te s y s t e m i s h i g h e r t h a n p r e v i o u s l yr e p o r t e d .

    2 . A br ie f thermo dynam ic rev iewThermodynamics i s t h e n a t u r a l f r a m e w o r k f o r t h e s t u d y o f t h e u p p e r b o u n d s o f t h e

    e f f i c i e n c y o f th o s e p r o c e s s e s i n v o l v i n g e n e r g y c o n v e r s i o n : h e a t i n to m e c h a n i c a l w o r k ,l igh t i n to hea t , hea t i n to chem ica l ene rgy , e t c . , and in the case w e a re now dea l ing w i th ,light in to electrical work. B y u s i n g thermodynamics , w e c la im the re i s a un ique andd e f i n i t i v e a n s w e r t o t h e p r o b l e m b e i n g a n a l y z e d . H o w e v e r , w h e n r e v i e w i n g t h e l i t e r a -t u r e, s o m e c o n f u s i o n a p p e a r s b e c a u s e d i f f e r e n t f i g u r e s f o r t h e l i m i ti n g e f f i c i e n c y o fP V E C a r e r e p o r t e d , a l l o b t a i n e d b y u s i n g thermodynamic c o n c e p t s .

    A n a l y s e s i n v o l v i n g thermodynamics r ep resen t an a t t em pt to ob ta in a r e su l t t ha t i sindepender~ t o f the na tu re o f the con ver t e r . T o un der s t and the d i f f e ren t hyp o these s anddef in i t ions tha t l ead to d i f f e ren t r e su l t s , w e f ind the genera l desc r ip t ion g iven byL a n d s b e r g o f a n e n e r g y c o n v e r t e r in [ 2 ] v e r y u s e f u l. I n d e e d , m o s t o f th e d i s c u s s i o n a n dexp lana t ion tha t fo l low s has a r i sen f rom R ef . [3 ] .

    L a n d s b e r g ' s d e s c r i p t io n o f a g e n e r a l c o n v e r t e r is g r a p h i c a l ly s k e t c h e d i n F i g . 1 . T h ec o n v e r t e r , a s su m e d t o b e a t a te m p e r a t u r e Tc , r e c e i v e s p h o t o n s c h a r a c t e r iz e d b y e n e r g yand en t ropy f luxes E ~ and S~ respec t ive ly f rom a n a rb i t r a ry source . In the genera l case ,i t a l s o e m i ts p h o t o n s c h a r a c t e r i z e d b y a n e n e r g y a n d e n t r o p y f lu x e s , E ~ a n d S ~ , to w a r d sa s ink . T he general c o n v e r t e r p r o d u c e s h e a t ( Q ' ) a n d w o r k ( W ' ) and , i f t he p rocess i sno t s t eady-S ta t e , has in t e rna l ene rgy and en t ropy va ry in g a t a r a te E ~ and S ~ ,r e s p e c t i v e l y . H o w e v e r , f r o m n o w o n , w e w i l l a s s u m e a l l p r o c e s s e s a r e s t e a d y - s t a t e s otha t E ~ and S ~ a re ze ro .

    I f t hese in t e rchange p rocesses occur i r r eve r s ib ly , w e use S g to r ep resen t the co r re -s p o n d i n g t o t a l ra t e o f e n t r o p y i n c r ea s e . H o w e v e r , w e s h a ll a s s u m e f o r t h e m o m e n t t h a tt h e i n t e r c h a n g e p r o c e s s e s o c c u r r e v e r s i b l y s o t h a t t h e a d d i t i o n a l e n t r o p y d u e t oi r revers ib i l i t ies , S 'g , wi l l be ta ken as ze ro .

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    3/20

    A. Mar t[ , G .L Araf i jo / Solar Energy Mater ia l s and So lar Ce ll s 43 (1996) 20 3-2 22 205

    Q ' W '

    E ~ EoSs ~ S ' oF i g . I . S k e t c h o f a g e n e r a l e n e r g y c o n v e r t e r a s d e s c r i b e d b y L a n d s b e r g [ 2] .

    Th e c o mp u t a t i o n o f t h e l i m i t i n g e f f i c i e n c i e s i s s i mp l i f i e d b y a s s u mi n g t h e s u n i s ablack body s o u r c e o f p h o t o n s a t a t e m p e r a t u r e Ts c l o s e t o 6 0 0 0 K. No t h i n g e s s e n t i a l w i l lb e l o s t i n t h i s p r e l i mi n a r y d i s c u s s i o n i f , f o r s i mp l i c i t y , we a l s o a s s u me t h a t t h e s u nc o m p l e t e l y s u r ro u n d s t h e c o n v e r te r . H e n c e , t h e e n e r g y a n d e n t r o p y f l u x e s th e c o n v e r t e rrece ives can be wr i t t en a s [2 ] :

    4= - 5 ( )T h e a s s u m p t i o n t h a t t h e s u n c o m p l e t e l y s u r r o u n d s t h e c o n v e r t e r i s e q u i v a l e n t t o t h e

    s o l a r c e l l b e i n g i l l u mi n a t e d a t th e m a x i m u m p o s s i b l e l i g h t c o n c e n t r a t i o n w i t h a n i d e a lr e f l e c t o r p l a c e d a t i ts r e a r s id e . Th i s m a x i m u m c o n c e n t r a t io n i s g i v e n [ 4 ] b yn 2

    g m a x s in20s (2)wh e r e 0 s is t h e a n g l e s u b t e n d e d b y t h e s o l a r d is c a t t h e Ea r t h a n d n i s th e r e f r a c t i o ni n d e x o f t h e me d i u m t h a t s u r r o u n d s t h e c o n v e r t e r . As i t w i l l b e s h o w n l a t e r i n th e n e x ts e c ti o n s , t h e m a x i m u m e f f i c i e n c y i s in d e p e n d e n t o f t h e c o n c e n tr a ti o n i f w e a l lo wr e s t r i c t i o n o f t h e angle w i t h w h i c h p h o t o n s a r e emitted f r o m t h e c o n v e r t er . T h e r e f o r e ,t h e a s s u m p t i o n t h a t t h e s u n c o m p l e t e l y s u r r o u n d s t h e c o n v e r t e r b e c o m e s u n n e c e s s a r y i nt h e e n d . Ho we v e r , we s h a l l r e t a i n t h i s a s s u mp t i o n t o s i mp l i f y t h e p r e l i mi n a r y d i s c u s s i o n .O n e o f t h e c a u s e s o f d i v e r g e n c e i n t h e c o m p u t a t i o n s o f t he l i m i t in g e f f ic i e n c ie s f r o mb a s i c t h e r m o d y n a m i c a p p r o a c h e s c o m e s f r o m t h e d i f f e r e n t w o r k i n g a s s u m p t i o n s a b o u tt h e v a l u e o f th e e n e r g y a n d e n t r o p y f l u x e s e n t e ri n g t h e s i n k ( E 0 a n d S o ) . F o rs i mp l i f i c a t i o n , we wi l l a s s u me t h a t t h e p h o t o n e n e r g y a n d e n t r o p y f l u x e s i n t o t h e s i n kc a n b e c h a r a c t e r i z e d a s t h e o n e s t h a t e m e r g e f r o m a b l a c k b o d y a t a n e f f e c t i v et e m p e r a t u r e TO T h e r e f o r e ,

    4S o = -~ , , - r8 , ( 3 )s i n c e t h e c o n v e r t e r i s a s s u me d a l s o t o e mi t r a d i a t i o n i n a l l d i r e c t i o n s .

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    4/20

    206 A. Mar tf , G .L . Ara~jo / Solar Energy Ma ter ia l s and Solar Ce ll s 43 (1996) 20 3-2 22

    T w o b a l a n c e e q u a t i o n s c o r r e s p o n d i n g t o t h e e n e r g y a n d e n t r o p y c o n s e r v a t i o n c a nn o w b e w r i t t e n :

    E ' s = Q ' + W ' + E 'o ,T c S ' = Q ' + T c S ' , ( 4 )

    a n d , h e n c e ,Q ' = r c S ' - T c S 'o ,w ' = E l - r c s l + r c s ; - E b . ( 5 )

    T w o m a i n d e f i n i t i o n s f o r e f f i c i e n c y n o w b e c o m e a v a i la b le :W '

    ~71 = E l _ E~) (6 a )W 'n 2 = ( 6 b )

    T h e f i r st o n e c o r r e s p o n d s t o t h e r a t io b e t w e e n t h e p o w e r t h e c o n v e r t e r p r o d u c e s a sw o r k a n d t h e p o w e r i t c o n s u m e s . N o t i c e t h a t t h e e n e r g y i t c o n s u m e s i s t he d i f f e r enceb e t w e e n t h e p o w e r r e c e i v e d f r o m t h e s u n a n d t h e p o w e r e m i t t e d . T h e s e c o n d d e f i n i t i o ni s t h e d e f i n i t io n o f e f f i c i e n c y c o m m o n l y u s e d i n p h o t o v o l t a ic s : t h e r a ti o b e t w e e n t h ep o w e r e x t r a c t e d f r o m t h e c e l l a n d t h e p o w e r r e c e i v e d f r o m t h e s u n . T h i s d i f f e r e n c e i nd e f i n i ti o n s h a s b e e n t h e s o u r c e o f s o m e c o n f u s i o n [5 ].

    W i th t he f i r s t de f in i t i on , Eq . 6a , t he e f f i c i enc y inc reases w i th TO ( see F ig . 2 ) . Them a x i m u m e f f i c ie n c y is , t h e re f o re , a c h i e v e d w h e n To = Ts (poin t A in Fig . 2) s ince , a th i g h e r te m p e r a t u r e s , W ' b e c o m e s n e g a t iv e w h i c h m e a n s t h a t t h e s u r ro u n d i n g s a re d o i n gw o r k o n t h e s y s t e m i n s t e a d o f t h e v i c e v e r s a . A t t h i s p o i n t , t h e m a x i m u m e f f i c i e n c y

    r /

    Cl

    / ! IPTo

    Fig. 2. Qualitative behaviour of the power W', heat Q' and the efficiencies defined by Eq. (6) as a function ofthe emission temperature To. Curve labelled as ~lt)v corresponds also to definition 2 but, following [3], doesnot assume the photovolta lc process as reversible. See Table 1 for identification of the dot labels.

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    5/20

    A. Mart[, G.L Araftjo / Solar Energy Materials and Solar Cells 43 (1996) 203 -222 207o b t a i n e d i s t h e s a m e a s th e e f f i c i e n c y o f a C a m o t e n g i n e [ 6] o p e r a t i n g b e t w e e n h e a tr e s e r v o i r s a t t h e s u n ' s a n d E a r t h ' s t e m p e r a t u r e :

    T c~71,MAX = 1 T s " ( 7 )

    N o t i c e , h o w e v e r , t h a t a l t h o u g h t h e e f f i c i e n c y is m a x i m u m w h e n To = T s , t h e nW ' = 0 w h i c h i s o f n o p r a c t i c a l u s e . I n t h is c o n t e x t , d e f i n i t i o n 2 i n ( 6 ) is p r e f e r r e d .S u b s t i t u t i n g ( 5 ) a n d ( 1 ) in t o E q . ( 6 b ) , th e f o l l o w i n g e q u a t i o n i s o b t a i n e d :44 Tc + - 1 ( 8 )

    172 = 1 - - "3" - ~ " ~ 3 T O t ~ ' s ] "E q . ( 8 ) r e a c h e s i ts m a x i m u m f o r T o = Tc g i v i n g th e n :

    ! [ 5 / 4T c + ( 9 )= 3 T s l '

    w h i c h c o r r e s p o n d s t o th e L a n d s b e r g l i m i t i n g e f f ic i e n c y [ 2] , p o i n t B i n F i g . 2 . N o t i c e t h a tw i t h d e f i n i t i o n 6b , m a x i m i z i n g t h e e f f i c i e n c y i s e q u i v a l e n t t o m a x i m i z i n g W ' , H e n c e ,w h e n T O --- Tc , W ' a l so i s m a x i m u m . H e n r y [ 7 ] a s s u m e d t h a t t h e m a x i m u m e f f ic i e n c yw a s f o r T o = 0 s i n c e , i n t u i t i v e l y , f o r t h i s v a l u e n o e m i s s i o n l o s s e s o c c u r . H e f o u n d t h e nt h a t :

    4 T cn ' 2, M A X = 1 - - - - - - , ( 1 0 )3 T s

    w h i c h c o r r e s p o n d s t o p o i n t C i n F i g . 2 .H o w e v e r , w h e n e n t r o p y f l u x c o n s e r v a t i o n i s t a k e n in t o a c c o u n t a s i n L a n d s b e r g ' s

    a p p r o a c h d e s c r i b e d a b o v e , i t i s f o u n d t h a t f o r T o = Tc , a l t h o u g h s o m e e m i s s i o n l o s s e se x i s t, t h e s e lo s s e s a r e c o m p e n s a t e d b e c a u s e t h e Q ' l o s s e s a r e l o w e r t h a n i n th e c a s e inw h i c h TO = 0 . T a b l e 1 i n c l u d e s t h e m a i n r e s u l t s t h a t h a v e b e e n d e s c r i b e d a b o v e . N o t i c e ,h o w e v e r , t h a t in th i s d i s c u s s io n , s t i l l a l l t h e p r o c e s s e s h a v e b e e n a s s u m e d r e v e r s i b le . T h ei r r e v e r s i b l e n a t u r e o f p h o t o v o l t a i c e n e r g y c o n v e r s i o n h a s b e e n p o i n t e d o u t b y s e v e r a l

    T a b l e 1Sum mary of the ma in re su l t s about the l im i t ing e f f i c i ency of the p hotovol t a i c ene rgy convers ion cons ide r ingthe rmodynamic approaches . Resu lt s re fe r t o the sun assum ed as a b l ack body a t T = 6000K and Ear th a tT = 300K. Dot s re fe r t o F ig . 2Au thor Ref. Def. S 'g TO Max. e f f i c i ency Resu l tCarnot DO T A [6] "qj 0 T 1 - r~ 95.0%H enr y DO T C [7] "q2 0 0 1 - 4_ ~ 93.3%3 T s

    4 T ~ . ~ I T ~ 4Land sberg DO T B [2] "q2 0 TC 1 - ~ r , + 7( r , ) 93.3%A. De Vos and Pauwels DO T D [3] "q2 ( I -1) TDV = 2540K (1 -2) 85 .4%

    s'~ 2 4 ~ - ' ~ 'o s r ~ + ~ ] ( I - 1 )r _ ~ r 4n n v = (1 - r o )[ 1 - ( ~ ) ] ( 1 -2 )

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    6/20

    208 A. MarE, G .L Araf i jo / Solar Energy Mater ia l s and Solar Ce l ls 43 (1996) 2 03- 222

    a u t h o r s [ 3 , 8 - 1 1 ] a n d a d e t a i l e d d i s c u s s io n i s o u t s id e t h e s c o p e o f t h is p a p e r . I n a n y c a s e ,t h e c o m p u t a t i o n o f t h e e n t r o p y g e n e r a t i o n r a t e S 'g r e q u i r e s a d d i t i o n a l h y p o t h e s e s , s o m eo f t h e m b a s e d o n a s s u mp t i o n s f r o m t h e d e t a i l e d b a l a n c e t h e o r y . T h e y wi l l l e a d u s t o t h ecurv e l abe l l ed a s ~qDv in F ig . 2 a s w i l l d i scussed in the nex t sec t ion .

    3 . The deta i l ed ba la nce a ppro a ch fo r a m ul t ig a p sy s temP r e v i o u s r e s u l t s w e r e o b t a i n e d a s s u m i n g t h a t t h e e n t r o p y g e n e r a t i o n r a t e , S ' g , wa s

    z e r o . S i n c e n o a s s u mp t i o n wa s ma d e a b o u t t h e n a t u r e o f t h e c o n v e r t e r , t h i s h y p o t h e s i sa l l o w e d u s t o c o m p u t e a n u p p e r b o u n d f o r t h e e f f i c i e n c y . W e s h a l l n o w p r e s e n t ad i f f e r e n t a p p r o a c h .

    I f s o m e a p p r o p r i a te a s s u m p t i o n s a r e m a d e a b o u t t h e n a tu r e o f t h e c o n v e r t e r, t h e w o r kr a t e W ' c a n b e c o m p u t e d d i r e c t ly . I n o u r c a s e , t h e c o n v e r t e r w i l l b e a s y s t e m o f o n e o rm o r e s o l ar ce l l s a n d t h e f r a m e w o r k o f th e d e t a i l e d b a l a n c e t h e o r y [ 1 2 ,1 3 ] w i l l p r o v i d et h e n e c e s s a r y s e t o f a s s u mp t i o n s . T h i s wa s r e v i e we d i n d e t a i l i n o t h e r p a p e r s [ 1 , 1 4 ] a tt h e t i me t h a t th e l i mi t i n g e f f i c i e n c y o f a s y s t e m c o n s t i t u te d b y o n e c e l l wa s s t u di e d . F o rt h e c o n v e n i e n c e o f th e r e a d e r , we wi ll, b r i e f l y s u m m a r i z e h e r e t h e s e a s s u m p t i o n s a n d t h ec o n c l u s i o n s t h e y l e a d u s t o .

    The bas ic s t ruc tu re o f the so la r ce l l cons ide red i s i l lu s t r a ted in F ig . 3b . I t cons i s t s in as e m i c o n d u c t o r s l a b s a n d wi c h e d b e t w e e n s o m e r e g i o n s p + a n d n + a r b i t r a r il y t h in . T h ef o l l o wi n g a s s u mp t i o n s a r e ma d e r e g a r d i n g t h e o p e r a t i o n o f t h e c e l l :

    ( a ) On l y r a d i a t i v e r e c o mb i n a t i o n p r o c e s s e s t a k e p l a c e . Wh e n d e s c r i b i n g t h e r a d i a t i v eg e n e r a t i o n - r e c o m b i n a t i o n m e c h a n i s m s , p h o t o n a b s o r p t i o n a n d s p o n t a n e o u s a n d s t i m u -

    o l l

    p+ rl +

    ( a ) ( b )Fig. 3. (a) Elementary geometry for illuminating the cells in a concentration system. 0 s is the angle of the sunsphere when it is seen from Earth, 0 x is the max imum angle with which photons reach the cell after theconcentrator , 0 E is the angle with which photons are emitted from the cell. (b) Basic solar cell st ructure usedin the formulat ion of the detailed balance approach.

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    7/20

    A. Mar f f, G .L . Ara(t jo / Solar Energy Ma ter ia l s and So lar Ce ll s 43 (1996) 20 3-2 22 2 09

    l a t e d p h o t o n e m i s s i o n p r o c e s s e s a r e c o n s i d e r e d . I n a d d i t i o n , e a c h p h o t o n i s a s s u m e d t op r o d u c e o n l y o n e e l e c t r o n - h o l e p a i r wh e n a b s o r b e d a n d v i c e v e r s a : e a c h e l e c t r o n - h o l ep a i r p r o d u c e s o n l y o n e p h o t o n wh e n r e c o m b i n e d . R e c e n t l y , a t t e n t i o n h a s b e e n g i v e n t othe poss ib i l i ty tha t o n e p h o t o n g e n e r a t e s t w o ( o r m o r e ) e l e c t ro n - h o l e p a i rs b y m e a n s o fo p t i c a l l y i n d u c e d i m p a c t i o n i z a t i o n [ 1 5 - 1 7 ] . I n t h i s wo r k , h o we v e r , t h e o n e t o o n eh y p o t h e s i s w i l l s t i l l b e c o n s i d e r e d a s t h e m o s t l i k e l y a b s o r p t i o n p r o c e s s . F u r t h e r m o r e ,f r o m t h e p o i n t o f v i e w o f t h e l i m i t i n g e f f i c i e n c y , i t h a s b e e n r e c o g n i z e d [ 1 8 ] t h a t t h em a x i m u m e f f i c i e n c y o f t h e h o t c a r r i e r s o l a r e n e r g y c o n v e r t e r i s e s s e n t i a l l y e q u i v a l e n t t otha t o f an in f in i t e s t ack o f o n e to o n e so la r ce l l s .

    ( b ) C a r r i e r m o b i l i t y i s a s s u m e d t o a p p r o a c h i n f i n i t y s o o h m i c l o s s e s a r e n e g l e c t e d .P s e u d o - F e r m i l e v e l s p l i t t i n g b e c o m e s c o n s t a n t t h r o u g h t h e d e v i c e a n d e q u a l t o t h ee x t e r n a l v o l t a g e a p p l i e d .

    Wi t h t h e s e h y p o t h e s i s , t h e c u r r e n t v e r s u s v o l t a g e c h a r a c t e r i s t i c o f t h e s o l a r c e l l wa sp r o v e d i n [ 1 ] t o b e g i v e n b y :

    I = q( FA8 s - - FEM ), (1 1)where FABs a n d F E ~ a r e th e n u m b e r o f p h o to n s a b s o r b e d a n d e m i t t e d p e r un i t o f t im ei n t h e c e l l , r e s p e c t i v e l y . T h e s e v a l u e s c a n b e c o m p u t e d f r o m t h e f o l l o wi n g r e l a t i o n s h i p s :

    F AB S = q f a b s cos 0 d Ed $2 d S2 E 2 1 0 < 0 xh 3 c 2 Ee x p - 1

    ~r s

    2 E 2 1h 3 c 2 E

    e x p k T c

    b S7 r / 2 > 0 > 0 x

    - 1

    ( 1 2 )

    wh e r e t h e e q u a t i o n f o r 0 < 0 x ( s e e F i g. 3 a f o r t he d e f i n i t io n o f th e a n g l e 0 ) c o r r e s p o n d st o p h o t o n s c o m i n g f r o m t h e s u n c h a r a c t e r i z e d a s a b l a c k b o d y a t a t e m p e r a t u r e T s ; a n dt h e e q u a t i o n f o r 0 > 0 x c o r r e s p o n d s t o p h o t o n s c o m i n g f r o m t h e e n v i r o n m e n t wh i c h i sa l s o t a k e n t o b e a t t e m p e r a t u r e T c . ~ i s the so l id ang le tha t 0 sus ta ins . The o the r t e rm inE q . ( 1 1 ) i s g i v e n b y

    = f e b ( V ) c o s 0 d E d ~ 2 dSEU2 E : 1

    b ( V ) = h 3c 2 E - q V ( 1 3 )e x p - - 1k:rc

    T h e t e r m s a a n d e i n ( 1 2 ) a n d ( 1 3 ) a r e t h e a b s o r p t i e i t y a n d t h e e m i s s i z i t y ,r e s p e c t i v e l y , a n d i n t h e m o s t g e n e r a l c a s e t h e y h a v e a n g u l a r d e p e n d e n c e . I n p r i n c i p l e ,t h e r e i s n o a p r i o r i r e a s o n t o a s s u m e e = a u n d e r n o n e q u i l i b r i u m c o n d i t i o n s . Ho we v e r ,i n th e f r a m e w o r k o f [1 ], it wa s p r o v e d t h a t e = a s ti ll h o l d s i n n o n e q u i l i b r i u m c o n d i t io n sp r o v i d i n g h y p o t h e s e s " a - b " a r e s a t is f ie d . I t h a s to b e e m p h a s i z e d t ha t , wh e n t h e

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    8/20

    210 A. M artl, G.L Arafijo / Solar Energy Ma terials and Solar C ells 43 (1996 ) 203-222c u r r e n t v o l t a g e c h a r a c t e r i s t i c o f th e s o l a r c e l l is w r i t t e n a s in E q s . ( 1 1 ) t o ( 1 3 ) , p h o t o nr e c y c l i n g e f f e c t s h a v e a l r e a d y b e e n t a k e n i n t o a c c o u n t .

    G i v e n t h e s o la r s p e c tr u m , t h e u s a g e o f o n l y o n e c e ll d o e s n o t p r o v i d e t h e m a x i m u mp o s s i b l e e f f ic i e n c y s i n c e, f o r e x a m p l e , n o p o w e r i s ex t r a c te d f r o m p h o t o n s w i t h e n e r g i e sl o w e r t h a n t h e b a n d g a p e n e r g y . T w o s o l a r c e ll s c a n b e t t e r m a t c h t h e s o l a r s p e c t r u m , a n dw h e n t h e s c h e m e i s t a k e n t o th e l im i t , a n i n fi n i te n u m b e r o f c e l ls p r o v i d e s t h e b e s ta p p r o a c h [ 1 9 - 2 1 ] .

    F i g . 4 s k e t c h e s a s y s t e m t h a t , b a s e d o n s p e c t r a l s p l i t t i n g , c a s t s t h e s u n l i g h t b e t w e e n nc e ll s . T h e s p l it t er i s a s s u m e d t o b e f r e e o f l o s se s . E a c h c e ll i s c h a r a c t e r i z e d b y a n e n e r g yg a p E , > E , _ i a n d r e c e i v e s p h o t o n s w i t h e n e r g i e s i n b e t w e e n E n a n d E n + 1. I n t h el i m i t in g c a s e o f i n f i n it e l y m a n y c e l l s, t h e g a p o f e a c h c e l l is d i ff e r e n t f r o m t h e f o r m e r b ya n a m o u n t d E . T h e c e l l s a r e s u p p o s e d t o h a v e a p e r f e c t b a c k r e f l e c to r a n d t h e r e f o r e , n op h o t o n s a r e e m i t t e d f r o m t h e re a r s i d e o f th e c e ll s . F o r a c o m p l e t e g e n e r a l i z a ti o n , t h es y s t e m i s s u p p o s e d a l s o t o b e c a p a b l e o f p r o v i d i n g c o n c e n t r a t e d l ig h t to t h e c e ll s . I f Xi s t h e c o n c e n t r a t i o n , t h e i n v a r i a n c e o f ra d i a n c e [ 4] e s t a b l i s h e s t h a t p h o t o n s h a v e t oi m p i n g e o v e r t h e c e ll s w i t h i n a s e m i a n g l e 0 x s u c h t h a t

    s in Z 0 x = X s i n 2 0 s , ( 1 4 )a s s u m i n g t h e c e ll s a r e s u r r o u n d e d b y a i r ( o f r e fr a c t i v e i n d e x o n e ) . T h e s y m b o l 0 s i s t h es e m i a n g l e w i t h w h i c h p h o t o n s f r o m t h e s u n r e a c h t h e E a r t h ( S e e F ig , 3 a ).

    T h e c o n c e p t s o f a n g l e a n d e n e r g y r e s t ri c t io n o f t h e e m i t t e d p h o t o n s [ 1 - 1 4 ] w i l l b eu s e d h e r e . T h e y m e a n t h a t , i d e a l l y , i n o r d e r t o a c h i e v e t h e m a x i m u m e f f i c i e n c y , w ea d m i t t h e p o s s i b i l i t y t h a t th e e m i s s i v i t y ( a b s o r p t i v i t y ) o f t h e c e l l c a n b e t a i lo r e d i n t h es e n s e t h a t th e e m i s s i o n o f p h o t o n s w i t h a n a n g l e g r e a t e r th a n 0 x i s r e s t ri c t e d ( e = a = 0f o r 0 > 0 x ) , a s i s t h e e m i s s i o n o f p h o t o n s w i t h e n e r g i e s h i g h e r t h a n E + d E . C o n s i d e r -i n g e a c h i n d i v i d u a l c e l l, t h e re a r e n o p h o t o n s i m p i n g i n g w i t h th e s e a n g l e s a n d e n e r g i e s

    20s

    " ~ / ' ~ \ S p e c t r a l

    ~ 1+1C e l ln

    Fig. 4. G eneral sketch of a multigap converter based on the spli t t ing of the solar spectrum. W hen the l imitingefficiency is discussed, 0E is m ade equa l to 0 .

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    9/20

    A. Mart[ , G.L. Ara{~jo Solar Energy Materials and Solar C ells 43 (1996) 203-222 211so the re i s no ne ed to hav e an ab so rp t iv i t y ( em is s iv i ty ) equa l t o un i ty i n t hese r anges andi t can b e se t equa l t o ze ro . By do ing th i s , t he pho tog ene ra t ed cu r r en t o f t he ce l l is no ta f f ec t ed bu t , t he em is s ion o f pho ton s , and , t he re fo re , t he lo s ses a r e r educed , and thee f f i c i e ncy inc reased . E l sew here , t he abso rp t iv i t y ( emis s iv i ty ) w i ll be a s sum ed equa l t oun i ty . Reade r s i n t e r e s t ed i n a d i scuss ion abou t when the a s sumpt ion o f un i t abso rp t iv i t yd o e s n o t l e a d t o m a x i m u m e f f i c i e n c y c a n r e f e r to [ l] .

    W i th t hese cons ide ra t i ons , and t ak ing the num ber o f ce i l s to i n f in i ty , i f V ( E ) is theope ra t ing vo l t age o f t he ce l l w i th gap E , t he e l emen ta l power ex t r ac t ed f rom th i s ce l lpe r un i t o f a r ea i s

    d w ' = s i n2 O x f ( E , V ) d E , ( 1 5 )wi th

    2 r r 1 1 V d E , ( 1 6 )- 1 e xp ~ - 1

    where t he i n t eg ra t i on in t he so l id ang le has been ca r r i ed ou t a l r eady . The to t a l power i sob ta ined by in t eg ra t i ng (15 ) i n ene rg i e s :

    w ' ; s in 2 O x f f ( E , V ) d E . ( 1 7 )Th e e f f i c i enc y , i n t he pho tovo l t a i c s ense , is ob t a ined by ap p ly ing de f in i t i on 6b .

    T h e r e f o r e ,s i n 2 O x f y ( e , V ) d e f f ( E , V ) d e

    = ( i s )"02 = Xsin Z0s o" Ts or T4 'wh ere Eq , (14 ) has bee n used . Th i s p rov es t ha t t he e f f i c i enc y i s i ndepe nden t o f t heconcen t r a t i on p rov id ing the ang le o f emis s ion o f pho tons i s r e s t r i c t ed t o t ha t o f t heincom ing l i gh t a s a s su m ed abov e (0 E = 0 x i n F ig . 3a ) .

    Two d i f f e r en t app roaches have been used in t he pas t t o max imize (18 ) . I n t he f i r s tone , desc r ibed by De Vos and Pauwe l s [3 ] , f o r i l l u s t r a t i ve and s imp l i fy ing pu rposes , t heope ra t ing vo l t age o f each ce l l was l i nked to t he pho ton ene rgy in o rde r t o cha rac t e r i zet h e e m i s s i o n o f p h o t o n s f r o m t h e s y s t e m b y m e a n s o f a n e f f e c t i v e t e m p e r a t u r e T o :

    E - q V Ek-----~c = k-~o. (1 9 )

    Then , Eq . (18 ) r e su l t ed in Eq . ( I -2 ) in Tab le 1 and To w a s o p t i m i z e d t o m a x i m i z e th ee f f i c ie n c y . T h e r e s u l t w a s a n o p t i m u m e f f i c i e n c y o f 8 5 . 4 % [ 3] w h i c h c o r r e s p o n d s t o a ne q u i v a l e n t t e m p e r a t u r e To = TDV = 254 0K (Po in t D in F ig . 2 ) . Fo r t he i r com puta t ionsthey used max imum concen t r a t i on . In t h i s pape r , however , i t i s emphas i zed tha t i t i s no tneces sa ry t o a s sume tha t t he ce l l ope ra t e s a t t he max imum concen t r a t i on to ob t a in t hem a x i m u m e f f i c i e n c y p r o v i d i n g t h a t t h e a n g l e o f e m i s s i o n o f p h o t o n s i s r e st r ic t e d

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    10/20

    212 A. Martl, G.L. Arafijo / Solar Energy Materials and Solar Cells 43 (1996) 203-222( 0 E = 0 x ) . T h e r e f o r e , t h e f i g u r e 8 5 . 4 % i s i n d e p e n d e n t o f t h e c o n c e n t r a ti o n . I n a n y c a s e ,t h e s i m p l i f i c a t i o n i n E q . ( 1 9 ) a l l o w e d D e V o s a n d P a u w e l s t o c l e a r l y i l l u s t r a t e h o w t h ep h o t o v o l t a i c c o n v e r s i o n s h o u l d b e c o n s i d e r e d a s a n i r r e v e r s i b l e p r o c e s s e s a t t h e o p e r a t -i n g v o l t a g e th a t c o r r e s p o n d s t o th e m a x i m u m e f f i c i e n c y . W i t h s o m e a d d i ti o n a l c a l cu l a -t io n s i n v o l v i n g e n t r o p y f l u x c o n s e r v a t i o n , th e y c o m p u t e d t h e e n t r o p y g e n e r a t i o n S'g d u et o t he i r r eve r s i b i l i t i e s i n t he conve r s i on p r oces s es ( Eq . ( I - 1 ) i n Tab l e 1 , Eq . ( 31 ) i n Re f .[3 ]). T h e s e r e s u lt s h a v e a l s o b e e n i n c l u d e d i n th e s u m m a r y o f T a b l e 1 f o r c o m p a r i s o nw i t h t h e o t h e r t h e r m o d y n a m i c a p p r o a c h e s d i s c u s s e d i n S e c t i o n 1 . I n l a t e r d i s c u s s i o n s[ 9 - 1 1 ], th e n a t u r e o f t h e i r re v e r s i b il i ti e s w a s d e s c r i b e d m o r e a n d t h e y w e r e a s s o c i a t e d t ot h e c o u p l i n g o f t h e c o n v e r t e r t o th e e x t e r n a l w o r l d b y m e a n s o f th e i n t e r c h a n g e o f b o t he n e r g y a n d m a t t e r (endoreversiblep r o c e s s e s ) .

    A s l i g h t l y m o r e c o m p l i c a t e d b u t o t h e r w i s e m o r e r e a l i s t i c a p p r o a c h t o m a x i m i z i n g( 18 ) , a l s o des c r i bed i n [ 3 ] , cons i s t s i n m ax i m i z i ng t he ope r a t i ng vo l t age f o r eachi nd i v i dua l ce l l s o t ha t V = V m ( E) w i t h V m ( E) s a t i s f y i ng

    0-~ f ( E ,Vm(E))= 0 . ( 20 )C o m p u t i n g ( 1 8 ) w i t h V = V m ( E ), w e a l s o o b t a in e d t h e m a x i m u m e f f i c i e n c y a s 8 6 .8 %

    w i t h t h e n o v e l t y t h a t t h i s f i g u r e i s i n d e p e n d e n t o f t h e c o n c e n t r a t i o n p r o v i d i n g t h a t0 E = 0 x , a s m e n t i o n e d a l r e a d y .

    F o r t h e d i s c u s s i o n a b o v e , t h e s p l it ti n g s y s t e m s k e t c h e d i n F ig . 4 h a s b e e n u s e d a s t h es t a rt in g p o i n t f o r s i m p l ic i ty . S o m e o b j e c t i o n s t o t h e m o d e l c a n a r is e f r o m t h e f a c t th a t a nadd i t i ona l ex t e r na l e l em en t , t he s p l i tt e r , ha s be en i n t r od uced i n t he s y s t em and t ha t t h iss p l it te r h a s b e e n a s s u m e d t o b e f r e e o f l o ss e s . I t c a n b e p r o v e d ( s e e n e x t s e c t io n ) t h a t as t a c k e d s y s t e m a s t h e o n e s k e t c h e d i n F i g . 5 , w h i c h w i l l b e d i s c u s s e d i n t h e n e x t t w os e c t io n s , l e a d s to t h e s a m e e q u a t i o n s ( 1 5 t o 1 8 ) w h e n t h e n u m b e r o f c e l ls i n c r e a s e s t oi n f i n it y and t he r e f o r e , t o t he s am e va l ue o f t he l i m i t i ng e f f i c i ency w i t hou t t he neces s i t yo f a n e x t e r n a l e l e m e n t . H o w e v e r , t h i s s y s t e m h a s i n t e r es t in g f e a t u r e s re g a r d i n g t h el im i t i n g e f f i c i e n c y w h e n t h e n u m b e r o f c e ll s c o n s i d e r e d i s fi n it e .

    4 . L i m i t i n g e f f i ci e n c y o f a sy s t e m w i t h a f i n it e n u m b e r o f ce l lsI n a s t a c k e d s y s t e m , N c e l l s a r e o r d e r e d b y d e c r e a s i n g g a p a s s k e t c h e d i n F i g . 5 a .

    Th e f i r s t ( n = 1 ) i s t he ce l l w i t h t he l ow es t ban dga p . I t is , t he r e f o r e , p l ace d a t the bo t t omof t he s t ack . Sun l i gh t t r ave l s f r om l e f t t o r i gh t . A pe r f ec t back r e f l ec t o r i s p l aced a t t her ea r s i de o f t he l a s t ce l l t o p r even t em i s s i on l o s s es i n t ha t d i r ec t i on .

    A t ce l l n + 1 , pho t ons w i t h e ne r g i e s l o w e r t han t he ga p o f t he ce l l, E n + l , a re a l l ow edt o p a s s t h r o u g h ; t h e n , t h e c e l l n a b s o r b s t h o s e p h o t o n s f r o m t h e s u n s p e c t r u m w i t he n e r g i e s E , + l > E > E , . W e w i ll a n a l y z e n o w t w o d i f f e r e n t c a s e s d i f f e ri n g in t h e w a yt he r ad i a t i ve l o s s es a r e hand l ed .

    I n c a s e " a " , F i g . 5 a, d u e to ra d i a t i v e r e c o m b i n a t i o n , c e l l n e m i t s p h o t o n s p r o d u c i n gs o m e e n e r g y l o s s e s f o r t h e c el l. H o w e v e r , c e l l n + 1 a n d c e l l n - 1 b e n e f i t f r o m t h e s el um i nes c enc e l o s s es in ce l l n s i nce ce l l n - 1 can co l l ec t a l l t he pho t ons t ha t ce l l n

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    11/20

    A. MarE, G.L . Ara{i jo / Solar Energy Mater ia l s and Solar Ce ll s 43 (1996) 20 3-2 22 213( a )

    U ')

    I L l

    c e l l

    I

    I

    N

    A , n +) fA rn I) f L , n

    E nv

    i b r A , n / I /

    b l A , n . , ( / ? ;/ j ') i l l

    I i i. ' f ' , ' /

    n + l n n -1 1

    ( b )

    Ul

    r e f l e c t o r - - . ~ b f R , n brR,n/ / / I, / / I/ I ]

    ~ , ~ / / I -// /

    , i " 7

    ! E . I

    c e l l N n + l n n -1 1Fig. 5. Sketch of a stacked multigap system. In (a) no reflector is placed at the rear side of t h e c e l l s and so,photons emitted from o n e c e l l can be absorbed by the others. In (b) a reflector is placed at the rear side. In thiscase, although t h e c e l l s d o n o t absorb photons from their neighbours, the radiative losses in each individualc e l l also decreases, In text it is discussed which approach give the maximum efficiency.

    e m i t s f r o m t h e r e a r s i d e a n d c e l l n + 1 c a n c o l l e c t t h e p o r t i o n o f t h e p h o t o n s e m i t t e df r o m t h e f r o n t s id e o f c e l l n w i t h e n e r g i e s h i g h e r t h a n E n 1. T h i s e f f e c t i s c a l l e dradiative coupling b e t w e e n t h e c e l l s . T h e n , o n l y t h e p o r t i o n o f th e e m i t t e d p h o t o n s w i t he n e r g i e s E n _ i < E < E , a r e w a s t e d .

    I n c a s e " b " , a r e f l e c t o r is p l a c e d a t th e r ea r s i d e o f t h e c e l l s ( F i g . 5 b ) . T h e e m i s s i o nT o ss e s o f c e l l n w i l l b e r e d u c e d . H o w e v e r , c e l l s n - 1 a n d n + 1 w i l l n o t b e n e f i t f r o m

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    12/20

    2 1 4 A . M a r t f , G . L . A r a f i j o / S o l a r E n e r g y M a t e r i a l s a n d S o l a r C e l l s 4 3 ( 1 9 9 6 ) 2 0 3 - 2 2 2

    t h e l u mi n e s c e n t p h o t o n s c o mi n g f r o m c e l l n a s i n t h e p r e v i o u s c a s e . T h e f o l l o wi n gq u e s t i o n a r i s e s : h a s t h i s c o n f i g u r a t i o n a h i g h e r l i mi t i n g e f f i c i e n c y t h a n t h e p r e v i o u sc o n f i g u r a t i o n ? T h e a n s we r i s " y e s " a s i t wa s a n t i c i p a t e d i n Re f . [ 2 2 ] f o r a s y s t e m wi t ht wo g a p s . T h e d i s c u s s i o n i s g e n e r a l i z e d h e r e t o a h i g h e r n u mb e r o f g a p s a t t h e t i me t h a tnew resu l t s a re p resen ted .T o d i s c u s s t h e s e c o n f i g u r a t i o n s s i mu l t a n e o u s l y , we d e f i n e t h e a p p r o p r i a t e s t e pfunc t ion to desc r ibe the re f l ec to r a t the r ea r s ide o f ce l l n :

    1 (O) E > E . ( 2 1 )rn = E < E .

    T h e v a l u e " 1 " d e s c r i b e s t h e s i t u a t i o n f o r c a s e b , i n wh i c h r e f l e c t o r s a r e i n t r o d u c e d ,wh i l e " 0 " c o r r e s p o n d s t o c a s e a. T h e a b s o r p t i v i t y ( e mi s s i v i t y ) o f c e l l n i s g i v e n a l s o b ya s tep func t ion .

    [ 1 E > E,~ ( 2 2 )a , = E < E nC o n s i d e r i n g t h e d i ff e r e n t s o u r c e s f o r th e p h o t o n r a d i a n c e t h a t c e l l n r e c e i v e s a n d i ts

    l u m i n e s c e n t l o s s e s , t h e m a x i m u m p o w e r d e li v e r e d b y ce l l n i s g i v e n b y :

    P . = q r r s i n Z O x V m , . f E ( b s , " + b ar n ( V m , . + l ) + b f . ( V m , . ) + 1 )+ b L . ( V m , . ) - 2 b E ( V m . . ) ) d ,

    ( 2 3 )w h e r e I ' m ,x i s t h e o p t i mu m o p e r a t i o n v o l t a g e i n c e l l x t o a c h i e v e t h e ma x i mu m

    T a b l e 2D e s c r i p t i o n o f t h e d i f f e r e n t s p e c tr a l p h o t o n r a d i a n c e i n v o l v e d i n a s t a c k e d s y s t e m o f c e l l sN o t a t io n V a l u e M e a n i n gb s . n ( a n - a , , + i ) b sb JR , . ( V , , ) r , ,+ , a . b ( V , , , )b ~ . . (V , , ) r , , a n b ( V , )b ~ , . (V ~ + i ) a . ( 1 - r . + l ) a , , + t b ( V . + l )b ~ , . . ( V . _ 1 a , , (1 - r . ) a n _ l b ( V . _ l )

    2 E 2b ( V . ) a , , h 3 c 2 e x p ( ( E - e V . ) / k r c ) - 1b f . ( v . ) (1 - a . + i ) a . b ( V . )

    C o m i n g f r o m t h e s u n a n d a b s o r b e d i n c e l l nE m i t t e d f r o m c e l l n , r e f l e c t e d in r e f l e c t o r n + 1a n d a b s o r b e d a g a i n i n c e l l nE m i t t e d f r o m c e l l n , r e f l e c t e d i n r e f le c t o rn a n d a b s o r b e d a g a i n i n c e ll nE m i t t e d f r o m c e l l n + 1 a n d a b s o r b e d a g a i n i n c e l l nE m i t t e d f r o m c e l l n - 1 a n d a b s o r b e d a g a i n i n c e l l nE m i t t e d f r o m c e l l n . b i a s e d a t V ,,R a d i a t i v e l o s s e s in c e l l n n o t a b s o r b e d i n a n y c e l l

    ( N o t e : B e c a u s e c e l l s w i t h n = N + l a n d n = 0 d o e s n o t e x is t, i t i s n e c e s s ar y t o m a k e a N + l = 0 , a 0 = 1 ,V N + i = 0 a n d V0 = 0 t o g e n e r a l i z e t h e e q u a t i o n s a b o v e )

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    13/20

    A. M arff, G .L. Ara{tjo /S ol ar Energy Materials and Solar Ceils 43 (1996) 20 3-2 22 2 1 5e f f i c i e n c y . N o t i c e t h a t in E q . ( 2 3 ) , t h e c o n c e p t o f a n g l e r e s tr i c ti o n h a s b e e n a p p l i e d . T h em e a n i n g o f th e s p e c t ra l p h o t o n r a d i a n c e s b ( V m , . , ) i s s u m m a r i z e d i n T a b l e 2 .

    A f t e r s o m e m a n i p u l a t i o n , a n d t a k i n g i n t o a c c o u n t t h a t a , a , + 1 = a . , a , + i r,, + 1 = r,, ~ ra n d a , , r , , + l = r , , + l a n d t h e e q u a t i o n s i n T a b l e 2 , E q . ( 2 3 ) c a n b e r e a r r a n g e d a s :

    P ,, = q r r s i n 2 O x V . f E ( ( a , - - a . + , ) b s + [ a , , + l b ( V m . . + l) - a . b ( V m . , , ) ]

    - r . + 1 b ( V m . n + , ) - b ( V m , . ) ] + a ~ (1 - r . ) [ b ( V m . , , _ 1 ) - b ( V m . . ) ] ) d E .( 2 4 )

    T o a c h i e v e t h e m a x i m u m e f f i c i e n c y , t h e b a n d g a p o f th e c e ll s w i ll s ti ll r e q u i r eo p t i m i z a t i o n . F i g . 6 p l o t s th e o p t i m u m e f f i c i e n c y t h a t r e s u l ts a f t e r t h e o p t i m i z a t i o n o fb a n d g a p s a n d v o l t a g es . F o r c o m p a r i s o n , w e a l s o p lo t th e m a x i m u m e f f ic i e n c ie s w h e nt e r re s t ri a l A M 1 . 5 d i r e c t n o r m a l i r r a d i a n c e [ 2 3 ] i s c o n s i d e r e d ( i n s t e a d o f b l a c k b o d yr a d i a t i o n a t Ts = 6 0 0 0 K ) a s c h a r a c t e r i z i n g t h e i ll u m i n a t i o n f r o m t h e s u n . A l s o , t h ev a l u e s c o r r e s p o n d i n g t o X = 1 s u n a n d v a l u e s w i t h o u t r e s tr i c ti n g t h e a n g l e o f e m i s s i o n( 0 z = 9 0 ) h a s b e e n p l o tt e d . F o r r e f e r e n c e , T a b l e 3 s u m m a r i z e s t h e c o r r e s p o n d i n gv a l u es . T h e f o l l o w i n g r e m a r k s c a n b e p o i n t e d o u t:

    ( a ) A s i t c a n b e o b s e r v e d , b o t h a p p r o a c h e s ( w i t h a n d w i t h o u t r e f l e c to r s ) g i v e t h es a m e r e s u l t w h e n t h e n u m b e r o f c e l ls i n c r e a s e t o w a r d s i n f in i ty . T h i s r e su l t ca n b ee x p e c t e d f r o m E q . ( 2 4 ) s i n c e , w h e n n u m b e r o f c e l l s te n d s t o i n f i n i ty , V m ,.+ 1 - V m ,~ ~ 0 .E q . ( 2 4 ) c a n b e w r i t t e n a s :

    d P ( E ) = q ~ s i n 2 0 x bs(E) 2 E 2 1h 3 c e E - q V m ( E )e x p k Td E , ( 2 5 )

    w h i c h i s in d e p e n d e n t o f w h e t h e r r e f l e c t o r s a re u s e d o r n o t. N o t i c e t h a t E q . ( 2 5 ) i si d e n t ic a l t o E q . ( 1 5 ) w i t h P p l a y i n g t h e r o l e o f w ' a n d , th e r e f o r e , t h e v a l u e f o r t h el i m i t in g e f f i c i e n c y f o r a n in f i n i te n u m b e r o f g a p s , 8 6 . 8 % f o r t h e s u n a s s u m e d a s a b l a c kb o d y a t T s = 6 0 0 0 K , i s o b t a i n e d a s b e f o re . T h e f i g u r e c o r r e s p o n d i n g t o A M 1 . 5 d i r ec tn o r m a l i r r a d i a n c e [ 2 3 ] h a s b e e n c o m p u t e d h e r e f o r th e f ir s t t i m e t o o u r k n o w l e d g e . I tg i v e s 8 5 . 0 % . L i n e a r i n t e r p o l a t io n o f th e d a t a i n R e f . [ 2 3] a n d t r a p e z o i d a l i n t e g r a t i o nh a v e b e e n u s e d i n t h e c o m p u t a t i o n s .

    ( b ) H o w e v e r , w h e n t h e n u m b e r o f c e l ls i s f i n it e , t h e a p p r o a c h w i t h r e f l e c to r s g i v e s as l i g h t l y h i g h e r e f f i c i e n c y t h a n t h e a p p r o a c h w i t h o u t r e f l e c t o r s t h a t i n R e f . [ 2 0 ] w a sa s s u m e d t o le a d t o t h e m a x i m u m e f f ic i e n c y . I f w e a s s u m e t h a t t he o p t i m u m v o l t a g e ss a t i s f i e s V m . n + ~ > Vm,n, t h i s r e s u l t c a n b e p r o v e d a s f o l l o w s :

    I f t h e s y s t e m c o n s i s t s o f N c e l l s a n d h a s r e f le c t o r s , t h e p o w e r d e l i v e r e d i s g i v e n b y :N

    P w R ( V m ) = ~ _ , P ~ ( V m ) , ( 2 6 )n= l

    w h e r e Vm r e p re s e n t s t h e s e t o f o p t i m u m v o l t a g e s th a t m a x i m i z e s t h e p o w e r a n d P,', i s

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    14/20

    2 16 A. Marti, G.L. Ara{~jo Solar Energy Materials and Solar Cells 43 (1996) 203-222( a )

    O ~ t imu m e f f ic i e n cy (%)9 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 E = e x8 0 i nf in i te n u m b e r o f g a p sX = I s u n e E = 9 oo ~ /

    7 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    6 0 ~6 04 f f

    a f t2C

    ~ . ~ X = l s u n~ - ~ e E = 9 0 o

    ( B l a ck b o d y 6 0 0 0 K ), I I

    2 3N u m b e r o f g ap s

    ( b )Op t i mu m e f f i c i e n cy ( %)9 0

    8 0 _-0 E =0 x ~ ' i n f in it e n u m b e r o f g a p s7 0 - X = 1 s un ( ~ E = 9 0 / . . . . . .

    /

    . . . . . . . - 2 == . . . . . . . . . . . . . /6 0 ~ "

    6 o , . . . . i- " " ~ - =1 s u n i4 0 - . . - 0 E = 9 0 o

    3 0 (AM1.5 no rma l d i rec t )20 L2 3

    N u m b e r o f g a p sF i g . 6 . M a x i m u m e f f i c i e n c y a s a f u n c t i o n o f t h e n u m b e r o f c e l l s: ( a ) f o r t h e s u n a s s u m e d a s a b l a c k b o d y a t6 0 0 0 K , ( b ) f o r A M 1 . 5 d i r e c t n o r m a l ir r a d i a n c e [ 23 ]. I n b o t h ca s e s , d o t s m a r k e d a s " + " c o r r e s p o n d s to t h ec a s e w i t h r e f l e c t o r s ( i l lu s t r at e d i n F i g . 5 a ) a n d d o t s m a r k e d a s " X " t o t h e c a s e w i t h o u t r e f l e c to r s (F i g . 5 b ) .B o t h v a l u e s a r e v e r y c l o s e b u t t h e o n e c o r r e s p o n d i n g t o t h e c a s e w i t h r e f l e c to r s i s s li g h t ly h i g h e r .

    g i v e n b y E q . ( 2 4 ) w i t h t h e a p p r o p r i a t e s v a l u e s f o r r ( E q . ( 2 1 )) . C o n v e r s e l y , i f t h es y s t e m h a s n o r e f l e c to r s , t h e m a x i m u m d e l i v e r a b l e p o w e r i s g i v e n b y :

    N

    PNR(Vm) = ~ P . ( V m ) , ( 2 7 )n= l

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    15/20

    A. Mar t f, G .L . Ara{t jo / Solar Energy Mater ia l s and Solar Ce l ls 43 (1996) 2 03 -22 2 2 1 7T a b l e 3O p t i m u m e f f ic i e n cy a n d b a n d g a p s f o r m u l t ig a p s y s t e m s w i t h d i ff e r e n t n u m b e r o f c e ll s f o r t h e s un a s s u m e d a sa b l a c k b o d y a t 6 0 0 0 K a n d f o r A M 1 . 5 d i r e c t n o r m a l i r r a d i a n c e [ 2 3] (t a b l e b e l o w ) . T h e v a l u e s o f t h e e f f i c i e n c ya r e p l o tt e d i n F ig . 6 . " R e f l e c t o r s " m e a n s w h e t h e r b a c k r e f l e c t o r s h a v e b e e n p l a c e d a t t h e r e a r s i d e o f a ll th ec e l l s in t h e s t a c k o r no t . L a s t c e ll in th e s t a c k a l w a y s h a s a b a c k r e f l e c t o r . T h e c a s e l a b e l e d a s " ' M a x i m u mc o n c e n t r a t i o n " i s e q u i v a l e n t a l s o to t h e c a s e o f o p e r a t i o n a t o n e s u n w h e n t h e a n g l e o f th e e m i t t e d p h o t o n sf r o m t h e c e l l is r e s tr i c t e d to t h a t o f t h e i n c o m i n g p h o t o n s f r o m t h e s u nN . c e ll s D e s c r i p ti o n R e f l e c to r s ? O p t i m u m g a p s ( e V ) E f f ( % )

    E l E 2 E 3 E 4( B l a c k b o d y a t 6 0 0 0 K )

    1 s u n , n o a n g u l a r r e s t r i c t i o n Y e s 1 . 3 1 - - - 3 t . 01 1 s u n n o a n g u l a r r e s t i c t i o n N o 1 .3 1 - - - 3 1 . 0

    M a x i m u m c o n c e n t r a t i o n Y e s 1 .1 1 - - - 4 0 . 8M a x i m u m c o n c e n t r a t i o n N o 1 .1 1 - - - 4 0 . 81 s u n , n o a n g u l a r r e s t r i c t i o n Y e s 0 . 9 8 1 . 8 7 - - 4 2 . 9

    2 1 s u n n o a n g u l a r r e s t i c t i o n N o 0 . 9 8 1 .8 8 - - 4 2 . 7M a x i m u m c o n c e n t r a t i o n Y e s 0 . 7 7 1 . 70 - - 5 5 . 9M a x i m u m c o n c e n t r a t i o n N o 0 . 7 8 1 .7 1 - - 5 5 . 61 s u n , n o a n g u l a r r e s t r i c t i o n Y e s 0 . 8 2 1 . 4 4 2 . 2 6 - 4 9 . 3

    3 1 s u n n o a n g u l a r r e s t i c t i o n N o 0 . 8 3 1 . 4 5 2 . 2 6 - 4 9 . 1M a x i m u m c o n c e n t r a t i o n Y e s 0 . 6 2 1 . 26 2 . 1 0 - 6 3 . 8M a x i m u m c o n c e n t r a t i o n N o 0 . 6 3 1 . 27 2 . 11 - 6 3 . 51 s u n , n o a n g u l a r r e s t r i c t i o n Y e s 0 . 7 2 1 .2 1 1 . 7 7 2 . 5 5 5 3 . 3

    4 l s u n n o a n g u l a r r e s t i c t i o n N o 0 . 7 3 1 . 2 3 1 . 7 8 2 . 5 6 5 3 . 0M a x i m u m c o n c e n t r a t i o n Y e s 0 . 5 2 1 .0 3 1 .6 1 2 . 41 6 8 . 8M a x i m u m c o n c e n t r a t i o n N o 0 . 5 3 1 . 05 1 . 68 2 . 41 6 8 . 4I s u n , n o a n g u l a r r e s t r i c t i o n Y e s . . . . 6 9 . 9

    :e 1 s u n n o a n g u l a r r e s t i c t i o n N o . . . . 6 9 . 9M a x i m u m c o n c e n t r a t i o n Y e s . . . . 8 6 . 8M a x i m u m c o n c e n t r a t i o n N o . . . . 8 6 . 8

    ( A M 1 . 5 d i r e c t n o r m a l i r r a d ia n c e )1 s u n , n o a n g u l a r r e s t r i c t i o n Y e s 1 . 1 3 - - - 3 2 . 5

    1 1 s u n n o a n g u l a r r e s t i c t i o n N o 1 . 1 3 - - - 3 2 . 5M a x i m u m c o n c e n t r a t i o n Y e s 0 . 9 4 - - - 4 4 . 6M a x i m u m c o n c e n t r a t i o n N o 0 . 9 4 - - - 4 4 . 61 s u n , n o a n g u l a r r e s t r i c t i o n Y e s 0 . 9 4 1 . 6 4 - - 4 4 . 3

    2 1 s u n n o a n g u l a r r e s t i c t io n N o 0 . 9 4 1 .6 4 - - 4 4 . 1M a x i m u m c o n c e n t r a t i o n Y e s 0 . 7 1 1 .4 1 - - 5 9 . 7M a x i m u m c o n c e n t r a t i o n N o 0 . 71 1 .4 1 - - 5 9 . 41 s u n , n o a n g u l a r r e s t r i c t i o n Y e s 0 . 7 1 1 . 1 6 1 . 8 3 - 5 0 . 13 1 s u n n o a n g u l a r r e s t i c t i o n N o 0 . 7 1 1 . 1 6 1 .8 3 - 4 9 . 7M a x i m u m c o n c e n t r a t i o n Y e s 0 . 6 9 1 . 16 1 . 84 - 6 7 . 0M a x i m u m c o n c e n t r a t i o n N o 0 . 6 9 1 . 16 1 . 83 - 6 6 . 61 s u n , n o a n g u l a r r e s t r i c t i o n Y e s 0 . 7 1 1 . 13 1 . 55 2 . 1 3 5 4 . 0

    4 1 s u n n o a n g u l a r r e s t i c t i o n N o 0 . 7 1 1 . 1 3 1 . 5 5 2 . 1 3 5 3 . 6M a x i m u m c o n c e n t r a t i o n Y e s 0 . 5 3 1 .1 3 1 . 55 2 . 1 3 7 1 . 0M a x i m u m c o n c e n t r a t i o n N o 0 . 5 3 1 .1 3 1 .5 5 2 . 1 3 7 0 . 71 s u n , n o a n g u l a r r e s t r i c t i o n Y e s . . . . 6 5 . 4

    :c 1 s u n n o a n g u l a r r e s t i c t i o n N o . . . . 6 5 . 4M a x i m u m c o n c e n t r a t i o n Y e s . . . . 8 5 . 0M a x i m u m c o n c e n t r a t i o n N o . . . . 8 5 . 0

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    16/20

    218 A. Martf, G.L. Ara~jo Solar Energy Materials and Solar Cells 43 (1996) 203-222Vm b e i n g t h e o p t i mu m s e t o f v o l t a g e s f o r t h e n e w a r r a n g e me n t a n d P m g i v e n b y E q .(24) and wi th r = 0 in Eq . (21 ) . No t ice tha t , in genera l , Vm ~ Vm and , the re fo re ,

    PwR( Vm) ~ PwR( Vm), ( 2 8 )

    ( a )O p t i m u m g a p s ( e V )3

    ( b )

    I2 3N u m b e r o f g a p s

    O p t i m u m g a p s ( e V )2 .52- - (AM 1-15 .nrma l d i rect ) t "

    i I" iT , . . . . . . . . . . . . . . . . . . . . . . . .0 . 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . ~- -

    0 I I I i1 2 3 4N u m b e r o f g a p s

    Fig. 7. (a) Optimum gaps as a function of the number of cells in the stack for the sun assumed as a black-bodyat Ts = 600OK. Reflectors at the rear side of each cell as described in Fig. 5b have been assumed. Maximumconcentration (or, equivalently, total restriction of the photons emitted from the cell) has been considered. Barsindicate the tolerance in the value of the optimum gap to keep the m aximum efficiency not less than 1% of itsmaxim um value when the other values of the gaps remain constant and equal to their optimum value (squaredots). (b) The same for AM1.5 direct normal irradiance.

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    17/20

    A. M artl, G.L. Arat~jo Solar Energy M aterials and Sola r Cells 43 (1996) 203-22 2 219s i nce Vm a r e no t t he op t i m um vo l t ages f o r t he con f i gu r a t i on w i t h r e f l ec t o r s . A d i r ec tc a l c u l a t i o n s h o w s t h a t

    P w R ( V m ) - P N R ( V m ) =e T r s in a O x f E { r l V m , ] (b E . 1 ( V m . 1 ) - b ( O ) )

    + E r n ( b E , n - l ( g m . . - l ) - - b E ,n ( V m , n ) )( V m . n - I - - V n a , . ) ) d E , ( 2 9 )n = 2and , there fore , bec au se Vm, > Vm. _ 1

    P w R ( Vm ) >-- PN R( Vm )' ( 3 0 )w hi ch t oge t he r w i t h Eq . ( 28 ) l eads t o

    Pw R( Vm ) >__P N R ( V m ) , ( 3 1 )a s w e w a n t e d t o s h o w .

    ( c ) T h e s e n s i t i v i t y o f t h e m a x i m u m e f f i c i e n c y w i t h r e s p e c t t o t h e v a l u e o f t h eo p t i m u m b a n d g a p s i s lo w e r a s th e b a n d g a p o f t h e c e ll in t h e s t a c k is h ig h e r . I n o t h e rw o r d s , t h e e f f i c ie n c y i s m o r e a n d m o r e s e n s i ti v e t o th e v a l u e s o f th e g a p o f t h e c e ll s a sw e c o n s i d e r t h e c e l l s t o w a r d s t h e b o t t o m o f t h e s t a c k. T h i s w a s p o i n t e d o u t i n R e f . [ 24 ]f o r a s y s t em w i t h t w o ce l l s and i t is i l lu s t r a t ed he r e , i n F i g . 7 , f o r a s y s t em up t o 4 ce l l s .T h e s e n s i t i v i t y t o t h e b o t t o m c e l l g a p i s h i g h e r w h e n A M 1 . 5 d i r e c t n o r m a l i r r a d i a n c es p e c t r u m i s c o n s id e r e d , i n s t e a d o f b l a c k b o d y r a d i a t io n a t 6 0 0 0 K a s i ll u s tr a te d i n F i g.7b .

    I r r a d i a n c e ( W m 2 m i c "1)1 ,2 0 01,10 0 2 ,1 eV

    io i j0 04 0 020 0l o o L I ,

    - i0 i ~ r . I0 .2 0 .6

    ( d a s h e d : 1 s u n o p t i m u m g a p sf o r a s y s t e m o f f o u r c e l l s )1,13 eV

    II,,I

    ,,

    0,71 eV

    ,

    1 1 .4 1 .8 2 .2 2 .6 3 3 .4 3 .8W a v e l e n g t h ( m i c )

    4 .2

    F ig . 8 . P lo t o f the da ta cor re s pon ding to t e r re s tr i a l d i rec t norm al so la r spec t ra l i r rad iance fo r a i r m ass 1 .5 [23] .T h e v e r t ic a l l in e s s h o w t h e o p t i m u m g a p s f o r a s y s t e m o f f o u r c e l l s at o n e s u n .

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    18/20

    220 A. Mar t l, G .L . Araf i jo / Solar Energy Mater ia l s and So lar Ce ll s 43 (1996) 20 3-2 22( d ) W h e n t h e s u n i s a s s u m e d a s a b l a c k b o d y a t 6 0 0 0 K , t h e v a l u e s o f th e o p t i m u m

    g a p s d e p e n d o n t h e c o n c e n t r a t i o n ( i f n o a n g u l a r r e s t r i c t i o n i s p r o v i d e d ) a n d a l s o o nw h e t h e r r e f l e c t o r s h a v e b e e n p l a c e d a t t h e r e a r s i d e o f t h e c e l l s . T h e n u m e r i c a l r e s u l t ss h o w t h a t t h e o p t i m u m g a p s s h i f t t o w a r d s v a l u e s a b o u t 1 0 m e V h i g h e r w h e n n or e f l e c t o r s a r e p l a c e d i n c o m p a r i s o n w i t h t h e c a s e w i t h r e f l e c t o r s . A l s o , w h e n v a l u e s a to n e s u n a r e c o m p a r e d w i t h v a l u e s a t m a x i m u m c o n c e n t r a t i o n ( o r t o t a l a n g u l a r r e s t r i c -t i o n ) t h e o p t i m u m g a p s s h i f t s t o w a r d s v a l u e s i n t h e r a n g e o f 1 0 0 - 2 0 0 m e V h i g h e r .H o w e v e r , w h e n A M 1 . 5 d i r e c t n o r m a l i r r a d i a n c e i s c o n s i d e r e d , t h e r e i s n o s u c h s h i f tw hen t he cas es w i t h r e f l ec t o r s and w i t hou t r e f l ec t o r s a r e com par ed . A l s o , i n t he s t ackeds y s t e m , w h e n m o r e t h a n o n e c e l l is c o n s i d e re d , o n l y th e o p t i m u m g a p o f th e b o t t o m c e l li s s ens i t i ve t o concen t r a t i on . D ue t o t he va l l eys and c r e s t s t ha t appea r i n t he A M 1. 5d i r e c t n o r m a l i r ra d i a n c e a s a r e s u l t o f th e a t m o s p h e r i c a l a b s o r p t i o n , o p t i m u m g a p s s e e m st o be l ocked t o t hem as i l l u s t r a t ed i n F i g . 8 .

    5 . C o n c l u s i o n sT h e l i m i t i n g e f f i c i e n c y o f p h o t o v o l t a i c e n e r g y c o n v e r s i o n i s 8 6 . 8 % f o r t h e s u n

    a s s u m e d a s b l a c k b o d y a t 6 0 0 0 K , 8 5 . 0 % i f A M 1 . 5 d i r e c t n o r m a l i r ra d i a n c e i s c o n s i d -e r e d . T h e s e r e s u l t s a r e i n d e p e n d e n t o f t h e c o n c e n t r a t i o n p r o v i d i n g t h e e m i s s i o n o fp h o t o n s c a n b e r e s tr i c te d i n a n g l e t o t h a t s t ri c tl y n e c e s s a r y t o r e c e i v e t h e p h o t o n s f r o mt he s un . Th i s l i m i t i s a t t r i bu t ed t o a s y s t em cons i s t i ng o f an i n f i n i t e num ber o f ce l l s . Thef i g u r e s t h a t r e s u l t d i f f e r f r o m t h e o n e s o b t a i n e d f r o m s t a n d a r d t h e r m o d y n a m i c a p -p r o a c h e s ( 9 3 . 3 - 9 5 % ) d u e t o t h e d i f f e r e n t a s s u m p t i o n s a n d e v e n t h e d e f i n i t i o n o fe f f i c i ency i t s e l f t ha t i s u s ed ( s ee Tab l e 1 ) . Fo r s ys t em s cons i s t i ng o f a s t ack o f a f i n i t en u m b e r o f c e ll s , th e u s e o f b a c k r e f le c t o r s i n c r e a s e s t h e l i m i ti n g e f f i c ie n c y s l i g h tl y w h e nc o m p a r e d t o t h e s i t u a ti o n w i t h o u t r e f l e c to r s . T h e s e n s i ti v i ty o f t h e o p t i m u m e f f ic i e n c y i sh i g h e r f o r th e b o t t o m c e l ls o f t h e s t a ck . C a l c u l a t io n s i n v o l v i n g A M 1 . 5 d i r ec t n o r m a li r r a d i a n c e h a v e b e e n i n c l u d e d a n d s h o w s o m e p e c u l i a r i t i e s w h e n c o m p a r e d w i t h r e s u l t sc o r r e s p o n d i n g t o b l a c k b o d y r a d i a t i o n a t 6 0 0 0 K : t h e s e n s i t i v i t y o f t h e e f f i c i e n c y t o t h ev a l u e o f t h e g a p o f th e b o t t o m c e l l in c r e a s e s a n d t h e v a l u e o f th e o p t i m u m g a p f o r c e ll so t he r t han t he bo t t om one does no t s h i f t s i gn i f i can t l y w i t h concen t r a t i on .

    6 . L i s t o f sy mb o lsE~E3E~E~s~s~s~Q,W

    E n e r g y f l u x t h a t t h e c o n v e r t e r r e c e i v e s f r o m t h e s u n .E n e r g y f l u x e m i t t e d f r o m t h e c o n v e r t e r t o t h e s i n k .I n t e r na l ene r gy va r i a t i on r a t e i n t he conve r t e r .E n e r g y g a p o f c e l l n t h i n a s ta c k e d s y s t e m .E n t r o p y f l u x t h a t t h e c o n v e r t e r r e c e i v e s f r o m t h e s u n .E n t r o p y f l u x e m i t t e d f r o m t h e c o n v e r t e r t o t h e s i n k .I n t e r na l en t r opy va r i a t i on r a t e i n t he conve r t e r .R a t e o f h e a t c o n d u c t i o n o u t o f c o n v e r t e r .W o r k p r o d u c e d p e r u n i t o f t im e ( p o w e r) .

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    19/20

    A, M ar tf , G .L . Arat~jo / Solar Energy M ater ia l s and So lar Ce ll s 43 (1996) 2 03 -22 2 221Tc C o n v e r t e r t e m p e r a t u r e .Ts T e m p e r a t u r e o f t h e s u n.To E f f e c t i v e t e m p e r a t u r e f o r c h a r a c t e r i z i n g t h e p h o t o n s e m i t t e d f r o m t h e c o n v e r t e r .

    S t e f a n - B o l t z m a n c o n s t a n t .X L i g h t c o n c e n t r a t i o n .n R e f r a c t i o n i n d e x .0 s S e m i a n g l e w i t h w h i c h p h o t o n s f r o m t h e s u n r e a c h t h e E a r th .0 x M a x i m u m s e m i a n g l e w i t h w h i c h p h o t o n s i m p i n g e o n t h e c e ll .0 E M a x i m u m s e m i a n g l e f o r t h e p h o t o n s e m i t t e d f r o m t h e c e ll .0 A n g l e t h a t d e f i n e s r a y t r a j e c t o r i e s ( F i g . 3 a ) .

    S o l i d a n g l e s u s t a i n e d b y 0 ."q~ E f f i c i e n c y ( t h e r m o d y n a m i c d e f i n it i o n ).~q2 E f f i c i e n c y ( p h o t o v o l t a i c d e f i n i t i o n ) .FABs N u m b e r o f p h o t o n s a b s o r b e d p e r u n i t o f t im e in t h e c e ll .FEM N u m b e r o f p h o t o n s e m i t t e d p e r u n i t o f t i m e f r o m t h e c e ll .a A b s o r p t i v i t y .e E m i s s i v i t y .V V o l t a g e .P w R P o w e r d e l i v e r e d b y a s y s t e m w i t h r e f le c t o r s.P NR P o w e r d e l i v e r e d b y a s y s t e m w i t h o u t r e f le c t o r s .q E l e c t r o n e l e c t ri c c h a r g e .h P l a n c k ' s c o n s ta n t .c S p e e d o f t h e l i g h t i n v a c u u m .k B o l t z m a n ' s c o n s t an t .

    Acknow l e dg emen t sT h i s w o r k h a s b e e n p a r t i a l l y s u p p o r t e d b y t h e S p a n i s h P R O N T I C u n d e r c o n t r a c t

    T I C - 0 7 7 8 - C 0 4 - 0 1 a n d " A c c i 6 n I n t e g r a d a " H B 9 4 0 2 9 . T h e a u th o rs w o u l d l ik e to th a n kD r . P . A . D a v i e s , M r . P . G r i f f in a n d t h e r e v i e w e r s f o r t h e i r c o m m e n t s a n d c a r e f u l re a d i n go f th e m a n u s c r i p t . A n t o n i o w i s h e s t o r e m e m b e r h i s t u to r , fr i e n d a n d c o a u t h o r o f th i sp a p e r , G e r a r d o , w h o d i e d o n 8 N o v e m b e r 1 9 9 5 .

    References[1] G.L. Arafijo and A. MartL Ab solute limiting efficiencies for p hotovoltaic energy conve rsion, Sol. E nergyMater. Sol. Cells 33 (1994) 213-240.[2] P.T. Landsberg and G. Ton ge, Thermodynamic ene rgy conversion efficiencies, J . Appl. P hys. 51(7)(1980) RI-R 20.[3] A . D e V os and H. Pauw els, On the thermodinam ic limit of photovoltaic energy conversion, App l. Phys.25 (1981) 119-125.[4] W .R. M cCluney, Introduction to Radiometry and Photometry, Ch. 5 (Artech House, Boston-London,1994).[5] J.E. P arrott, Therm odynam ic limits to ph otovoltaic en erg y conversion, in: A. Luqu e and G .L. Arafijo(Eds.), P hysical Limitations to Photovo ltaic Energy C onversion (Adam Hilger, 1990),

  • 8/8/2019 Limiting Efficiencies for Photo Voltaic Energy Conversion in Multigap Systems

    20/20

    2 2 2 A. Mar t l, G .L . Araf i jo / Solar Energy Mater ia l s and So lar Cel ls 43 (1996) 2 03- 22 2[ 6 ] H . B . C a l l e n , T e r m o d i n f i m i c a , E d . A C , M a d r i d , 1 9 8 1 .[ 7 ] C . H . H e n r y , L i m i t i n g e f f i c i e n c i e s o f i d e a l s i n g l e a n d m u l t i p l e e n e r g y g a p t e r r e s t r i a l s o l a r c e l l s , J . A p p l .

    P h y s . 3 2 ( 1 9 8 0 ) 5 1 0 - 5 1 9 .[ 8 ] J .E . P a r r o t t, T h e r m o d y n a m i c s o f s o l a r c e l l e ff i c ie n c y , S o l . E n e r g y M a t e r . S o l . C e l l s 2 5 ( 1 9 9 2 ) 7 3 - 8 5 .[ 9 ] A . D e V o s , I s a so l a r c e l l a n e n d o r e v e r s i b l e e n g i n e ? , S o l a r C e l ls 3 1 ( 1 9 9 1 ) 1 8 1 - 1 9 6 .

    [ 1 0] A . D e V o s , E n d o r e v e r s i b l e T h e r m o d y n a m i c s o f S o l a r E n e r g y C o n v e r s i o n ( O x f o r d U n i v e r s i t y P r es s , N e wY o r k , 1 9 9 2 ) ,

    [ 1 1] A . D e V o s , P . T . L a n d s h e r g , P . B a r u c h a n d J .E . P a r r o t t , E n t r o p y f l u x e s , e n d o r e v e r s i b i l i t i e s a n d s o l a re n e r g y c o n v e r s i o n , J . A p p l . P h y s . 7 4 ( 6 ) ( 1 9 9 3 ) 3 6 3 1 - 3 6 3 7 .

    [ 1 2 ] W . S c h o c k l e y a n d H . J . Q u e i s s e r , D e t a i l e d b a l a n c e l i m i t o f e f f i c i e n c y o f p - n j u n c t i o n s o l a r c e l ls , J . A p p l .P h y s . 3 2 ( 1 9 6 1 ) 5 1 0 - 5 1 9 .

    [ 1 3 ] J . E . P a r r o t t , S e l f c o n s i s t e n t d e t a i l e d b a l a n c e t r e a t m e n t o f t h e s o l a r c e l l , I E E E P r o c . 1 3 3 , P t . J . N o . 5( 1 9 8 6 ) 3 1 4 - 3 1 8 .

    [ 1 4 ] G . L . A r a f i j o a n d A . M a r t l , G e n e r a l i z e d d e t a i l e d b a l a n c e t h e o r y t o c a l c u l a t e t h e m a x i m u m e f f i c i e n c y o fs o l a r ce l ls , P r o c . 1 l t h E u r o p e a n P h o t o v o l t a i c S p e c i a l is t s C o n f ., M o n t r e a u x , 1 9 9 2 , p p. 1 4 2 - 1 4 5 .

    [ 15 ] P . T . L a n d s b e r g , H . N u s s b a u m e r a n d G . W i l l e k e , B a n d - b a n d i m p a c t i o n i z a ti o n a n d s o l a r c e l l e f f ic i e n c y , J.A p p l . P h y s . 7 4 ( 2 ) ( 1 9 9 3 ) 1 4 5 1 - 1 4 5 2 .

    [ 1 6 ] J .H . W e r n e r , R . B r e n d e l a n d J . Q u e i s s e r , N e w u p p e r e f f i c i e n c y l i m i t s f o r s e m i c o n d u c t o r s o l a r c e l l s , 1 s tW o r l d C o n f . o n P h o t o v o l t a i c E n e r g y C o n v e r s i o n , H a w a i i , 1 9 9 4 .

    [ 1 7 ] J . H . W e r n e r , S . K o l o d i n s k i a n d H . Q u e i s s e r , N o v e l o p t i m i z a t i o n p r i n c i p l e s a n d e f f i c i e n c y l i m i t s f o rs e m i c o n d u c t o r s o l a r c e l l s , P h y s . R e v . L e t t . ( 1 9 9 4 ) 3 8 5 1 - 3 8 5 4 .

    [ 1 8 ] R . T . R o s s a n d J . N o z i k , E f f i c i e n c y o f h o t c a r r i e r s o l a r e n e r g y c o n v e r t e r s , J . A p p l . P h y s . 5 3 ( 5 ) ( 1 9 8 2 )3 8 1 3 - 3 8 1 8 .

    [ 1 9 ] A . D e V o s , D e t a i l e d b a l a n c e l i m i t o f th e e f f i c i e n c y o f t a n d e m s o l a r c e l l s , J . P h y s . D : A p p l . P h y s . 1 3( 1 9 8 0 ) 8 3 9 - 8 4 6 .

    [ 2 0 ] H . P a u w e l s a n d A . D e V o s , D e t e r m i n a t i o n o f t h e m a x i m u m e f f i c i e n c y s o l a r ce l l s tr u c t u re , S o l i d S t a teE l e c t r o n i c s 2 4 ( 9 ) ( 1 9 8 1 ) 8 3 5 , 8 4 3 .

    [ 2 1 ] J . E . P a r r o t t , T h e l i m i t i n g e f f i c i e n c y o f a n e d g e i l l u m i n a t e d m u l t i g a p s o l a r c e ll , J . P h y s . D : A p p l . P h y s . 1 2( 1 9 7 9 ) 4 4 1 - 4 5 0 .[ 2 2 ] G . L . A r a f i jo a n d A . M a r t l , O n t h e d e t a i l e d b a l a n c e l i m i t o f i d e a l m u l t i p l e b a n d g a p s o l a r c e l ls , P r o c . 2 2 n dI E E E P h o t o v o l t a i c S p e c i a l i s t s C o n f . , N e w Y o r k , 1 9 9 1 , p p . 2 9 0 - 2 9 4 .

    [ 2 3] E 8 9 1 - 8 7 , A S T M S t a n d a r d , 1 9 1 6 R a c e S t ., P h i l a d e l p h i a , P A 1 9 1 0 3 .[ 2 4] G . L . A r a f ij o a n d A . M a r t l , L i m i t i n g e f f i c i e n c ie s o f i d e a l m u l t ip l e b a n d g a p s o l a r ce l ls u n d e r c o n c e n t r a t e d

    s u n l i g h t , P r o c . 9 t h E u r o p e a n P h o t o v o l t a i c S c i e n c e a n d E n g i n e e r i n g C o n f ., F r e i b u r g , 1 9 9 1 , pp . 1 1 1 - 1 1 4 .