18
Lightweight, Low Lightweight, Low - - Cost Heat Cost Heat Sink for High Sink for High - - Heat Flux Heat Flux Applications Applications Art Art Fortini Fortini ULTRAMET ULTRAMET TFAWS Meeting TFAWS Meeting August 8, 2006 August 8, 2006

Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

Lightweight, LowLightweight, Low--Cost Heat Cost Heat Sink for HighSink for High--Heat Flux Heat Flux

ApplicationsApplicationsArt Art FortiniFortini

ULTRAMETULTRAMETTFAWS MeetingTFAWS MeetingAugust 8, 2006August 8, 2006

Page 2: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

Basic ConceptBasic Concept

Use openUse open--cell SiC foam as an cell SiC foam as an extended surface or cooling fin for extended surface or cooling fin for SiC integrated circuits (ICs).SiC integrated circuits (ICs).AdvantagesAdvantages•• Perfect CTE match with SiC ICsPerfect CTE match with SiC ICs•• High thermal conductivity High thermal conductivity •• High surface areaHigh surface area•• Low pressure dropLow pressure drop•• Immune to corrosionImmune to corrosion

Page 3: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

Silicon Carbide FoamSilicon Carbide FoamHigh surface areaHigh surface areaImportant for transferring heat to cooling mediumImportant for transferring heat to cooling medium

0

50

100

150

200

0 10 20 30Relative density (%)

Surf

ace

area

(cm

2/cm

3)

100 ppi

80 ppi65 ppi

Page 4: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

Pressure DropPressure Drop

Silicon carbide Silicon carbide foamfoam•• 0.5 x 2 x 30.5 x 2 x 3”” slabslab•• Water flow parallel Water flow parallel

to long axis.to long axis.•• Important for Important for

flowing large flowing large quantities of quantities of coolant without coolant without pressure drop pressure drop penalty.penalty.

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000

flow (g/min)

dP (m

m H

2O)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 1 2 3 4 5

flow (cm/s)

dP (p

sid)

100, 30

100,20

80, 30

80, 20

no foam

Page 5: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

Pressure DropPressure Drop

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.0 5.0 10.0 15.0 20.0

air velocity (ft/s)

pres

sure

dro

p (p

sid) 20

30456580100

1" thick foam • Carbon foam– 1” thick slab– Air flow

perpendicular to thickness

– Very low pressure drop

Page 6: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

UltrafoamsUltrafoams

Begin with polyurethaneBegin with polyurethaneImpregnate with resinImpregnate with resinPyrolyze to form glassy carbonPyrolyze to form glassy carbon•• 33--1000 pores per inch (ppi)1000 pores per inch (ppi)

CVI with SiCCVI with SiC•• 55--30% relative density30% relative density•• Other materials: Si, Gr, pyC, Si(C), Other materials: Si, Gr, pyC, Si(C),

refractory metals, etcrefractory metals, etc

Page 7: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

UltrafoamUltrafoam

Vitreous carbon Silicon carbide

Page 8: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

Basic ConceptBasic Concept

FaceplateIC heatsource

Coolant in Coolant out

SiC foam

Page 9: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

ExperimentalExperimental

Copper block w/ resistive heaters

SiC foamTi Pi

Te

dP

Thermocouple (at heater/foam bondline) Insulation

Coolant outletCoolant inlet

Bondline

Page 10: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

Unique Thermal Control Challenges(High Heat Flux, High Power, Low Temperature)

10 3

4 10

2 10

1 10

10 0

10 -1

10 -2

1000 2000 3000 4000 5000

Solar heating

Rocket motor case (external)

Reentry from Earth orbit

Nuclear blast (1 Mt, 1 mi)

Ballistic entry Rocket nozzle throat (internal)

Laser diodes

Temperature (K)

2 q" W/cm

Electronic & microwave devicesLaser diodesLaser gain media

150°C

•Phase II goal was to reach 1000 W/cm2 with temperature below 150°C

Page 11: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

Experimental ResultsExperimental ResultsFoam PPI / density Heat Flux Flow Rate Heat Flux / Flow Rate

Cooler SurfaceTemperature

(W/cm2) (GPM) (W min /cm2 G) (°C)100ppi/ 9.8% 711 0.5 1422 1131000ppi / 12% 867 0.5 1734 122100ppi/ 10% 612 0.5 1224 47.81000ppi/ 5% 1006 0.64 1572 165300ppi/ 20% 1011 0.5 2022 53100ppi/ 20% 1000 1.0 1000 135300ppi/ 20% 758 0.3 2527 42.4

• Phase II goal: 1000 W/cm2 while below 150°C.

• Ultramet SiC foam 1011 W/cm2 at only 53°C!

Page 12: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

Experimental ResultsExperimental Results

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000 1200

Heat Flux (W/cm2)

Coo

ler S

urfa

ce T

empe

ratu

re (C

)

300ppi 2-28-06

300ppi with Cu Flap

600ppi-copper flap 9-14-051000ppi (2)(9-9-05)

100PPI-10%

100ppi-20%

100-20%

300ppi-20%

600ppi

Page 13: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

Experimental ResultsExperimental ResultsHeat Stress = Heat Flux/ Flow rate (Gallons per minute)

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000

Heat Stress (W*min/cm2*G)

Coo

ler S

urfa

ce T

empe

ratu

re (C

)

300ppi 2-28-06

300ppi with Cu flap

600ppi-copper flap 9-14-051000(2)(9-9-05)

100PPI-10%

100ppi-20%

100-20%

300ppi-20%

600ppi

Page 14: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

Thermal ModelingThermal ModelingX-Ray Tomography Ultramet SiC Foam

Page 15: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

Thermal Model InputThermal Model InputPartPart Side DimensionsSide Dimensions ThicknessThickness Thermal Conductivity Thermal Conductivity

(W/m C)(W/m C)

SiC FoamSiC Foam 2 x 22 x 2”” 0.50.5”” 4040

TIM1TIM1 2 x 22 x 2”” 100 100 µµmm 4040

SiC Heat spreaderSiC Heat spreader 2 x 22 x 2”” 250 250 µµmm 200200--500 (4H500 (4H--SiC)SiC)

Die Attach (TIM2)Die Attach (TIM2) 5 x 5 mm5 x 5 mm 50 50 µµmm 4040

DieDie 5 x 5 mm5 x 5 mm 380 380 µµmm 200200--500 (4H500 (4H--SiC)SiC)

GaN active areaGaN active area 0.25 x 4 mm0.25 x 4 mm n/an/a n/an/a

Page 16: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

Modeling ConclusionsModeling Conclusions1kW/cm2 with Heat Spreader

0.1 and 0.5 GPM 27 and 28 °C

1kW/cm2 without Heat Spreader

0.1 and 0.5 GPM 61 and 48 °C

0.1 GPM 0.1 GPM

0.5 GPM0.5 GPM

Page 17: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

Other WorkOther Work-- High Heat Flux GaN-Based RF Componentsand Cooling Methods

Jeff Calame, Steve Binari, Robert Myers †, and Frank Wood †Naval Research Laboratory, Washington, DC 20375

0

50

100

150

200

0 500 1000 1500 2000 2500

Measured power density (W/cm2 )

Experimentally measured temperatures(Cooler surface under heat probe source center )

(0.502 gal/min, 20 oC H2O inlet)

OFHC copper cooler

Silicon cooler

Aluminumnitridecooler

Tem

pera

ture

( o C

)

-Micromachined to 500µm

3rd Annual Workshop on Thermal Management of High Flux Commercial and Military Electronics University of Maryland, College Park, MD October 18, 2004

Ultramet Foam (same flow rate)

•Ultramet SiC foam has comparable performance to micromachined OFHC copper and single crystal silicon with diamond heat spreader.

Page 18: Lightweight, Low-Cost Heat Sink for High-Heat Flux Applications - TFAWS 2020 | Thermal ... · 2006-07-26 · Thermal Model Input Part Side Dimensions Thickness Thermal Conductivity

SummarySummaryEffects of SiC foam:Effects of SiC foam:•• 1011 W/cm1011 W/cm2 @53C w/ 0.5 GPM water@53C w/ 0.5 GPM water

Thermal Model predicts improvements Thermal Model predicts improvements by going to heat spreader configuration.by going to heat spreader configuration.•• 27 27 ººC with heat spreader w/ 0.1 GPMC with heat spreader w/ 0.1 GPM•• 61 61 ººC for 100ppi. 10% density (stock item) C for 100ppi. 10% density (stock item)

at low flow rate.at low flow rate.

Excellent heat transfer Excellent heat transfer little material little material is requiredis required (small volume/ light and (small volume/ light and inexpensive).inexpensive).Low coolant flow rates requires less in Low coolant flow rates requires less in way of supporting systemsway of supporting systems-- pumping, pumping, filtration, etc.filtration, etc.