Ligase Chain Reaction

Embed Size (px)

Citation preview

  • 8/15/2019 Ligase Chain Reaction

    1/16

    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/15024770

    Ligase Chain-Reaction (Lcr) – Overview andApplications

     ARTICLE  in  PCR METHODS AND APPLICATIONS · MARCH 1994

    DOI: 10.1101/gr.3.4.S51 · Source: PubMed

    CITATIONS

    67

    READS

    2,286

    6 AUTHORS, INCLUDING:

    Martin Wiedmann

    Cornell University

    316 PUBLICATIONS  9,374 CITATIONS 

    SEE PROFILE

    Francis Barany

    Weill Cornell Medical College

    118 PUBLICATIONS  5,446 CITATIONS 

    SEE PROFILE

    Available from: Martin Wiedmann

    Retrieved on: 12 November 2015

    http://www.researchgate.net/profile/Martin_Wiedmann2?enrichId=rgreq-c69d1c61-23c8-4680-9e4d-9223bd48ea65&enrichSource=Y292ZXJQYWdlOzE1MDI0NzcwO0FTOjk5MjUzNTY5NDU4MTgxQDE0MDA2NzUzMDM0MTY%3D&el=1_x_4http://www.researchgate.net/profile/Martin_Wiedmann2?enrichId=rgreq-c69d1c61-23c8-4680-9e4d-9223bd48ea65&enrichSource=Y292ZXJQYWdlOzE1MDI0NzcwO0FTOjk5MjUzNTY5NDU4MTgxQDE0MDA2NzUzMDM0MTY%3D&el=1_x_5http://www.researchgate.net/profile/Martin_Wiedmann2?enrichId=rgreq-c69d1c61-23c8-4680-9e4d-9223bd48ea65&enrichSource=Y292ZXJQYWdlOzE1MDI0NzcwO0FTOjk5MjUzNTY5NDU4MTgxQDE0MDA2NzUzMDM0MTY%3D&el=1_x_5http://www.researchgate.net/?enrichId=rgreq-c69d1c61-23c8-4680-9e4d-9223bd48ea65&enrichSource=Y292ZXJQYWdlOzE1MDI0NzcwO0FTOjk5MjUzNTY5NDU4MTgxQDE0MDA2NzUzMDM0MTY%3D&el=1_x_1http://www.researchgate.net/profile/Francis_Barany?enrichId=rgreq-c69d1c61-23c8-4680-9e4d-9223bd48ea65&enrichSource=Y292ZXJQYWdlOzE1MDI0NzcwO0FTOjk5MjUzNTY5NDU4MTgxQDE0MDA2NzUzMDM0MTY%3D&el=1_x_7http://www.researchgate.net/institution/Weill_Cornell_Medical_College?enrichId=rgreq-c69d1c61-23c8-4680-9e4d-9223bd48ea65&enrichSource=Y292ZXJQYWdlOzE1MDI0NzcwO0FTOjk5MjUzNTY5NDU4MTgxQDE0MDA2NzUzMDM0MTY%3D&el=1_x_6http://www.researchgate.net/profile/Francis_Barany?enrichId=rgreq-c69d1c61-23c8-4680-9e4d-9223bd48ea65&enrichSource=Y292ZXJQYWdlOzE1MDI0NzcwO0FTOjk5MjUzNTY5NDU4MTgxQDE0MDA2NzUzMDM0MTY%3D&el=1_x_5http://www.researchgate.net/profile/Francis_Barany?enrichId=rgreq-c69d1c61-23c8-4680-9e4d-9223bd48ea65&enrichSource=Y292ZXJQYWdlOzE1MDI0NzcwO0FTOjk5MjUzNTY5NDU4MTgxQDE0MDA2NzUzMDM0MTY%3D&el=1_x_4http://www.researchgate.net/profile/Martin_Wiedmann2?enrichId=rgreq-c69d1c61-23c8-4680-9e4d-9223bd48ea65&enrichSource=Y292ZXJQYWdlOzE1MDI0NzcwO0FTOjk5MjUzNTY5NDU4MTgxQDE0MDA2NzUzMDM0MTY%3D&el=1_x_7http://www.researchgate.net/institution/Cornell_University?enrichId=rgreq-c69d1c61-23c8-4680-9e4d-9223bd48ea65&enrichSource=Y292ZXJQYWdlOzE1MDI0NzcwO0FTOjk5MjUzNTY5NDU4MTgxQDE0MDA2NzUzMDM0MTY%3D&el=1_x_6http://www.researchgate.net/profile/Martin_Wiedmann2?enrichId=rgreq-c69d1c61-23c8-4680-9e4d-9223bd48ea65&enrichSource=Y292ZXJQYWdlOzE1MDI0NzcwO0FTOjk5MjUzNTY5NDU4MTgxQDE0MDA2NzUzMDM0MTY%3D&el=1_x_5http://www.researchgate.net/profile/Martin_Wiedmann2?enrichId=rgreq-c69d1c61-23c8-4680-9e4d-9223bd48ea65&enrichSource=Y292ZXJQYWdlOzE1MDI0NzcwO0FTOjk5MjUzNTY5NDU4MTgxQDE0MDA2NzUzMDM0MTY%3D&el=1_x_4http://www.researchgate.net/?enrichId=rgreq-c69d1c61-23c8-4680-9e4d-9223bd48ea65&enrichSource=Y292ZXJQYWdlOzE1MDI0NzcwO0FTOjk5MjUzNTY5NDU4MTgxQDE0MDA2NzUzMDM0MTY%3D&el=1_x_1http://www.researchgate.net/publication/15024770_Ligase_Chain-Reaction_%28Lcr%29__Overview_and_Applications?enrichId=rgreq-c69d1c61-23c8-4680-9e4d-9223bd48ea65&enrichSource=Y292ZXJQYWdlOzE1MDI0NzcwO0FTOjk5MjUzNTY5NDU4MTgxQDE0MDA2NzUzMDM0MTY%3D&el=1_x_3http://www.researchgate.net/publication/15024770_Ligase_Chain-Reaction_%28Lcr%29__Overview_and_Applications?enrichId=rgreq-c69d1c61-23c8-4680-9e4d-9223bd48ea65&enrichSource=Y292ZXJQYWdlOzE1MDI0NzcwO0FTOjk5MjUzNTY5NDU4MTgxQDE0MDA2NzUzMDM0MTY%3D&el=1_x_2

  • 8/15/2019 Ligase Chain Reaction

    2/16

     1994 3: S51-S64Genome Res. M Wiedmann, W J Wilson, J Czajka, et al. 

    Ligase chain reaction (LCR)--overview and applications. 

    References http://genome.cshlp.org/content/3/4/S51.refs.html

    This article cites 38 articles, 19 of which can be accessed free at:

    serviceEmail alerting

     click heretop right corner of the article orReceive free email alerts when new articles cite this article - sign up in the box at the

     http://genome.cshlp.org/subscriptions go to: Genome Research To subscribe to

    Copyright © Cold Spring Harbor Laboratory Press

     Cold Spring Harbor Laboratory Presson July 13, 2011 - Published by genome.cshlp.orgDownloaded from 

    http://genome.cshlp.org/content/3/4/S51.refs.htmlhttp://genome.cshlp.org/content/3/4/S51.refs.htmlhttp://genome.cshlp.org/content/3/4/S51.refs.htmlhttp://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=genome;3/4/S51&return_type=article&return_url=http://genome.cshlp.org/content/3/4/S51.full.pdfhttp://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=genome;3/4/S51&return_type=article&return_url=http://genome.cshlp.org/content/3/4/S51.full.pdfhttp://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=genome;3/4/S51&return_type=article&return_url=http://genome.cshlp.org/content/3/4/S51.full.pdfhttp://genome.cshlp.org/subscriptionshttp://genome.cshlp.org/subscriptionshttp://genome.cshlp.org/subscriptionshttp://genome.cshlp.org/subscriptionshttp://genome.cshlp.org/subscriptionshttp://www.cshlpress.com/http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/subscriptionshttp://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=genome;3/4/S51&return_type=article&return_url=http://genome.cshlp.org/content/3/4/S51.full.pdfhttp://genome.cshlp.org/content/3/4/S51.refs.html

  • 8/15/2019 Ligase Chain Reaction

    3/16

      l l | l l l l a n u a l S u p p l em e n

    L igase Ch a in

    R e a c t i o n

    L C R ) - -O v e r v i e w

    a n d

    A p p l i c a t i o n s

    M a r t in W i e d m a n n 1

    W e n d y I . W i l s o n 2 J o h n

    C z a j k a 1 J ia n y i n g L u o 3

    F r a n c i s B a r a n y ~ a n d C a r l

    A . B a t t 1

    1Department of Food Science,

    Cornell University, Ithaca, New

    York 14853; 2Department of Plant

    Pathology, New York State

    Agricultural Experiment Station,

    Corneli University, Geneva, New

    York 14456; 3Department of

    Microbiology, Hearst Microbiology

    Research Center, Cornell University

    Medical College, New York, New

    York 10021

    PCR has facilitated the development of a variety of nucleic acid-based detec-

    tion systems for genetic disorders as well as for bacterial, viral, and other

    pathog ens. (1) In the last few years, a number of oth er DNA amplification

    methods, incl udin g self-sustained sequence replicat ion (3SR), (2) Q-beta rep-

    licase (QI3), 3) and the ligase chain react ion (LCR), 4 s) have b een developed to

    complem ent, or as alternatives to, PCR. (6 7) From its initial detailed reports in

    1991, LCR evolved as a very promising diagnostic technique that is often

    utilized in conjunction with a primary PCR amplification. LCR employs a

    thermostable ligase and allows the discrimination of DNA sequences differing

    in only a single base pair (see Fig. 1). (4 s) The power of LCR is its comp atibil ity

    with other replication-based amplification metho ds. By comb inin g LCR with

    a primary amplification, one effectively lines up the crosshairs to distinguish

    single base-pair changes with pinpoint accuracy.

    The intellectual genesis of LCR can be traced back to pioneering work by

    Whiteley et al. (8~ who described an oligonucleotide probe-based assay using

    two probes that are ligated together only whe n immediate ly adjacent to each

    other. The same concept is applied in the oligonucleotide ligation assay

    (OLA). (9 10)This method was used in conjunction with a primary PCR step to

    screen for sickle cell anemia, the AF508 mutation in cystic fibrosis, and T-cell-

    receptor poly morp hisms. Wu and Wallace ~11t described a similar techn ique

    called the ligase amplificati on reaction (LAR), whic h employs two sets of

    complem entary primers and repeated cycles of denatu ration (at 100~ and

    ligation (at 30~ using the mesophi lic T4 DNA ligase. Use of mesoph ilic, t hat

    is, T4 or Escher i ch ia co l i ligase has the drawback of requiring the addition of

    fresh ligase after each denaturation step, as well as appearance of target-

    ind epe nde nt ligation products. (11,~2) In contrast, LCR provides a much higher

    sensitivity and is less susceptible to the formation of false-positive ligation

    products.

    Thermostable ligase minimizes target-independent ligation because the

    reaction can be performed at or near the melting temperature (T,n) of the

    oligonuc leotides. (s) Furthermore , the use of thermos table ligase avoids the

    need to add fresh ligase after each denaturation step as required in LAR.

    Recently, thermostable ligase has become available from a variety of com-

    mercial suppliers, and this will probably lead to even wider application and

    use of this new amplification technique.

    The concep t of LCR and ligation-based diagnostics has been reviewed. (s 13)

    We will provide an overview of the recent advancements, new develo pments,

    and applications of LCR and similar ligase-mediated detection methods.

    T H E O R Y O F L CR N D S I M I L R M P L I F I C T I O N M E T H O D S

    The principle of LCR is based in part on the ligation of two adjacent synthetic

    oligonucleotide primers, which uniqu ely hybridize to one strand of the target

    DNA (see Fig. 1). The junct ion of the two primers is usually pos ition ed so that

    the nucleotide at the 3 end of the upstream p rimer coincides with a potential

    single base-pair difference in the targeted sequence. This single base-pair

    difference may define two different alleles, species, or other polymorphisms

    correlated to a given phenotyp e. If the target nucleotide at that site comple-

    ments the nucleotide at the 3 end of the upstream primer, the two adjoining

    primers can be covalently joined by the ligase. The unique feature of LCR is

    a second pair of primers, almost entirely complementary to the first pair, that

    are designed with the nucleotide at the 3 end of the upstream primer denot-

    ing the sequence difference. In a cycling reaction, using a thermostable DNA

    ligase, both ligated products can then serve as templates for the next reaction

    cycle, leading to an exponential amplification process analogous to PCR am-

    plification. If there is a mismatch at the primer junction, it will be discrirni-

    3:SS1-S649 by Co ld Sprin g Harbor Laboratory ISSN 1054-9805/94 $1.00

    I~ ,R

    M e t h o d s a n d p p l ic a t io n s

    1

    Cold Spring Harbor Laboratory Presson July 13, 2011 - Published by genome.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/

  • 8/15/2019 Ligase Chain Reaction

    4/16

    Man u a l Sup p l em en t ll lU lmW

    FIGURE 1 Principle of LCR. Bottom) The example shown is an LCR with matched target (L.

    monocytogenes) and mismatched target L. innocua). The pathogenic bacter ia L. monocytogenes can

    be distinguished from other closely related Listeria spp. (e.g., L. innocua) by a single base-pair

    difference in the 16S rDNA/2~ L. monocytogenes has an A-T base pair at nucleotid e 1258, whereas

    L. innocua has a G-C base pair at this position. Top) DNA is denat ured at 94~ and the four LCR

    primers anneal to their complementa ry strands at 65~ which is approximately 5~ below their

    Tin. Therm ostable ligase (Q) will only ligate primers th at are perfectly compl em enta ry to thei r

    target sequence and hybridize directly adjacent to each other (as shown with

    L. monocytogenes,

    left). The discrim inating bases at the 3 ends of the upstream primers are depicted as boxes on the

    target as well as on the primers for clarity. Primers that h ave at least a single base-pair mism atch

    at the 3 end con tributi ng to the jun ction of the two primers will not ligate (as show n with L.

    innocua, right). The discr iminating primers have a 2-bp nonco mple men tary AA tail at their 5

    ends to avoid ligation of the 3 ends.

    n a t e d a g a i n s t b y t h e r m o s t a b l e l i ga s e a n d t h e p r i m e r s w i l l n o t b e l i g a te d . T h e

    a b s e n c e o f t h e l i g a t e d p r o d u c t t h e r e f o r e i n d i c a t e s a t l e a st a s i n g l e b a s e - p a i r

    c h a n g e i n t h e t a r g e t s e q u e n c e . ~4) L i g a se d e t e c t i o n r e a c t i o n ( L D R ) i s s i m i l a r t o

    L C R . ~s) I n L D R , o n e p a i r o f a d j a c e n t p r i m e r s t h a t h y b r i d i z e t o o n l y o n e o f t h e

    t a r g e t s t r a n d s i s u s e d t o a c h i e v e a l i n e a r a m p l i f i c a t i o n ( s ee F ig . 2 ). L D R m a y

    b e u s e d f o l l o w i n g a p r i m a r y a m p l i f i c a t i o n ( P CR , 3 SR , Q l 3 - r ep l i c as e , R T - P C R )

    a n d h a s t h e a d v a n t a g e o f a c c u r a t e l y q u a n t i t a t i n g t h e r a t i o o f t w o a l l e le s i n a

    t a r g e t s a m p l e . ~14) L D R c o u p l e d t o P C R h a s p r o m i s e i n a m u l t i p l e x f o r m a t

    w h e r e s e v e r a l m u t a t i o n s a r e a n a l y z e d i n a s i n g l e a m p l i f i c a t i o n . ~s) T h i s

    52

    PCR Me t h o d s a n d p p l i c a t i o n s

    Cold Spring Harbor Laboratory Presson July 13, 2011 - Published by genome.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/

  • 8/15/2019 Ligase Chain Reaction

    5/16

      l l |l l i l an u a i Supp lem en

    FIGURE 2 Princ iple of PCR-coupled LDR. The sa me two target sequ ence s as in Fig. 1 are used to

    illustrate the PCR-coupled LDR. The DNA stretch co ntain ing the single base-pair difference that

    dist inguishes L. monocytogenes from L. innocua (see Fig. 1, bottom is PCR amplified using PCR

    primers outsid e the region o f the LCR primers. The PCR amp lifies both target sequen ces und er

    standard con dit ions (detai ls can be found in Refs. 20 and 32). ( 9 Taq polymerase 3' to each of

    the two PCR primers. After PCR amplification,

    Taq

    polymerase is inactivated by 97~ for 25

    rain. 133~. An aliquo t o f the PCR-amplified DNA (between 1% and 4% o f the PCR reaction) is then

    used in the LDR. DNA is denatu red at 94~ and the two LDR prime rs annea l to their comple-

    men tary strand at 65~ whic h is appro xima tely 5~ below their Tin. As in LCR (Fig. 1), the

    thermostable l igase (Q) wil l only l igate primers that are perfectly comp lemen tary to their target

    sequence and hybridize directly adjacent to each other (as shown with L. monocytogenes, left .

    Primers that have at least a single base-pair mism atch at the 3' en d co ntributing to the junction

    of the two prim ers will not ligate (as show n with L. innocua, right . An LDR cycle, w hich consists

    of a den aturin g step at 94~ for 1 rain and an anne alin g step of 65~ is repeated 5-2 0 times so

    that a l inear am plification of l igated LDR primers is achieved with the com plem entary target ( i.e.,

    L. monocytogenes .

    m e t h o d is c u r r e n t l y b e i n g a p p l ie d t o t h e s i m u l t a n e o u s d e t e c t i o n o f m u l t i p l e

    m u t a t i o n s i n c y s t i c f i b r o s i s ~15'1 6) a s w e l l a s i n 2 1 - h y d r o x y l a s e d e f i c i e n c y . ~17)

    p L C R is a n o t h e r l i g a s e - m e d i a t e d d e t e c t i o n m e t h o d , w h e r e t h e 3 ' e n d s o f

    t h e d i s c r i m i n a t i n g ( o r a l l e le - s p e c if i c ) p r i m e r s c o i n c i d e w i t h a p o t e n t i a l b a s e -

    p a i r c h a n g e . T h e p L C R p r i m e r s a r e d e s i g n e d w i t h a g a p b e t w e e n t h e d i s c r i m -

    i n a t i n g a n d t h e n o n d i s c r i m i n a t i n g p r i m e r ( s ee Fi g. 3 ). In th i s r e a c ti o n , t h e

    g a p i s f il l e d u s i n g t h e T a q p o l y m e r a s e S t o f fe l f r a g m e n t , f o l l o w e d b y t h e l i ga -

    t i o n o f t h e e l o n g a t e d d i s c r i m i n a t i n g p r i m e r w i t h t h e n o n d i s c r i m i n a t i n g

    p r i m e r . T h e s p e c i f i c i t y o f t h i s m e t h o d r e li e s o n a l l e l e -s p e c i f i c e l o n g a t i o n o f

    t h e d i s c r i m i n a t i n g p r i m e r b y t h e p o l y m e r a s e . B i r k e n m e y e r a n d M u s h a h -

    w a r ~18~ d e s c r i b e d a n o t h e r l i g a s e - m e d i a t e d t e c h n i q u e c a l l e d g a p p e d L C R (G -

    L CR ). T h i s t e c h n i q u e u s e s f o u r o l i g o n u c l e o t i d e p r i m e r s w i t h t h e t w o p r i m e r s ,

    o f e a c h p a i r b e i n g s e p a r a t e d b y a g a p o f o n e o r m o r e c o n s e c u t i v e b a s e s t h a t

    a r e s p e c i f i c f o r t h e t a r g e t D N A ( s e e Fi g. 4 ). B y a d d i n g o n l y t h e m i s s i n g d e o x -

    y n u c l e o t i d e s t o t h e r e a ct i o n t o g e t h e r w i t h a t h e r m o s t a b l e p o l y m e r a s e a n d a

    P R Me t h o d s a n d A p p l i c a t i o n s 5 3

    Cold Spring Harbor Laboratory Presson July 13, 2011 - Published by genome.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/

  • 8/15/2019 Ligase Chain Reaction

    6/16

    Man ua l Supp lem en t lU

    FIGURE 3 Prin ciple of pLCR. The same target sequ enc es as in Fig. 1 are used to illu strate pLCR.

    After the d enat uring o f the DNA at 94~ the four pLCR prime rs are allowed to ann eal at 65~

    These primers anneal so that a two- or three-nucleotide gap between the primers of one pair

    (which anneals to the same strand) is formed. The 3 end o f the d iscriminating primers (shown

    with a shaded box at the 3 end and w ith the discriminating nucleotides indicated by T and A)

    can be elongated by the Taq polymerase Stoffel fragment and the appropriate nucleotides anal-

    ogous to the process in PCR. Onl y the nucleo tides neede d to fill the two- or three-nu cleotid e gap

    between the d iscriminating and the no ndiscrim inating primers are included in the reaction mix;

    dATP, dGTP, and dTTP are needed for the exam ple shown. After elongation of the discrimin ating

    primers by two or three nucleotides, the junction b etween the elonga ted discrim inating primer

    and the nond iscrimin ating primer can be sealed by the thermostable l igase. This cycle is repeated

    between 30 and 60 t imes. With a noncomplementary target right), no elongation of the dis-

    crimina ting primer is possible; therefore, no l igation of the two primers w il l occur and no pLCR

    product wil l form.

    t h e r m o s t a b l e l ig a s e, t h e g a p m u s t f ir st b e f i l le d i n th e p r e s e n c e o f t h e m a t c h -

    i n g t a rg e t a n d b e f o r e t h e r e s u l t i n g n i c k c a n t h e n b e s e a l e d b y t h e l i g a s e. T h i s

    t e c h n i q u e l i m i t s i ts e l f t o t h e d e t e c t i o n o f b a s e -p a i r c h a n g e s f r o m A -T FF -A t o

    G - C / C - G o r v i c e v e r s a . Fo r e x a m p l e , g a p p e d L C R c o u l d n o t d i s t i n g u i s h 13A

    g l o b i n f r o m [ 3 B g l o b i n ( A- -~ T t r a n s v e r s i o n ) b e c a u s e t h e r e i s n o d i f f e r e n c e i n

    t h e b a s e s r e q u i r e d f o r f il l i n g t h e g a p . A s i m i l a r p r i n c i p l e i s al s o a p p l i e d i n t h e

    r e p a i r c h a i n r e a c t i o n ( RC R ), w h i c h h a s b e e n u s e d f o r t h e d e t e c t i o n o f h u m a n

    p a p i l l o m a v i r u s ( H P V) 1 6. (19)

    COMPARISON OF LCR pLCR AND G-LCR

    O n e p e r f o r m a n c e - l i n k e d d i f f e r e n c e c i te d a m o n g L CR , p L C R, a n d G - L C R i s t h e

    r e l a ti v e a m o u n t o f l i g a te d p r o d u c t i n t h e a b s e n c e o f t e m p l a t e . B e c a u s e b o t h

    p L C R a n d G -L CR r eq u i r e a n i n i t i a l t e m p l a t e - d e p e n d e n t e x t e n s i o n , t h e y h a v e

    b e e n p r o p o s e d t o b e l e ss p r o n e t o f a l se p o s i t i v e s i n t h e a b s e n c e o f t e m p l a t e .

    T o c o m p a r e L CR , p L CR , a n d G - LC R , t h e a p p r o p r i a t e p r i m e r s f o r t h e d e t e c t i o n

    o f Listeria monocytogenes b y th e s e t h r ee t e c h n i q u e s w e r e d e s i g n e d a n d s y n -

    t h e s i z e d . (2~ L o c a t i o n s o f t h e p r i m e r s a r e s h o w n i n F i g u r e s 1 , 3 , a n d 4 .

    5 4 PCR Me t h o d s a n d App l i c a t i o n s

    Cold Spring Harbor Laboratory Presson July 13, 2011 - Published by genome.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/

  • 8/15/2019 Ligase Chain Reaction

    7/16

      i l IIIIM an u al Supplem en

    FIGURE 4 Principle of G-LCR. The same ta rget seq uence s as in Fig. 1 are used to illust rate G-LCR.

    After denat uring o f the DNA at 94~ the four primers are allowed to annea l at 65~ These

    primers anneal so that a one-nucleotide gap between the pr imers of one pair (which anneals to

    the same strand) is formed. This gap is located so that it coincides with the base pair discrimi-

    nating the two targets

    L. monocytogenes

    and

    L. innocua

    in the example shown) from each other .

    The 3 ' end of the dow nstream prim er can be elongated by the

    Taq

    polymerase Stoffel fragment

    and the appropriate nucleotides analogous to the process in PCR. Only the nucleotides needed

    to fill the one-nucleotide gap (shown as a shaded box in the target sequence with the discrim-

    inating nucleotides indicated by T and A) between the two primers are included in the reaction

    mix; only dATP and dTTP are needed for the exam ple show n. After elonga tion of the discrimi-

    nating primers with the appropriate nucleotide, the iunction between th e elongated down stream

    primer and the upstream primer can be sealed by the thermostable ligase. This cycle is repeated

    between 30 and 60 times. With a noncomplementary target right), no elongation of the dis-

    crim inatin g prim er is possible; th erefore, no ligation of the two prim ers will occur and no G-LCR

    product will form.

    R a d i o a c t i v e l y l a b e l e d L CR p r i m e r s a n d d e t e c t i o n o f t h e l i g a t i o n p r o d u c t s a f t e r

    g e l e l e c t r o p h o r e s i s ( fo r d e t ai l s, s ee D e t e c t i o n M e t h o d s o f L C R p r o d u c t s )

    w e r e u s e d t o c o m p a r e t h e t h r e e m e t h o d s f o r t h e i r a b i l i ty t o d et e c t s i n g l e

    b a s e - p a i r d if f e r e n c e s i n P C R - a m p l i f i e d 1 6S rD N A . T h e r e a c t i o n c o n d i t i o n s f o r

    G - L C R as w e l l f o r p L C R a r e as d e s c r i b e d i n T a b l e 1 f o r pL C R . I n c o n t r a s t t o

    p r e v i o u s r e p o r t s f o r G -L C R , t h e Taq p o l y m e r a s e S t o ff e l f r a g m e n t w a s u s e d

    i n s t e a d o f Taq p o l y m e r a s e . C o m p a r e d w i t h Taq p o l y m e r a s e , t h e S t o ff e l f r ag -

    m e n t l a c k s 5 ' ~ 3 ' e x o n u c l e a s e a c t i v i t y a n d d o e s n o t e x c i s e b a s e s f r o m t h e 5 '

    e n d o f t h e p r i m e r a d j a c e n t t o t h e g a p . N o t a r g e t - i n d e p e n d e n t l i g a t i o n p r o d -

    u c t s w e r e o b s e r v e d f o r L C R, p L C R , o r G - L CR . F u r t h e r m o r e , a c l e a r d i f f e r e n t i -

    a t i o n o f

    L. monocytogenes

    f r o m

    L. innocua

    b a s e d o n a s i n g l e b a s e - p a i r d i f f e r -

    e n c e i n t h e 1 6S r D N A w a s p o s s i b l e f o r al l t h r e e f o r m a t s . T h i s i s t h e f i rs t t i m e

    t h a t a s i n g l e b a s e - p a i r d i f f e r e n c e w a s d e t e c t e d u s i n g G - L C R . P r e v i o u s r e p o r t s

    d e s c r i b e d t h e d i s c r i m i n a t i o n o f t a r g e ts w i t h a t le a st t w o b a s e - p a i r d i f fe r -

    e n c e s . ~22'23~ F u r t h e r m o r e , t h i s s h o w s t h a t L C R , p L C R , a n d G - L C R h a v e t h e

    p o t e n t i a l t o d e t ec t s i n g l e b a s e- p a i r d i ff e r e n c es ; t h e i r d i s c r i m i n a t o r y a b i l i t y

    PCR Me t h o d s a n d A p p l i c a t i o n s 5 5

    Cold Spring Harbor Laboratory Presson July 13, 2011 - Published by genome.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/

  • 8/15/2019 Ligase Chain Reaction

    8/16

    M a n u a l S u p p le m e n t l i l I l i

    TABLE 1 P r o t o c o l s f o r LC R , p L C R , a n d G - L C R

    LCR pLCR G-LCR

    De taile d refe renc es 4, 5, 20, 27, 30, 32, 21

    41, 42

    Po s i t io n o f 3 ' b a se o f b o th 3 ' b a se o f b o th

    d i sc r im in a t in g s t r an d s ( s in g le s t r an d s (1 o r 2

    n u c leo t id e b a se 3 ' o v e rh an g ) b a se s o v e rh an g )

    Tm of pr im ers 66--70~ (4'2~ or 68-70~ 62-76 ~

    60-66oc. (42)

    Am o u n t o f e ach 1 -1 0 fmo le s /~ l 2 fmo le s /~ l

    p r i m e r

    Lab e l in g o f p r imers

    R e a c t io n v o l u m e

    Bu f fe r co n d i t io n s

    A m o u n t o f

    n u c leo t id e s fo r

    f i l l - in r eac t io n

    Carrier DNA to

    su p p re s s

    b a c k g r o u n d

    T h e r m o s t a b l e

    e n z y m e s / r e a c t i o n

    v o l u m e

    C y c l e c o n d i t i o n s

    b io t in /d ig o x ig en in ; 3 2 p

    fluorescein; 32p

    10- 50 ~1 25 ~1

    20--50 mM Tris-HC1 80 mM KO H/K CI, 50

    (pH 7.6), 100 mM mM EPPS, 10 mM

    KC1, 10 mM MgCl2, 10 mM

    MgCI2, 1 mM NH4C1, 1 mM

    EDTA, 10 mM DTT, 10 ~g/m l

    DTT, 1 mM NA D*, BSA, 1 mM NAD *

    0 .1 -0 .0 1 Tr i to n

    X-IO0~

    1 ~M

    0 .4 ~ g sa lmo n

    sperm DNA/p.I

    1 .5 n ick c losing

    u n i t s

    aq

    ligase /~l (4'2~ or

    0.15 U/p.1 24)

    94~ for 1 min , 65~

    for 4 ra in , 10-30

    cyclesb or 94~ for

    1 rain , 60~ for 8

    ra in ; 30 cy cles ~

    1.5 n ick c losing

    u n i t s aq ligase/p.1

    an d 0 .0 8 u n i t s

    aq

    p o ly merase S to f fe l

    fra gm en t/~ l (21~

    97~ for 3 ra in , 1

    cycle; 94~ for 1

    min , 65~ for 4

    min ; 5 0 cy c le s

    22, 23

    n u c leo t id e s to b e f i l l ed in

    1 6 .6 -2 0 fmo le s /~ l

    b io t in / f lu o re sce in ;

    u n l a b e l e d , u s e d w i t h

    3 ap - lab e led n u c leo t id e s

    fo r f i l l - in r eac t io n

    2 5 -5 0 ~ l

    80 mM KOH/KCI, 50 mM

    EPPS, 10 mM M gCl 2,

    10 mM NH4CI, 1 mM

    DTT, 10 ~xgtml BSA,

    0.1 mM NA D §

    1 p.M

    68 U/~I aq l ig a se an d

    0.02 U/~I aq

    pol ym era se (22,z3)

    h e a t i n b o i l i n g w a t e r

    b a th fo r 3 r a in ; th en

    85~ for 30 sec,

    5 0 -6 0 ~ fo r 2 0 sec -1

    ra in ; 2 7 -6 0 cy c le s

    aBarany(4) d id not include Tri ton X-100.

    bFor primers with Tm of 66-72~176

    CFor p r imers wi th Tm of 60 -6 6~ ~4z~

    m i g h t n e v e r t h e l e s s d e p e n d o n t h e n a t u r e a n d c o m p o s i t i o n o f t h e t a r g e t s . T h e

    s e n s i t i v i t y o f t h e s e t h r e e t e c h n i q u e s i n a c o m p a r a t i v e s t u d y i s c u r r e n t l y u n d e r

    i n v e s t i g a t i o n i n o u r l a b o r a t o r i e s .

    L CR R E A C T I O N S I M P O R T A N T F AC TO R S

    A c c u r a t e r e s u l t s f r o m L C R a s s ay s d e p e n d o n a v a r i e t y o f f a c to r s , i n c l u d i n g

    p r i m e r d e s i g n a n d r e a c t i o n c o n d i t i o n s . B a s e d o n o u r e x p e r i e n c e a n d t h o s e o f

    o t h e r s o v e r t h e p a s t 3 y e a r s , a f e w of t h e m o s t i m p o r t a n t f a c t o rs t h a t n e e d t o

    b e c o n s i d e r e d i n t h e d e v e l o p m e n t o f L C R a s s a y s f o l l o w .

    D e s i g n o f LC R P r i m e r s

    T o m i n i m i z e t a r g e t - i n d e p e n d e n t l i g a t i o n , L C R p r i m e r s w i t h a s i n g l e b a s e - p a i r

    o v e r h a n g , r a t h e r t h a n b l u n t e n d s , s h o u l d b e u s e d . T h e i m p o r t a n c e o f s i n g l e

    b a s e - p a i r o v e r h a n g s i s s h o w n b y K / i li n e t a l ., (24) w h o r e p o r t e d a r e l a t i v e l y h i g h

    a m o u n t o f t a r g e t - i n d e p e n d e n t l i g a t i o n u s i n g p r i m e r s w i t h b l u n t e n d s . T h e T m

    6 P CR M e t h o d s an d A p p l i c a t io n s

    Cold Spring Harbor Laboratory Presson July 13, 2011 - Published by genome.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/

  • 8/15/2019 Ligase Chain Reaction

    9/16

      l l l l l l l a n u a l S u p p le m e n

    o f al l fo u r p r i m e r s o f o n e s e t of LC R p r i m e r s s h o u l d b e w i t h i n a n a r r o w

    t e m p e r a t u r e r a n g e , id e a l ly w i t h a n a b s o l u t e m o f 7 0 ~ -+ 2 ~ F u r t h e r m o r e ,

    t h e p r i m e r s s h o u l d b e d e s i g n e d s o t h a t o n e p r i m e r c a n n o t s e r v e a s a b r i d g i n g

    t e m p l a t e f o r o t h e r p r i m e r s a n d t h e r e f o r e l e a d t o t a r g e t - i n d e p e n d e n t l i g a ti o n .

    A d d i n g n o n c o m p l e m e n t a r y t ai ls o f t w o n u c l e o t id e s o r l o n g e r to t h e n o n a d -

    j a c e n t 5 ' e n d s o f t h e p r i m e r s s h o u l d p r e v e n t l i g a t i o n o f t h e 3 ' e n d s . D e p e n d -

    i n g o n t h e d i s c r i m i n a t e d n u c l e o t i d e s , d i f f er e n t a m o u n t s o f l i g a t i o n p r o d u c t

    a r e o b s e r v e d w i t h a m i s m a t c h e d t a r g e t. (4~ E x p e c t e d a m o u n t s o f f al s e l i g a t i o n

    f o r s p e c i f i c m i s m a t c h e s a r e s h o w n i n T a b l e 2 . T h e s e d a t a c a n b e u s e d f o r

    d e s i g n i n g p r i m e r s w i t h t h e l o w e s t p o s si b l e r a te o f f a ls e l i g a t i o n w h e n s o m e

    c h o i c e b e t w e e n d i f f e r e n t t a r g e t s e q u e n c e s e x i s t s .

    T h e n a t u r e o f t h e b a s e p a i r a t t h e 3 ' e n d o f t h e p r i m e r w i t h t h e m a t c h e d

    t a r g e t s e e m s t o i n f l u e n c e t h e l i g a t i o n e f f i c i e n c y . T w o s e t s o f L C R p r i m e r s w i t h

    t h e c o r r e s p o n d i n g d i f f e r e n c e at t h e 3 ' e n d o f t h e d i s c r i m i n a t i n g p r i m e r w e r e

    u s e d f o r t h e d e t e c t i o n o f a s i n g l e b a s e - p a i r d i f f e r e n c e ( D 1 2 8 G ) i n t h e t w o

    a l l el e s o f t h e b o v i n e C D 1 8 g e n e ) 2s~ T h e d i s c r i m i n a t i n g p r i m e r s e t t h a t c a r r i e s

    a G o n o n e a n d a C o n t h e o t h e r 3 ' e n d g a v e a m o r e e f f i c i e n t l i g a t i o n a s

    c o m p a r e d w i t h t h e s e c o n d s et o f p r i m e r s i n w h i c h t h e d i s c r i m i n a t i n g p r i m e r s

    c a r ry a n A a n d a T a t th e i r 3 ' e n d s . T h e g r e a t e r h y d r o g e n b o n d i n g o f t h e G - C

    b a s e - p a i r i n g f a c i l i ta t e s a m o r e s t a b l e h y b r i d a s c o m p a r e d w i t h A - T b a s e - p a i r -

    i n g , t h e r e f o r e a l l o w i n g a m o r e e f f i c i e n t l i g a t i o n .

    L R o n d i t i o n s

    S t a n d a r d c o n d i t i o n s f o r a 5 0 -t ~1 L C R a r e a s f o l lo w s : O n e s e t o f f o u r p r i m e r s

    ( b e t w e e n 2 5 a n d 2 0 0 f m o l e s o f e a c h p r i m e r ) is i n c u b a t e d i n th e p r e s e n c e o f

    t a r g e t D N A i n t h e r e a c t i o n b u f f e r ( 5 0 m M T r i s- H C 1 a t p H 7 . 6, 1 0 0 m M K C 1 , 1 0

    m M M g C1 2, 1 m M ED T A, 1 0 m M d i t h i o t h r e i t o l , 1 m M N A D + , 2 0 ~ g o f s a l m o n

    s p e r m D N A ) w i t h 7 5 n i c k - c l o s i n g u n i t s o f hermus aquaticus DN A l igase . (26)

    T h e i n c l u s i o n o f 0 . 0 1 - 0 . 1 T r i t o n X -1 0 0 i n t h e r e a c t i o n b u f f er g i v es a

    h i g h e r l i g a t i o n r a t e b u t a l s o l e a d s t o a s l i g h t i n c r e a s e o f l i g a t i o n w i t h a m i s -

    m a t c h e d t a r g e t. (2 ~ R e a c t i o n c y c le s a r e u s u a l l y 1 5 s e c t o 1 r a i n a t 9 4 ~ f o r

    d e n a t u r a t i o n , f o l l o w e d b y 4 m i n t o 6 r a i n at 6 0 - 6 5 ~ ( i d ea l ly 5~ b e l o w t h e

    l o w e s t T m o f t h e p r i m e r s ) . U n l i k e P C R , t h e r e i s n o e x t e n s i o n s t e p b e t w e e n

    a n n e a l i n g a n d d e n a t u r a t i o n . I n LC R, t h i s c y c l in g p a t t e r n i s r e p e a t e d b e t w e e n

    1 0 a n d 3 0 ti m e s , b u t t h e n u m b e r o f cy c le s h a s t o b e o p t i m i z e d f o r ea c h a s s ay .

    I n G- LC R , b e t w e e n 3 0 a n d 6 0 c y cl es w i t h d e n a t u r a t i o n a t 8 5 ~ a n d a n n e a l i n g

    a t 5 0 - 5 3 ~ h a v e b e e n u s e d . ( 22 '2 3) P r o t o c o l s f o r LC R , p L C R , a n d G - L C R a r e

    o u t l i n e d i n T a b l e 1 .

    A N A D - r e q u i r i n g t h e r m o s t a b l e l i g a se (2 6'2 8) i s m o s t o f t e n u s e d i n l i g as e -

    b a s e d a m p l i f i c a t i o n m e t h o d s . R e c e n t ly , a n o t h e r t h e r m o s t a b l e l ig a se , w h i c h

    r e q u i r e s A T P as a c o f a c t o r , h a s b e e n c l o n e d a n d s e q u e n c e d . (29 ) H o w e v e r , t h e

    u s e o f t h i s e n z y m e i n D N A a m p l i f i c a t i o n m e t h o d s h a s n o t y e t b e e n e x p l o r e d .

    DETE TION M E T H O D S FOR L R PRODU TS

    D e t e c t i o n o f t h e L C R p r o d u c t , t h a t i s, t h e t w o l i g a t e d p r i m e r s , w a s i n i t i a l l y

    TABLE 2 Noise-to-s ignal ra t io for certa in m ism atch es in the LCR

    Oligonucleotide base-target base Noise-to-signal ratioa ( )

    A-A, T-T 1.1

    T-T, A-A

  • 8/15/2019 Ligase Chain Reaction

    10/16

    M a n u a l S u p p lem e n t lU lm m

    accomplished by using a 3 p radioactive label on the 3 end of the upstr eam

    primer. The separation of LCR products and primers was achieved by dena-

    turing gel electrophoresis, and the LCR product was detected by autoradiog-

    raphy. The level of sensitivity reached in an LCR with this detection method

    is on the order of 200 target DNA molecules. (4) Winn- Dee n and Iovan nisc i (27)

    described a nonisotopic detection method using fluorescently labeled prim-

    ers. Detection of the LCR product was accomplished using a fluorescent DNA

    sequencer in conjunction with a GENESCANNER (Applied Biosystems). One

    of the advantages of this method is that it is relatively easy to quantitate the

    amo unt of the LCR products. Furthermor e, each of the primers can be labeled

    with a different fluorescent dye to allow unambiguous assignment of ligation

    products; incorrect ligation products could be identified by their deviation

    from the appropriate color com binati ons. (27) The fluorescent detect ion sys-

    tem allows multiplexing with the LCR primers specific for a given mutation

    labeled with different fluorescent tags or with the same fluorescent label and

    different-sized LCR products./3~ Currently , this me th od is limi ted by the

    requirement for sophisticated equipment. An alternative approach for the

    nonisot opic detection uses one digoxigenin-labeled primer; the LCR products

    are detected in a Southern blot format after gel elect roph oret ic separa tion. (24)

    Recently, more convenient methods for the detection of LCR products in

    micr oti ter plates have been developed. (31 32) In this format, one LCR pri mer of

    a pair is labeled with biotin at the 5 end, whereas the other p rimer is labeled

    with a nonisotopi c reporter at the 3 end. Reporter groups tested so far in-

    clude a fluorescein dye in blue (FAM, 5-carboxyfluorescein) and digoxigenin.

    Direct detection of FAM-labeled LCR products by solution fluorometry

    showed poor sensitivity, whereas the use of digoxigenin reporter in conjunc-

    tion with anti-digoxigenin antibodies coupled to alkaline phosphatase (AP)

    greatly improved the sensitivity. Subsequent detection of the AP could be

    achieved using colorimetric, fluorescent, or luminogenic substrates. Winn-

    Deen et al. f31) reported that the lumi nogen ic substrate Lumipho s 530 gave the

    highest sensitivity in a microtiter plate assay. This sensitivity was only 10-fold

    less than with detection methods using radioisotopes or a fluorescent DNA

    sequencer. Another nonisotopic detection method for LCR products has been

    repor ted by Zebala and Barany. ~33) They ut ilized primer pairs in whi ch one

    primer was labeled with a poly(dA) tail at the 5 end whereas the 3 end of the

    other primer was tagged with biotin. The ligated products were capture d from

    the solution via hybridization of their poly(dA) tails with poly(dT)-coated

    paramagnetic iron beads and subsequent magnetic separation. Only the cap-

    tured LCR products will carry a S -coupled biot in molecule, whi ch can be

    detected with a streptavidin-AP conjugate and a colorimetric substrate.

    For the detection of the products from G-LCR, two different meth ods have

    been described. Radioactively labeled nucleotides were used to fill in the gap

    between the primers, so that the G-LCR products can be det ected by autora-

    diog raph y after gel electro phoresis. r Alternatively, the prime rs can be end-

    labeled with radioiso topes as described for LCR primers. ~2t) Noni sotopic de-

    tection of G-LCR products was achieved by using pairs of primers labeled with

    biotin or fluorescein, respectively. Ligated oligonucleotides were capt ured o n

    antifluorescei n-coated microparticles and detected with an antibiotin-AP con-

    jugate. AP activity was subsequently detected with the fluorescent substrate

    methy lumb elli fero ne phosphate. (23)

    C U R R E N T P P L I C T I O N S O F L C R

    L R assays have been develop ed for the dete ct ion of ge net ic d iseases as we l l

    as for the detection of bacteria and viruses. An overview of the current ap-

    plications of LCR is shown in Table 3. In many of these applications, LCR is

    5 8 P CR M e t h o d s a n d A p p l i c a t i o n s

    Cold Spring Harbor Laboratory Presson July 13, 2011 - Published by genome.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/

  • 8/15/2019 Ligase Chain Reaction

    11/16

      l l | i l l l a n u a i S u p p lem e n

    T B L E

    3 C ur r e n t A pp l i ca t i ons o f L C R and G - LC R

    Target Format Reference

    G e n e t i c d i s e a s e s

    [3-sickle cell

    hemoglobinemia

    13-sickle ce ll

    hemoglobinemia

    Cystic fibrosis

    Cystic fibrosis

    Leber 's h ereditary optic

    neuropathy

    Hyperkalemic periodic

    paralysis

    Bovine leukocyte

    adhesion deficiency

    acteria

    Borrelia burgdorferi

    Listeria monocytogenes

    Neisseria gonorrhoeae

    LCR, isotopic

    LCR, fluoresce nt

    PCR-LDR, fluorescent

    LCR and G-LCR, isotopic

    PCR-LCR, nonisotopic

    PCR-LCR, fluorescent

    PCR-LCR, nonisotopic

    LCR, nonisotopic

    PCR-LCR, nonisotopic

    G-LCR, non isotop ic

    Barany~4)

    W inn-D een an d Iov annisci ~27)

    Egge rding et al. Cts)

    W inn -De en et al. ~16~

    Fang et al. r

    Zebala and Barany

    Fe ero et al. ~3~

    W ang et al. r

    Batt et al. r

    Hu et al. 43)

    Wiedmann e t a l . 2 ~

    Birkenmeyer and M ms tron g (2s)

    Erwinia stewartii

    Mycobacterium

    tuberculosis

    Chlamydia trachomatis

    V i r u s e s

    Hum an papillomavirus

    Herpes simplex virus

    HIV DNA

    O t h e r t a r g e t s

    Ha ras protooncogene

    Ha ras

    protooncogene

    G-6-PD

    HOXB7

    PCR-LCR, isotopic

    LCR, fluoresce nt

    G-LCR, isotopic

    LCR, nonisotopic

    LCR, nonisotopic

    LCR, nonisotopic

    LCR, nonisotopic

    PCR-LCR

    RT-PCR-LDR, isotopic

    RT-PCR-LCR, isotopic

    Wilson et a l . 4 ~

    lovan nisci and W inn-D een ~42)

    Dille et al. ~22)

    Bond et al . 46)

    Rineh ardt et al. (45)

    Carrino and

    L a f f l e r 4 4 )

    K~ilin et a l J 2 4 )

    Wei et al . 48)

    Prchal et a l . 0 4 )

    Ch ari ot et al. ~49~

    p r e c e d e d b y a n i n i ti a l P C R s te p t o a c h i e v e a g r e a te r s e n s i t i v i t y o f t h e r e s p e c -

    t i v e a s s a y s .

    D e t e c t i o n o f G e n e t i c D i s e as e s

    I n t h e i n i ti a l p u b l i s h e d r e p o r t s d e s c r i b i n g LC R, d i s c r i m i n a t i o n b e t w e e n n o r -

    m a l 13A- a n d s ic k l e [3 S -g lo b in g e n o t y p e s i n h u m a n s w a s a c h i e v e d u s i n g e i t h e r

    a n i s o t o p i c d e t e c t i o n m e t h o d (4) o r f l u o r e s c e i n - l a b e l e d L C R p r i m e r s . (z7) T w o

    s e ts o f L C R p r i m e r s w e r e u s e d , o n e s p e c i f ic f o r t h e n o r m a l a l le l e a n d t h e o t h e r

    s p e c if i c f o r t h e m u t a t i o n . T h e s e t w o p r i m e r s e ts w e r e a p p l i e d i n t w o s e p a r a t e

    L C R r e a c t i o n s , a n d t h e L C R p r o d u c t s w e r e a n a l y z e d s e p a r a t e l y . T h i s d e s i g n

    a l lo w s e a s y id e n t i f i c a t i o n o f h o m o z y g o u s a s w e l l a s o f h e t e r o z y g o u s c a r r i e rs

    o f t h e a l l e l e s o f i n t e r e s t .

    R e c e n tl y , L CR h as b e e n e x p l o i te d f o r t h e d e t e c t i o n o f o t h e r m u t a t i o n s

    r e s p o n s i b l e f or g e n e t ic d i s o r d e rs i n h u m a n s a n d a n i m a l s . E x a m p l e s i n c l u d e

    c y s t i c f i b r o s i s , ~34) L e b e r ' s h e r e d i t a r y n e u r o p a t h y , (33~ a n d h y p e r k a l e m i c p e r i -

    o d i c p a r a ly s is 13~ i n h u m a n s a n d b o v i n e l e u k o c y t e a d h e s i o n d e f i c i e n c y

    ( B LA D ) ~2s) i n c a t t l e . S c r e e n i n g f o r t h e A F 5 0 8 , W 1 2 8 2 X , a n d o t h e r c y s t i c f i b r o -

    s is m u t a t i o n s w a s p e r f o r m e d e i t h e r i n tw o s e p a r a t e LC R r e a c t i o n s t a r g e t i n g

    t h e n o r m a l a n d m u t a n t a ll el e o r i n a c o m p e t i t i v e r e a c t i o n w i t h si x p r i m e r s ,

    i n c l u d i n g t w o c o m m o n p r i m e r s, tw o f o r t h e m u t a n t , a n d t w o f or t h e n o r m a l

    a l le l e . (34 ) D e t e c t i o n o f a l le l e s l e a d i n g t o h y p e r k a l e m i c p e r i o d i c p a r a l y s i s w a s

    a c h i e v e d b y u s i n g a m u l t i p l e x P C R - c o u p l e d L CR s i m u l t a n e o u s l y t a r g e t i n g

    t h r e e d i f f e r e n t p o t e n t i a l s i n g l e b a s e - p a i r m u t a t i o n s J 3~ F o r a ll o f t h e s e m u -

    P CR M e t h o d s a n d A p p l i c a t i o n s 5 9

    Cold Spring Harbor Laboratory Presson July 13, 2011 - Published by genome.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/

  • 8/15/2019 Ligase Chain Reaction

    12/16

    M a n u a l S u p p l e m e n t II I I I

    tations, LCR primers for the mutant and for the normal allele were included

    in th e LCR, there fore screen ing for each of thes e alleles. LCR primers were

    labeled using a fluorescent dye (FAM) and primers of different length s so that

    LCR products for the various mutati ons and alleles could be differentiat ed on

    a fluorescent DNA sequencer by their relative mobility. This approach has

    recently been extended to the detection of different mutations causing cystic

    fibrosis. (ls 16) Detect ion of tri nucleoti de repeats that can give rise to cert ain

    diseases, including myotonic dystrophy, has been acheived using repeat ex-

    pansi on det ection (RED). In this format, tr inucleot ide rep eat-co ntaini ng oli-

    gonucleotides are ligated when bound in tandem to the target and by cycling

    greater l engths of these ligatio n pr oducts are generat ed. ~36)

    D e t e c t i o n o f a c t e r ia l P a t h o g e n s

    Given the potenti al of LCR, attempts were made to use this te chni que for the

    identification and detection of bacterial pathogens. Detection systems for

    bacteria based on PCR or other molecular biology techniques usually depend

    on the availability of well-characterized genus- or species-specific target

    genes. This strategy is easily applied to extensively documented bacterial

    pathogens, where the sequence of one or more genes is known. However, for

    many plant and animal pathogens as well as nonpathogenic bacteria from

    environmental sources, often there is not sufficient information available to

    design species-specific PCR primers. The 16S rDNA, encoding part of the

    ribosomal RNA, consists of both highly conserved and variable regions, the

    latter usually containing at least single base pair differences that are species-

    specific. A general met hod for PCR amplificat ion and sequenci ng of this gene

    has b een described by Weis burg et al. ~37) Our group initial ly util ized these

    techni ques to sequence the 16S rDNA gene of different isolates of the h um an

    pathogen

    L. monocy togenes

    and the closely related nonpath ogenic bacterium

    L. innocua. 38) This method was preferred over direct sequencing of the 16S

    rRNA using reverse transcriptase, which is not precise enoug h to identif y all

    nucleotides accurately. (39) After identifying cons ist ent single base-pair differ-

    ences specific for L. monocytogenes, LCR primers were designed to identify this

    bacterium based on one of these differences. To improve the sensitivity of

    this LCR, we further emp loye d a set of flankin g PCR primer s to ampl ify

    initially the segment conta ining the specific single base-pair difference. (2~

    This PCR-coupled LCR was shown to be highly specific for

    L. monocy togenes

    and was able to detect, at a minimum, l0 colony-forming units of L. mono-

    cytogenes using a noni soto pic dete ctio n meth od. (32)

    The same approach was used to develop an LCR-based detection method

    for the plant pathogen Erw in ia s tew ar t i i . 4~ After sequencing parts of the

    16S rDNA gene of E. s tewarti i and the closely related saprophyte E. herbicola,

    E . s t e w a r t i i - s p e c i f i c single base-pair differences were identified. These were

    again used to design LCR primers for a PCR-coupled LCR, which proved to be

    specific for

    E. s tewarti i .

    The dev elopm ent of these two PCR-coupled LCR assays for the detecti on of

    L. monocy togenes

    and

    E. s tew ar t i i

    suggests that this system is generally appli-

    cable for the develo pment of a sensitive detecti on assay for all bacteria when

    little or no prior genetic information is available.

    Application of LCR for the detection of bacterial pathogens is not limited

    to targets wi thi n t he rDNA. Iova nnisci and Win n-D een (42) utili zed LCR to

    detect

    M y c o b a c t e r i u m t u b e r c u l o s i s

    DNA, based on the inserti on seque nce

    IS6110, which is specific for this important pathogen. Using fluorescently

    labeled prime rs (ROX, TAMARA, FAM, JOE) and a fluores cent DNA sequ encer,

    it was possible to detect as few as 100 copies of the target molecule even in the

    presence of unrelat ed DNA. Furthermore, a nonisotopi c LCR for the det ection

    of Borrelia burgdorferi has bee n described. (43)

    6 0 P C R M e t h o d s a n d A p p l i c a t i o n s

    Cold Spring Harbor Laboratory Presson July 13, 2011 - Published by genome.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/

  • 8/15/2019 Ligase Chain Reaction

    13/16

      l III IM a n u a l S u p p lem e n

    Assays for the detection of the bacterial path ogen s

    Neisseria gonorrhoeae

    and

    Chlamydia trachomatis

    using G-LCR have also been described. (22 23) These

    assays are based on 2-bp differences between the target bacterium and closely

    related nonpathogenic bacteria. The sensitivity of these assays is approxi-

    mately one

    N. gonorrhoeae

    cell using the nonisotopic detection method and

    three

    C. trachomatis

    elementary bodies using an isotopic detection method

    with electrophoretic separation of the products from unligated primers. De-

    tection of

    N. gonorrhoeae

    was achieved by using G-LCR probes target ing se-

    quences in the gene coding for the cell-surface opacity (Opa) protein or in the

    gene for the pilin proteins. ~23~ The targeted sequences show on ly 2-bp differ-

    ences between N. gonorrhoeae and the closely related Neisseria rneningitidis

    whic h is sufficient for clear diffe rentiati on by G-LCR. For the specific detec-

    tion of C. trachomatis primers were used that recognized species-specific se-

    quences either in the gene for the major outer membrane protein or on a

    cryptic plasmid322~

    e t e c t i o n o f V i r u s e s

    Only preliminary reports on the use of LCR for the identification and/or

    detection of viruses have been published. A nonisotopic ligase-based DNA

    amplification assay using oligonucleotides targeting part of the gag region of

    HIV-1 has been described. The sensitivity of this assay is between 5 and 10

    HIV-1 molecules, which is comparable to the level of sensitivity reached by

    PCR344) LCR technology has also been applied for the nonradioactive detec-

    tion of herpes simplex virus and HPV and allowed rapid detection of these

    viruses as compared to traditional detection methods using cell culture tech-

    niques . ~4s,46)

    Another ligase-mediated approach for detection of HIV used Qf3-replicase

    to amplify a target-dependent ligation product of amplifiable hybridization

    probes. This strategy helps to overcome the problem of target-independent

    amplif ica tion of no nhybrid ized probes in Q[3 replicase assays. (47)

    etect ion o f Oth er Target Sequences

    K~ilin et al. (24) described the evaluation of LCR for the det ect ion of sing le

    base-pair mutations in the

    Ha-ras

    proto-oncogene. This group reported a sen-

    sitivity of 250 molecules for the targeted mutation but could not differentiate

    the mutant from the normal allele when a 1:100 ratio of mutant to normal

    DNA was used. These problems might be caused by the use of LCR primers

    with a blunt end rather than a single base-pair overhang, which is known to

    cause higher target-independent ligation (see above, under Design of LCR

    Primers). Wei et al., (48~ on the other hand, were successful in developin g a

    combination of PCR and LCR for the detection of point mutations in the

    Ha-ras

    proto-oncogene. Using two cycles of

    M spI

    restriction, PCR amplifica-

    tion, and a subsequent LCR amplification, they were able to detect mutant in

    a background of 108 wild-type alleles.

    Prchal et al. (14) used a combinat ion of RT-PCR and LDR for transcriptional

    analysis to determine the active X-chromosome based on a polymorphic

    locus on this chromosome. In the first step, DNA isolated from a person is

    tested for heterozygosi ty in the target allele using a PCR-coupled LDR. Only

    persons found to be heterozygotic are then subjected to transcriptional anal-

    ysis. For this purpose mRNA is isolated from the cells of interest, for example,

    lymphocytes, myeloid cells, and fibroblasts, and used for RT-PCR amplifica-

    tion and subsequen t LDR. The LDR then detects the allele transcribed in the

    isolated cells, therefore indicating the clonality of these cells. This assay can

    be applied for the specific and sensitive determination of clonality in cells,

    P C R M e t h o d s a n d A p p l i c a t io n s 6 1

    Cold Spring Harbor Laboratory Presson July 13, 2011 - Published by genome.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/

  • 8/15/2019 Ligase Chain Reaction

    14/16

    M a n u a l S u p p l em e n t m w

    cell linages, and tissues, which is important for studies of neoplastic disorders

    and embryologic development.

    Another application of a cancer-related mutat ion using a RT-PCR-coupled

    LCR has been described by Chario t et al. (49) This group used LCR to detec t th e

    expression of stop codon polymorphism in the homeo domain sequence

    HOXB7 of a breast cancer-derived cell line. This work demonstrates the po-

    tential of RT-PCR-coupled LCR in RNA diagnost ic procedures by the example

    of the sensitive detection of single-base polymorphisms in rare mRNA tran-

    scripts.

    OUTLOO

    With the continuing emergence of sequence data for the human genome as

    well as the genomes of other species (e.g., bovine, equine), the potential of

    LCR to detect genetic diseases that result from single base-pair mutations is

    immense. One of the inherent advantages of LCR is its potential for automa-

    tion. The LCR product consists of two covalently joined primers that can be

    easily detected using different enzyme-linked or direct fluorescent labels.

    Formatting of multiplex LCR assays will further improve screening samples

    for an array of different single base-pair changes in a single tube. Automated,

    multip lex LCR or PCR-coupled LDR/LCR assays have a variety of po tenti al

    applications, such as ~s) (1) screening of large popula tions for monogenic

    disease polymorphisms; (2) determining HLA haplotypes in tissue typing, for

    example, for transplantation; and (3) screening for multiple bacterial species

    after a generic PCR amplification of 16S rDNA sequences.

    In clinical diagnosis of pathogenic bacteria and viruses, the specificity of

    LCR could be useful in many applications. The detection of single base-pair

    differences in bacterial pathogens may be valuable with respect to antibiotic

    resistance arising from point mutations, for example, in some cases of mac-

    rolide resistance ~s~ or from tra nsformational exchange as occurs in sensitive

    and resistant strains, for example, in N. m e n in g i t i d i s . Csl In viral pathogens,

    the identification of subpopulations with genetic differences may be impor-

    tant with regard to host range, virulence characteristics, and drug resistance.

    Furthermore, the application of LCR and PCR-coupled LCR assays for the

    detection of specific bacteria based on at least a single base-pair difference in

    the 16S rDNA gene has great potential. As outlined above, such a system

    circumvents the need to identify species-specific genes, as warranted for PCR

    or other nucleic acid-based assays. With emerging interest in yet poorly char-

    acterized bacteria, this method should have a great potential as a detection

    system.

    C K N OW L E D G M E N T S

    We are grateful to many of our colleagues, including A. Beaudet, L. Birken-

    meyer, E.P. Hoffman, U. Landegren, T. Uchida, V.L. Wilson, and E.S. Winn-

    Deen, who provided manuscripts in preparation, submitted, or in press, and

    reprints. Part of the work presented here was supported by the Northeast

    Dairy Foods Research Center (to C.A.B.), Eastern Artificial Insemination (to

    C.A.B.), a grant from the Cornell Center of Advanced Techn ology (CAT) in

    Biotechnology (which is sponsored by the New York State Science and Tech-

    nology Foundation, a consortium of industries and the National Science

    Foundation) (to C.A.B.), a grant from Applied Biosystems Division of Perkin-

    Elmer (to F.B.), and the National Institutes of Health (GM 41337-03) (to F.B.).

    M.W. was supported by a stipend of the Gottlieb Daimler- und Carl Benz-

    Stiftung (2.92.04). W.W. s work was supported by a grant from the New York

    State Sweet Corn Research Association (to H.R. Dillard).

    6 2 P C R M e t h o d s a n d A p p l i c a t io n s

    Cold Spring Harbor Laboratory Presson July 13, 2011 - Published by genome.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/

  • 8/15/2019 Ligase Chain Reaction

    15/16

      l l | l l l l a n u a l S u p p l em e n

    R E F E R E N E S

    1 . E r l ic h , H .A . , D . G e l f a n d , a n d J .J . S n i n s k y . 1 9 9 1 . R e c e n t a d v a n c e s i n t h e p o l y m e r a s e c h a i n

    r e a c t i o n . Science 2 5 2 : 1 6 4 3 - 1 6 5 0 .

    2 . G ua t e l l i , J .C ., K .M. W hi t f i e l d , D .Y. Kw oh, K . J . Ba r r i nge r , D .D. R i c hm a n , a nd T .R. G i nge ra s .

    1 9 90 . I s o t h e r m a l , i n v i tr o a m p l i f i c a t i o n o f n u c l e ic a c id s b y a m u l t i e n z y m e r e a c t i o n m o d e l e d

    a f t e r r e t rov i r a l r e p l i c a t i on . Proc. Natl . Acad. Sci . 8 7 : 1 8 7 4 - 1 8 7 8 .

    3 . K ra me r F .R. a nd P .M. L i z ard i . 1989 . Re p l i c a t a b l e RNA re por t e r s .

    N a tu r e

    3 3 9 : 4 0 1 - 4 0 2 .

    4 . B a r a n y , F . 1 9 9 1 . G e n e t i c d i s e a s e d e t e c t i o n a n d D N A a m p l i f i c a t i o n u s i n g c l o n e d t h e r m o s t a b l e

    l igase . Proc. Natl . A cad. Sci . 8 8 : 1 8 9 - 1 9 3 .

    5 . Ba ra ny , F . 1991 . T he l i ga se c ha i n r e a c t i on i n a PCR wo r l d . PC R M eth o d s Ap p l i c . 1 : 5 - 1 6 .

    6 . W o l c o t t , M .J . 1 9 9 2. A d v a n c e s i n n u c l e i c a c i d - b a s e d d e t e c t i o n m e t h o d s . Clin. Microbiol. Rev.

    5:

    370--386.

    7 . L a n d e g r e n , U . 1 9 9 3 . M o l e c u l a r m e c h a n i c s o f n u c l e i c a c i d s e q u e n c e a m p l i f i c a t i o n . Trends

    Genet . 9 : 1 9 9 - 2 0 4 .

    8 . W h i t e l e y , N . M . , M . W . H u n k a p i l l e r , a n d A . N . G l a z e r. 1 9 8 9 . D e t e c t i o n o f s p e c if i c s e q u e n c e s i n

    nuc l e i c a c i ds . U .S . pa t e n t no . 4 ,883 ,750 .

    9 . L a n de g re n , U . , R . Ka is e r, J. Sa nde r s , a nd L . Ho od . 1988 . A l i ga se -me di a t e d ge ne de t e c t i on

    m e t h o d . Science 2 4 1 : 1 0 7 7 - 1 0 8 0 .

    10 . N i c k e r son , D .A. , R . Ka is er , S . L a pp i n , J . S t e wa r t , L . Ho od , a n d U . L a nd e gre n . 1990 . Au t om a t e d

    D N A d i a g n o s t i c s u s i n g a n E L 1S A -b as ed o l i g o n u c l e o t i d e l i g a t i o n a s s a y. Proc. Natl . Acad. Sci .

    8 7 : 8 9 2 3 - 8 9 2 7 .

    1 1 . W u , D . Y . , a n d R . B . W a l l a c e . 1 9 89 . T h e l i g a t i o n a m p l i f i c a t i o n r e a c t i o n L A R ) - - A m p l i f i c a ti o n

    o f s p e ci f ic D N A s e q u e n c e s u s i n g s e q u e n t i a l r o u n d s o f t e m p l a t e - d e p e n d e n t l i g at i o n . G en o m ics

    : 5 6 0 - 5 6 9 .

    1 2 . B a r r in g e r , K ., L. O r g e l , G . W a h l , a n d T . R . G i n g e r a s . 1 9 9 0 . B l u n t - e n d a n d s i n g l e - s t r a n d e d

    l i g a t i o n s b y Escherichia colt l ig a s e : I n f l u e n c e o n a n i n v i t r o a m p l i f i c a t i o n s c h e m e . G en e

    8 9 : 1 1 7 - 1 2 2 .

    1 3 . L a n d e g r e n , U . 1 9 9 3 . L i g a t i o n - b a s e d D N A d i a g n o s t ic s .

    BioEssays

    5 : 7 6 1 - 7 6 6 .

    14 . P rc ha l , J.T ., Y .L . Gua n , J .F . P rc ha l , a nd F . Ba ra ny . 1993 T ra n sc r i p t i ona l a na l y s i s o f t he a c t i ve

    X - c h r o m o s o m e i n n o r m a l a n d c l o n al h e m a t o p o i e s i s . Blo o d

    8 :

    2 6 9 - 2 7 1 .

    15 . E gge rd i ng , F . , E . Wi nn-De e n , W. Gi us t i , T . Adr i a no , D . Iova nn i s c i , a nd E . Br i nson . 1993 .

    D e t e c t i o n o f m u t a t i o n s i n t h e c y s t ic f ib r o si s g e n e b y m u l t i p l e x a m p l i f i c a t io n a n d o l i g o n u -

    c l e o t i d e l i g a t i o n . Am . J . H u m . G en e t . 53: 1485 .

    1 6 . W i n n - D e e n , E ., P. G r o s s m a n n , S . F u n g , S . W o o , C . C h a n g , E . B r i n s o n , a n d F . E g g e r d i n g . 1 9 9 3 .

    H i g h d e n s i t y m u l t i p l e x m u t a t i o n a n a ly s i s u s in g t h e o l i g o n u c l e o t i d e li g a t i o n a ss a y O L A)

    a n d

    s e q u e n c e - c o d e d s e p a ra t io n . Am . J . H u m . G en e t . 53: 1512 .

    17 . Da y D . , P . Whi t e , a nd F . Ba ra ny , unpub l i she d r e su l t s .

    1 8 . B i r k e n m e y e r , L .G . a n d I . K . M u s h a h w a r . 1 9 9 1 . M i n i - r e v i e w : D N A p r o b e a m p l i f i c a t i o n m e t h -

    ods . J. Virol . Meth ods 3 5 : 1 1 7 - 1 2 6 .

    1 9 . S e ge v , D. 1 9 9 2 . A m p l i f i c a t i o n o f n u c l e i c a c i d s e q u e n c e s b y t h e r e p a i r c h a i n r e a c t i o n . I n

    N o n r a d io a c t i ve la b e lin g a n d d e tec t io n o f b io m o lecu le s e d . C . Ke s s l e r ) , pp . 212-218 . Spr i nge r

    L a b o r a t o r y , B e r l in , G e r m a n y .

    2 0 . W i e d m a n n , M . , J . C z a jk a , F . B a r a n y , a n d C . A . B a tt . 1 9 9 2 . D i s c r i m i n a t i o n o f L is t e f ia m o n o cy

    togenes f r o m o t h e r Listeria s p e c i e s b y l i g as e c h a i n r e a c t i o n . Appl. Environ. Microbiol. 5 8 : 3 4 4 3 -

    3447 .

    2 1 . W i e d m a n n , M . , F . B a r a n y, a n d C . A . B a tt , u n p u b l i s h e d r e s u l t s.

    22 . D i l l e B . J. , C .C. But z e n , a nd L .G . Bi rk e nm e ye r . 1993 . Am pl i f i c a t i on o f C h la m yd ia t r a ch o m a t i s

    D N A b y l i g a s e c h a i n r e a c t i o n . J. Clin. Microbiol. 3 : 7 2 9 - 7 3 1 .

    2 3 . B i r k e n m e y e r , L . a n d A . S . A r m s t r o n g . 1 9 9 2 . P r e l i m i n a r y e v a l u a t i o n o f t h e l i g a s e c h a i n r e a c -

    t i o n f o r s p e c i f i c d e t e c t i o n o f Neisseria gonorrho eae. J. Clin. Microb iol. 3 0 : 3 0 8 9 - 3 0 9 4 .

    24 . K~i l in , I ., S . She pha rd , a n d U . Ca n dr i a n . 1992 . E va l ua t i o n o f t he l i ga se c ha i n r e a c t i o n L CR)

    f o r th e d e t e c t i o n o f p o i n t m u t a t i o n s . M u ta t io n Res . 2 8 3 : 1 1 9 - 1 2 3 .

    2 5 . B a t t , C .A . , P . W a g n e r , M . W i e d m a n n , J. L u o , a n d R . O . G i l b e rt . 1 9 9 4 . D e t e c t i o n o f b o v i n e

    l e u k o c y t e a d h e s i o n d e f i c ie n c y b y n o n i s o t o p i c l i g a se c h a i n r e a c ti o n . An im . G en e t . i n p re s s ) .

    2 6 . B a r a n y , F. a n d D . H . G e l f a n d . 1 9 9 1 . C l o n i n g , o v e r e x p r e s s i o n a n d n u c l e o t i d e s e q u e n c e o f a

    t h e r m o s t a b l e D N A l i g a s e - e n c o d i n g g e n e. G en e 1 0 9 : 1 - 1 1 .

    2 7 . W i n n - D e e n , E . S . a n d D . M . l o v a n n i s c i . 1 9 9 1 . S e n s i t i v e f l u o r e s c e n c e m e t h o d f o r d e t e c t i n g

    D N A l i g a t i o n a m p l i f i c a t i o n p r o d u c t s . Clin . Chem. 3 7 : 1 5 2 2 - 1 5 2 3 .

    28 . L a ue r , G . , E .A . Rudd , D .L . Mc Ka y , A . A l l y , D . A ll y , a nd K .C. Ba c km a n . 1991 . C l on i ng , nu c l e -

    o t i d e s e q u e n c e , a n d e n g i n e e r e d e x p r e s s i o n o f T h er m u s th er m o p h i lu s D N A l ig a se , a h o m o l o g

    o f Escherichia coil DNA l i ga se . J. Bacteriol. 1 7 3 : 5 0 4 7 - 5 0 5 3 .

    2 9 . K l e t zi n , A . 1 99 2 . M o l e c u l a r c h a r a c t e r i z a t i o n o f a D N A li g a s e g e n e o f t h e e x t r e m e l y t h e r m o -

    p h i l i c a r c h e o n D es u l fu r o lo b u s a m b iva len s s h o w s c l o s e p h y l o g e n e t i c r e l a t io n s h i p t o e u k a r y -

    o t i c l i ga se s. Nucleic Acids Res . 2 0 : 5 3 8 9 - 5 3 9 6 .

    30 . Fe e ro , W.G. , J . Wa ng , F . Ba ra ny , J . Z hou , S .M. T odorov i c , R . Conwi t , G . Ga l l owa y , I . Ha us -

    ma n ow a -Pe t ruse w i c z , A . F i dz i a nska , K . Ara ha t a , H .B. We sse l , C . Wa de l i us , H .G. Ma rks , P .

    P C R M e t h o d s a n d A p p l i c a t io n s 6 3

    Cold Spring Harbor Laboratory Presson July 13, 2011 - Published by genome.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/

  • 8/15/2019 Ligase Chain Reaction

    16/16

    M a n u a l S u p p lem e n t m w

    H a r t l a g e , H . H a y a k a w a , a n d E . P. H o f f m a n . 1 9 9 3. H y p e r k a l e m i c p e r i o d i c p a r a l y si s : R a p i d

    m o l e c u l a r d i a g n o s i s a n d r e l a t i o n s h i p o f g e n o t y p e t o p h e n o t y p e i n 1 2 f a m i li e s . Neurology

    4 3 :

    6 6 8 - 6 7 3 .

    3 1 . W i n n - D e e n , E .S ., C .A . B a tt , a n d M . W i e d m a n n . 1 9 9 3 . N o n - r a d i o a c t i v e d e t e c t i o n o f M yco b a c-

    ter ium tuberculos is L C R p r o d u c t s i n a r n i c r o t i t r e p l a t e f o r m a t . Mol. Cell. Probes 7: 1 7 9 - 1 8 6 .

    3 2 . W i e d m a n n , M . , F . B a r a n y , a n d C . A . B a rt . 1 9 9 3. D e t e c t i o n o f Lis ter ia monocytogenes w i t h a

    n o n i s o t o p i c p o l y m e r a s e c h a i n r e a c t i o n - c o u p l e d l i g a se c h a i n r e a c t i o n a s s ay . Appl . Environ.

    Microbiol. 5 9 : 2 7 4 3 - 2 7 4 5 .

    3 3 . Z e b a l a , J. A. a n d F . B a r a n y . 1 9 9 3 . D e t e c t i o n o f L e b e r s h e r e d i t a r y o p t i c n e u r o p a t h y b y n o n

    r a d i o a c t iv e - L C R . I n PCR strategies ( e d . D . H . G e l f a n d , J. J. S n i n s k y , a n d M . A . In n i s ) . A c a d e m i c

    P r es s , S an D ieg o , C A .

    3 4 . F a n g , P ., C . J o u , S . B o u m a , a n d A . B e a u d e t . 1 9 92 . D e t e c t i o n o f c y s t ic f i b r o si s m u t a t i o n s u s i n g

    t h e l i g a s e c h a i n r e a c t i o n . Am . J . H u m . G en e t . A214.

    3 5 . W a n g , J. , J . Z h o u , S . M . T o d o r o v i c , W . G . F e e r o , F. B a r a ny , R . C o n w i t , I . H a u s m a n o w a - P e t r u s e -

    w icz , A . F id z i an s k a , K . A r ah a ta , H . B . Wes s e l , A . S i l l en , H . G . M ar k s , P . H ar t l ag e , G . G a l lo w ay ,

    K . R i c k e r, F. L e h m a n n - H o r n , H . H a y a k a w a , a n d E . P . H o f f m a n . 1 9 9 3 . M o l e c u l a r g e n e t i c a n d

    g e n e t i c c o r r e l a t i o n s i n s o d i u m c h a n n e l o p a t h i e s : L a c k o f f u n d e r e f f e ct a n d e v i d e n c e f o r a

    s e c o n d g e n e Am . I . H u m . G en e t . 5 2 : 1 0 7 4 - 1 0 8 4 .

    3 6 . S c h a l l i n g , M . , T .J . H u d s o n , K . H . B u e t o w , a n d D . E . H o u s m a n . 1 9 9 3 . D i r e c t d e t e c t i o n o f n o v e l

    e x p a n d e d t r i n u c l e o t i d e r e p e a t s i n t h e h u m a n g e n o m e . N a tu r e G en e t . 4 : 1 3 5 - 1 3 9 .

    3 7 . W ei s b u r g , W. G . , S . M . B ar n s , D .A . P e l l e t i e r , an d D . J . Lan e . 1 9 9 1 . 1 6 S r ib o s o m al D N A amp l i -

    f i c a t i o n f o r p h y l o g e n e t i c s t u d y . J. Bacteriol. 1 7 3 : 6 9 7 - 7 0 3 .

    3 8 . C za jk a , J. , N . B sa t, M . P ian i , W. R u s s , K . S u l t an a , M . W ie d m an n , R . W h i t a k e r , an d C . A . B a t t .

    1 9 9 3 . D i f f e r e n t i a t i o n o f Lis ter ia monocytogenes a n d Listeria innocua b y 1 6 S r RN A g e n e s a n d

    i n t r a sp e c i e s d i s c r i m i n a t i o n o f Lis ter ia monocytogenes s t r a i n s b y r a n d o m a m p l i f i e d p o l y m o r -

    p h i c D N A p o l y m o r p h i s m s . Appl. Environ. Microbiol. 9: 3 0 4 - 3 0 8 .

    3 9 . C o l l in s , M . D . , S . W al lb an k s , D . J . Lan e , J . S h ah , R . N ie tu p s k i , J . S m id a , M . D o r s ch , a n d E .

    S t a c k e b r a n d t . 1 9 9 1 . P h y l o g e n e t i c a n a l y s i s o f t h e g e n u s Listeria b a s e d o n r e v e r s e t r a n s c r i p t a s e

    s e q u e n c i n g o f 1 6 S r R N A .

    Int . 1. S~,'stem. Bacteriol. 4 1 :

    2 4 0 - 2 4 6 .

    4 0 . W i l s o n , w . J . , M . W i e d m a n n , H . R . D i l l a r d , a n d C . A . B a rt . 19 9 3 . D e v e l o p m e n t o f a l i g a s e c h a i n

    r e a c t i o n a s s a y f o r i d e n t i f i c a t i o n o f Erwinia s tewar t i i . Abs tr . Gen. M eet . Am. Soc. Microbiol . , p .

    365.

    4 1 . W i l s o n , W . J. , M . W i e d m a n n , H . R . D i l l a r d , a n d C .A . B at t. 1 9 9 3 . I d e n t i f i c a t i o n o f Er w in ia

    s tewar t i i b y a l i g a s e c h a i n r e a c t i o n a s s a y . Appl. Environ. Microbiol. 6 0 : 2 7 8 - 2 8 4 .

    4 2 . l o v a n n i s c i , D . M . a n d E . S . W i n n - D e e n . 1 9 9 3. L i g a t i o n a m p l i f i c a t i o n a n d f l u o r e s c e n c e d e t e c -

    t i o n o f Mycobacter ium tuberculos is D N A . Mol. Cell. Probes 7 : 3 5 - 4 3 .

    4 3 . H u , H . , K . E lm o r e , I . F acey , an d D . J en d e r zak . 1 9 9 1 . D e tec t io n o f Borrelia burgdorferi b y l i g as e

    c h a i n r e a c t i o n . Abstr. G en. Meet. Am . Soc. Microbiol. , p. 79.

    4 4 . C a r r i n o , J .J . a n d T . G . L a ff l er . 1 9 91 . D e t e c t i o n o f H I V D N A s e q u e n c e s u s i n g t h e l i g a s e c h a i n

    r eac t io n ( LC R ) . Clin . Chem. 3 7 : 1 0 5 9 .

    4 5 . R i n e h a r d t , L ., H . H a m p l , a n d T . G . L af f le r . 1 9 9 1 . U l t r a s e n s i t i v e n o n - r a d i o a c t i v e d e t e c t i o n o f

    h e r p e s s i m p l e x v i r u s b y L C R , t h e l i g a s e c h a i n r e a c t i o n . I n 2 0 t h A n n u a l M e e t in g o f t h e K e y s to n e

    Sympos ia on molecular and cel lu lar b io logy, , p. 101.

    4 6 . B o n d , S . , J . C a r r i n o , H . H a m p l , K . H a n l e y , L . R i n e h a r d t , a n d T . L a f fl e r . 1 9 9 0 . N e w m e t h o d s

    o f d e t e c t i o n o f H P V . I n Serono sympos ia ( e d . J . M o n s o n e g o ) , p p . 4 2 5 - 4 3 4 . R a v e n P r e s s , P ar i s,

    F r an ce .

    4 7 . K r a m e r , F . R . a n d S . T y a g i . 1 9 93 . Q [3 a m p l i f i c a t i o n : S e n s i t i v e a n d s i m p l e . 1 s t a n n u a l s y m p o -

    s i u m : PCR : Applicat ions and al ternat ive technologies.

    4 8 . W e i , Q ., F . B a r a n y, a n d V .L . W i l s o n . 1 9 9 2. O n c o g e n i c p o i n t m u t a t i o n s d e t e c t e d b y c o m b i n e d

    P C R a n d L C R t e c h n i q u e s . 3 2 n d A n n u a l M e e t i n g o f t h e A m e r i c a n S o c i e t y f o r C el l B i o lo g y .

    MoL Biol . Cel l . (Suppl . ) 3 : 22A.

    4 9 . C h a r i o t , A .C ., V . C a s t r o n o v o , M . K u s a k a , S. S e n t e r r e - L e s e n f a n t s , O . S e n t e r r e , a n d M . S o b e l .

    1 9 93 . I d e n t i fi c a t i o n o f a n e x p r e s se d H O X B 7 s t o p c o d o n p o l y m o r p h i s m i n t h e h u m a n b r e a st

    c a n c e r - d e r i v e d c e l l li n e M C F 7 b y r e v e rs e t r a n s c r ip t a s e - l i g a s e c h a i n r e a c t i o n . Nucleic Acids Res .

    ( in p r e s s ) .

    5 0 . G a u t h i e r , A ., M . T u r m e l , a n d C . L e m i e u x . 1 9 8 8. M a p p i n g o f c h l o r o p l a s t m u t a t i o n s c o n f e r r i n g

    r e s i st a n c e t o a n t i b i o t ic s i n c h l a m y d o m o n a s : E v i d e n c e f o r a n o v e l s it e o f s t r e p t o m y c i n r es is -

    t a n c e i n t h e s m a l l s u b u n i t r i b o s o m a l R N A . Mol. Gen. Genet . 2 1 4 : 1 9 2 - 1 9 7 .

    5 1 . R ~ d s t r 6 m, P ., C . F e r m6 r , B . - E . K r i s t i an s e n , A . J en k in s , O . S k O ld, an d G . S w ed e b e r g . 1 9 9 2 .

    T r a n s f o r m a t i o n a l e x c h a n g e s i n t h e d i h y d r o p t e r o a t e s y n t h a s e g e n e o f Neisser ia meningi t id is : A

    n o v e l m e c h a n i s m f o r a c q u i s i t i o n o f s u l f o n a m i d e r e s i s ta n c e . ]. Bacteriol. 1 7 4 : 6 3 8 6 - 6 3 9 3 .

    Cold Spring Harbor Laboratory Presson July 13, 2011 - Published by genome.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/