21
Life of Fred ® Geometry Expanded Edition Stanley F. Schmidt, Ph.D. Polka Dot Publishing

Life of Fred Geometry - Unique Math · And Life of Fred: Geometry Expanded Edition tells the tale of one ... inductive and deductive reasoning hunch, hypothesis, theory, and law

  • Upload
    others

  • View
    16

  • Download
    2

Embed Size (px)

Citation preview

Life of Fred ®

Geometry Expanded Edition

Stanley F. Schmidt, Ph.D.

Polka Dot Publishing

Note to Students

One day in the life of Fred. A Thursday just after his sixth birthday. In the few hours of that one day, you will experience a full coursein geometry. Everything’s here: the formulas, the definitions, the

theorems, the proofs, and the constructions.

WHAT YOU’LL NEED TO HAVE

You will need at least one year of high school algebra. (Life ofFred: Beginning Algebra Expanded Edition)

In this geometry book for example, on p. 26 we will go from y + y = z to y = ½ z.

It is preferable, however, that you have completed the two years ofhigh school algebra. (Life of Fred: Beginning Algebra Expanded Editionand Life of Fred: Advanced Algebra Expanded Edition)

Most schools stick geometry between the two years ofalgebra—beginning algebra, geometry, advanced algebra—but there are acouple of reasons why this is not the best approach.

First, when you stick geometry between the two algebra courses,you will have a whole year to forget beginning algebra. Taking advancedalgebra right after beginning algebra keeps the algebra fresh.

Second, the heart of geometry is learning how to do proofs. Thisrequires an “older mind” than the mechanical stuff in the algebra courses. A person’s brain develops in stages. Most three-year-olds don’t enjoy quizshows on television. Most ten-year-olds are not “interested” in theopposite sex.

Here is the better sequence of high school math courses: beginning algebra advanced algebra Geometry

trig.

7

Geometry is one course that is different from all the rest. In theother courses, the emphasis is on calculating, manipulating and computinganswers.

In arithmetic, you find 6% of $1200.

In beginning algebra, you solve x² x + 2

= 8 3

In advanced algebra, you use logs to find the answer to: If mywaistline grows by 2% each year, how long will it be before my waist isone-third larger than it is now? (Taken from a Cities problem at the endof chapter three in Life of Fred: Advanced Algebra Expanded Edition.)

In trigonometry, you find the five different answers to x5 = 1. And then in calculus, you find the arc length of the curve y² = 4x³

from x = 0 to x = 2. [From a Cities problem at the end of chapter 17 inLOF: Calculus.]

The answer, in case you’re wondering, is (2/27)(193/2 – 1).And then in linear algebra, which follows calculus, you will solve

systems of many equations with many unknowns.

In contrast, in geometry there are proofs to be created. It is muchmore like solving puzzles than grinding out numerical answers. Forexample, if you start out with a triangle that has two sides of equal length,you are asked to show that it has two angles that have the same size.

There are at least four different ways to prove that this is true. The proofthat you create may be different than someone else’s. Things in geometryare much more creative than in the other courses. It was because ofthe fun I experienced in geometry that I decided to become amathematician.

The surprising (and delightful) truth is that geometry is much morerepresentative of mathematics than are arithmetic, beginning algebra,advanced algebra, trig, or calculus. Once you get beyond all the “numberstuff” of those courses, math becomes a playground like geometry. Onpage 216 I describe eight (of the many) math courses that you can take as acollege student after calculus. All of them have the can-you-find-a-proofspirit that geometry has.

8

THE USUAL SUPPLIES FOR GEOMETRY

Besides a bit of algebra, you’ll need the usual supplies forgeometry:

✓ paper and a pencil✓ a ruler✓ a compass (used in chapter 11 when we

ddo constructions)

✓ maybe a protractor (to measure angles) ✓ maybe your old hand-held calculator with +, –, ×, ÷, and √ keys on it.

The paper, pencil and ruler you probably already have. A compassmay cost you a dollar or two.

If you’re super rich and you want to blow another buck for aprotractor, that’s your choice. You won’t really need one for this course.

WHAT YOU’LL NEED TO DO

Throughout this book are sections calledYour Turn to Play , whichare opportunities for you to interact with the geometry. Completesolutions are given for all the problems in theYour Turn to Play sections.

If you really want a solid grounding in geometry, just reading theproblems and then just reading the solutions in the Your Turn to Playsections without working them out for yourself really won’t work.

Just reading the questions andthen just reading the answersin the Your Turn to Playsections is the easy way—butthe material won’t stick inyour memory.

9

You have to haul out a sheet of paper and work out each problemon that sheet—and then look at the answer.

Some students have confessed that they just can’t help“accidentally” looking at the answers to the Your Turn to Play questions thatare given right below the questions. This is a question of dealing withtemptation. The simple solution is to put a piece of paper over the answersso that you won’t accidentally see them.

But what, you the reader ask, if the paper slips and I accidentallysee the answer?

Then hire some nasty 250-pound man who willmake sure your paper doesn’t slip.

At the end of each chapter are six sets of questions, each set namedafter a city in the United States. You may not have heard of some of thecities such as Elmira or Parkdale, but they all really exist. All of theanswers are supplied right after the questions.

WHAT THIS BOOK CONTAINS

This book has all of high school geometry. Look over the Table ofContents (and the index) and you will find that it’s all there.

In addition to the material for the average student there are six“Other Worlds” chapters (which are chapters 5½, 7½, 8½, 11½, 12½ and13½) that offer you an ultra-complete honors course in geometry. Forexample, chapter 8½ is an introduction to symbolic logic. Chapter 11½covers non-Euclidean geometry. Chapter 13½ deals with flawless, moderngeometry. (Traditional Euclidean geometry has flaws in it.)

10

Near the back of the book, on p. 533, is the A.R.T. section (AllReorganized Together). The A.R.T. section lists all the theorems,definitions, and postulates in the order they are encountered in this book.

And Life of Fred: Geometry Expanded Edition tells the tale of oneof the greatest love stories in world literature.

11

Contents

Chapter 1 Points and Lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

line segments

collinear points

concurrent lines

midpoint

circular definitions

undefined terms

postulates and theorems

coordinates of a point

Chapter 2 Angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

rays

Euclid’s Elements

acute, right, and obtuse angles

congruent angles

degrees, minutes, and seconds

vertical angles

supplementary angles

linear pair

Chapter 3 Triangles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

right triangles, hypotenuse, and legs

acute and obtuse triangles

isosceles triangles

scalene triangles

SSS, SAS, ASA postulates

drawing auxiliary lines

equilateral and equiangular triangles

Chapter 4 Parallel Lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

coplanar and skew lines

indirect proofs

exterior angles

alternate interior angles and corresponding angles

12

Chapter 5 Perpendicular Lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

theorems, propositions, lemmas, and corollaries

Hypotenuse-Leg Theorem

perpendicular bisectors

distance from a point to a line

Chapter 5½ Chain the Gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

P & Q (“and”)

P ∨ Q (“or”)

P ➜ Q (“implies”)

Chapter 6 Quadrilaterals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

parallelogram

trapezoid

rhombus

kite

rectangle

square

Honors Problem of the Century

midsegment of a triangle

intercepted segments

Chapter 7 Area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

triangles

parallelograms

rectangles, rhombuses, and squares

perimeter

trapezoids

polygons

Pythagorean Theorem

Heron’s formula

triangle inequality

Chapter 7½ Junior Geometry and Other Little Tiny Theories.. . . . . . 288

three-point geometry

models for axiom systems

group theory

13

Chapter 8 Similar Triangles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

AA postulate

proportions

generalization of the Midsegment Theorem

altitudes

Angle Bisector Theorem

Chapter 8½ Symbolic Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

If ∙∙∙ then ∙∙∙ statements

contrapositive

¬ P (“not” P)

truth tables

transitive property of ➜

tautology

Chapter 9 Right Triangles.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

mean proportional ( = geometric mean )

three famous right triangles:

3–4–5

45º–45º–90º

30º–60º–90º

adjacent, opposite, hypotenuse

tangent function (from trigonometry)

Chapter 10 Circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

center, radius, chord, diameter, secant, tangent

concentric circles

central angles

arcs

inscribed angles

proof by cases

circumference

π

inductive and deductive reasoning

hunch, hypothesis, theory, and law

sectors

14

Chapter 11 Constructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

compass and straightedge

rules of the game

rusty compass constructions

golden rectangles and golden ratio

trisecting an angle and squaring a circle

incenter and circumcenter of a triangle

collapsible compass constructions

46 popular constructions

Chapter 11½ Non-Euclidean Geometry.. . . . . . . . . . . . . . . . . . . . . . . . 431

attempts to prove the Parallel Postulate

Nicolai Ivanovich Lobachevsky’s geometry

consistent mathematical theories

Georg Friedrich Bernhard Riemann’s geometry

Chapter 12 Solid Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

a line perpendicular to a plane

distance from a point to a plane

parallel and perpendicular planes

polyhedrons

hexahedron (cube)

tetrahedron

octahedron

icosahedron

dodecahedron

Euler’s Theorem

volume formulas

Cavalieri’s Principle

lateral surface area

volume formulas: cylinders, prisms, cones, pyramids, spheres

Chapter 12½ Geometry in Four Dimensions. . . . . . . . . . . . . . . . . . . . . 469

how to tell what dimension you live in

how two-dimensional people know that there is no third

dimension

getting out of jail

15

organic chemistry and why you don’t want to be flipped in the

fourth dimension

tesseracts and hypertesseracts

the Chart of the Universe (up to 14 dimensions)

Chapter 13 Coordinate Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

analytic geometry

Cartesian/rectangular/orthogonal coordinate system

axes, origin, and quadrants

slope

distance formula

midpoint formula

proofs using analytic geometry

Chapter 13½ Flawless (Modern) Geometry. . . . . . . . . . . . . . . . . . . . . 503

proof that every triangle is isosceles

proof that an obtuse angle is congruent to a right angle

19-year-old Robert L. Moore’s modern geometry

∃ (“there exists”)

e, π and √ –1

∀ (“for all”)

A.R.T. section (a quick summary of all of geometry). . . . . . . . . . . . . . . 533

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

16

λ

Chapter OnePoints and Lines

Fred’s two little eyes popped open. It was several minutes beforedawn on an early spring morning. He awoke with a smile. Therewere so many things for which to be grateful. He ticked them off in

his mind one by one.

✔ He was home, safe and sound.

✔ It was Thursday—one of his seven favorite days of the week.

✔ He had received a wonderful pet llama at his sixth birthdayparty last night.

✔ His math teaching position at KITTENS University.

What a wonderful life! was his morning prayer. He stood up andstretched to his full height of thirty-six inches. Fred’s home for the lastfive years or so was his office on the third floor of the math building at theuniversity. By most standards he had been quite young when he first cameto KITTENS.

Years ago, when he had arrived at the school, they had assignedhim his office. He had never had a room of his own before. He was sotuckered out from all the newness in his life (a new job, a new state to livein, a new home) that he had just closed the door to his office and found anice cozy spot (under his desk) and had taken a nap.

And every night since then, that is where he slept.

He had the world’s shortest commute to work. And no expensesfor an apartment or a car.

“Good morning Lambda!” he said to his llama. He had named herLambda in honor of the Greek letter lambda (λ). Heenjoyed the alliteration of “Lambda the llama.”

She was busy chewing on the wooden fence thathe had erected in his office.

“Would you like to get out and get someexercise with me?” he continued. Fred hopped into hisjogging clothes. The pair headed down the two flightsof stairs and out into an icy Kansas morning.

Fred was worried that his new pet wouldn’t be able to keep up withhim as he jogged. He had been jogging for years and running 15 or 20

17

Chapter One Points and Lines

Parallel lines

Who coulddiscipline

such a lovelycreature?

miles was nothing for him. Fred’s fears, however, were unfounded. Hissix-foot-tall llama had no trouble matching the pace of Fred’s little legs.

In fact, after a few minutes, Lambda spotted the new bocci balllawn and raced ahead to enjoy some breakfast. Bythe time Fred caught up to her, she had mowed astraight line right across the lawn. Fred’s littlesnacks that he had given her last night had left herhungry.

Oh no! Fred thought. Larry is gonna bemad. He put a lot of effort into that lawn. Theinternational bocci ball tournament is scheduled tobe here next week.

“Lambda, please come here. You’re notsupposed to be on Mr. Wistrom’s lawn.”

She, being a good llama,obeyed. On her way back to Fred she munched a secondline in the grass. Fred loved his pet and didn’t know that

he was supposed to discipline her. Besides,he thought to himself those are such niceparallel lines.

Actually, to be perfectly accurate,those are line segments he correctedhimself. A line segment is just part of a line. It has twoendpoints. A line is infinitely long in both directions.Anybody who’s studied geometry knows that. Fred enjoyedthe precision that mathematical language afforded him.

When Fred drew lines on the blackboard in his geometryclass, he’d put arrows on ends to indicate that the lines went

on forever. He labeled lines with lower case letters.

18

Chapter One Points and Lines

To draw a line segment was easy. You didn’t need any arrows.

Points like A and B are written with capital letters, and lines like l and m are written with lower case letters.

AB–––

is the notation for the line segment with endpoints A and B.

AB←→is the notation for the line which contains A and B.

And just to make things complete: AB is the distance betweenpoints A and B. That makes AB a number (like six feet) whereas AB––– and

AB←→ are geometrical objects (a segment and a line).

Your Turn to Play

1. Line segments (sometimes called segments for short) can come in lots of differentlengths. Name a number that couldn’t be a length of a line segment. (Please try tofigure out the answer before you look at the solution furnished below.)

2. If AB = 4 and AC = 4, does that mean that A, B and C all lie on the same line?

3. If points D, E and F are collinear with E between D and F,

it would not be right to say that

DE—–

+ EF—–

= DF—–

. Why not?

4. (A tougher question) If GH + HI = GI,

must it be true that:

a) points G, H and I are collinear? b) H is between G and I?

The way to figure out the answer to this question is to get out a piece of paper anddraw three points so that the distance from G to H plus the distance from H to I isequal to the distance from G to I. Be convinced in your own mind what the answers toquestions a) and b) are before you look at the solutions below. You will learn verylittle by just reading the questions and then glancing at the answers.

19

Chapter One Points and Lines

. . . . . . . COMPLETE SOLUTIONS . . . . . . .

1. If you phone a travel agency and ask how far it is between San Francisco andYosemite National Park, they might say something like 209 miles. If you phone themthe next day and ask them how far it is from Yosemite National Park to San Francisco,they would again say 209 miles. The distance between two points is never negative. So the answer to question 1 might be something like –5 or –978267 or –π or –√ 7 . Itcould be zero since the distance from San Francisco to San Francisco is zero. Insymbols, it’s always true that AA = 0.

2. On this map of

Kansas, the distance

from Garden City to

Colby is about the same

as the distance from

Garden City to Hays.

Those three cities are

not collinear.

(Collinear = lie on the

same line.)

3. It is true that DE + EF = DF (which states that the distance from D to E plus thedistance from E to F is equal to the distance from D to F). We can add numberstogether. But DE

—– isn’t a number. It’s a line segment which is a geometrical object.

The only thing we know how to add are numbers. Could you add Martin Luther andpizza? Could you divide the Red Cross by a stop sign?

Similarly, you can’t draw AB since AB is a number (the distance between pointsA and B).

4. Suppose for a moment that H weren’t on the line that passes through G and I.

To say that GH + HI = GI is to say that the journey from G to H and then to I is thesame distance as the journey from G straight to I. That’s nonsense unless H is on theroad from G to I. Namely, H is between G and I.

If H isn’t between G and I, then the side trip to H always takes longer. If H isn’tbetween G and I, then GH + HI > GI. ( > is the symbol from algebra for greaterthan.)

20

Chapter One Points and Lines

We have arrived at:

Definition 1: H is between G and I if and only if GH + HI = GI.

Some notes about definition 1:

♪#1: The word we’re defining is in boldface type.

♪#2: Every definition in mathematics has the phrase “if and only if” in it. That meansin the case of this definition that:

I) If H is between G and I then it’s true that GH + HI = GI, andII) If GH + HI = GI, then H is between G and I.

Either part of the definition implies the other part.

♪#3: Later on in geometry when we’re doing a proof and we know, for example, thatAB + BC = AC, then we can say, “B is between A and C” and give as a reason, “Bythe definition of between.”

♪#4: Definitions are entirely optional. We could do all of geometry without using asingle definition. However, we use definitions to make our lives easier. We couldalways talk about “the geometrical object consisting of three non-collinear points A, Band C and the line segments AB

—–, BC

—– and CA

—–,” but don’t you think it is a lot easier

if we just say “triangle ABC ”? Oops! We just made our second definition ingeometry. We will call it Definition 2. It is the definition of triangle ABC, which wewrite in symbols as △ABC.

♪#5: Since we are introducing symbols, we will write “H is between G and I” as G-H-I.

♪#6: If G and H are the same point, then GH = 0 and G-H-I. You have more than onename, don’t you? A point can have more than one name.

♪#7: Do you want to learn geometry? To make the whole thing a happy experience,here’s a suggestion which has worked for many students over the years. Take out asheet of paper and head it, “Definitions.” There will be lots of definitions in geometryand it will be a lot easier if you copy them down as you encounter them. Then youwill have them all in one place for easy reference. So far, your definitions page andsymbols page would look like:

DefinitionsDefinition 1: H is between G and I if and only if GH + HI = GI.

Definition 2: Triangle ABC is defined as non-collinear points A, B and C and the line segments AB –––

, BC

––– and CA

–––.

List of Symbols

AB –––

is the notation for the line segment with endpoints A and B.

AB ←→

is the notation for the line which contains A and B.

21

Index

acute triangle. . . . . . . . . . . . . . . 97, 536

AIP Theorem. . . . . . . . . . . . . . . . . . 138

altitude. . . . . . . . . . . . . . . . . . . 315, 336

analytic geometry. . . . . . . . . . . . . . . 488

angle. . . . . . . . . . . . . . . . . . . . . . 60, 534

acute. . . . . . . . . . . . . . . . . . . . . . . 61

adjacent angles. . . . . . . . . . . . . . . 76

alternate interior angles. . . . . . . 137

angle bisector. . . . . . . . . . . . 90, 536

complementary. . . . . . . . . . 156, 538

congruent angles. . . . . . . . . . . . . . 64

corresponding angles. . . . . . . . . 137

exterior angle. . . . . . . . . . . 135, 537

interior. . . . . . . . . . . . . . . . . . . . 363

measure of an angle. . . . . . . . . . . 60

obtuse. . . . . . . . . . . . . . . . . . . . . . 62

remote interior angle.. . . . . . . . . 131

right. . . . . . . . . . . . . . . . . . . . . . . 61

sides. . . . . . . . . . . . . . . . . . . . . . . 72

straight angle. . . . . . . . . . . . . . . . 60

vertical angles.. . . . . . . . . . . 73, 535

Angle Addition Postulate. . . . . . . . . . 88

Angle Bisector Theorem. . . . . . . . . . 319

Archimedes. . . . . . . . . . . . . . . . . . . . 465

area formulas. . . . . . . . . . . . . . . . . . . 29

Heron’s formula. . . . . . . . . . . . . 280

parallelogram. . . . . . . . . . . . . . . 245

rectangle. . . . . . . . . . . . . . . . . . . 245

rhombus. . . . . . . . . . . . . . . . . . . 245

square. . . . . . . . . . . . . . . . . . . . . 245

trapezoid. . . . . . . . . . . . . . . . . . . 245

triangle. . . . . . . . . . . . . . . . . . . . 244

ASA. . . . . . . . . . . . . . . . . . . . . 106, 537

associative law of addition. . . . . . . . . 43

associative law of multiplication. . . . . 43

auswendig lernen. . . . . . . . . . . . . . . . 80

auxiliary

segments, lines, rays. . . . . . . . . . 109

Babylonians. . . . . . . . . . . . . . . . . . . . 67

between.. . . . . . . . . . . . . . . . . . . 21, 533

CAP Theorem. . . . . . . . . . . . . . 141, 142

cardioid. . . . . . . . . . . . . . . . . . . . . . . 201

Cartesian coordinate system. . . . . . . 488

Cavalieri’s Principle. . . . . . . . . . . . . 455

central angle. . . . . . . . . . . . . . . 367, 546

Chart of the Universe. . . . . . . . . . . . 485

chord.. . . . . . . . . . . . . . . . . . . . 362, 545

circle

circumference. . . . . . . . . . . 377-379

definition of. . . . . . . . . . . . 362, 545

equation of a circle. . . . . . . . . . . 498

tangent. . . . . . . . . . . . . . . . 362, 545

circular definitions. . . . . . . . . . . . . . . 30

circumcenter of a triangle. . . . . . . . . 423

circumference. . . . . . . . . . . . . . 377-379

collapsible compass constructions. . 427

collinear. . . . . . . . . . . . . . . . . . . 20, 223

commutative law of addition.. . . . . . . 43

commutative law of multiplication. . . 43

concentric circles. . . . . . . . . . . 363, 546

conclusion.. . . . . . . . . . . . . . . . . 36, 110

concurrent. . . . . . . . . . . . . . . . . . . . . . 23

lines. . . . . . . . . . . . . . . . . . . . . . 466

planes. . . . . . . . . . . . . . . . . 467, 553

congruent

angles. . . . . . . . . . . . . . . . . . . . . . 64

segments. . . . . . . . . . . . . . . . . . . . 65

congruent triangles. . . . . . . . . . . . . . 101

construction

rusty compass. . . . . . . . . . . . . . . 410

the rules. . . . . . . . . . . . . . . . . . . 407

contrapositive. . . . . . . . . . . . . . . 37, 328

555

converse. . . 36, 109, 115, 116, 142, 156

of Isosceles Triangle Theorem. . 110

coordinate of a point. . . . . . . . . . . . . . 42

coplanar. . . . . . . . . . . . . . . . . . . . . . 121

corollary. . . . . . . . . . . . . . . 88, 142, 169

corresponding angles. . . . . . . . . . . . 137

Descartes, René . . . . . . . . . . . . . . . . 488

diameter. . . . . . . . . . . . . . . . . . 362, 545

distance formula. . . . . . . . . . . . . . . . 492

in five dimensions. . . . . . . . . . . 499

distance from a point to a line. . . . . . 181

distributive property. . . . . . . . . . . . . . 43

dodecahedron. . . . . . . . . . . . . . . . . . 452

dogs. . . . . . . . . . . . . . . . . . . . . 196, 197

eccentricity of an ellipse. . . . . . . . . . 303

endpoints. . . . . . . . . . . . . . . . . . . . . . 19

engineers v. mathematicians. . . . . . . 520

equiangular. . . . . . . . . . . . . . . . 112, 537

Euclid. . . . . . . . . . . . . . . . . . . . . . . . . 52

Euler’s Theorem. . . . . . . . . . . . . . . . 453

Exterior Angle Theorem. . . . . 131, 132,

135

strong form. . . . . . . . . . . . . 151-153

foot of a perpendicular. . . . . . . . . . . 181

geometric mean.. . . . . . . . . . . . . . . . 426

Goldbach’s “Theorem”. . . . . . . . . . . 227

golden ratio. . . . . . . . . . . . . . . . . . . . 414

golden rectangle. . . . . . . . . . . . 413, 414

graphing. . . . . . . . . . . . . . . . . . . . . . 490

group theory. . . . . . . . . . . . . . . . . . . 504

H-L Theorem (Hypotenuse-Leg).. . 172,

175

hexahedron. . . . . . . . . . . . . . . . . . . . 450

Hilbert, David. . . . . . . . . . . . . . . . . . 512

homochirality. . . . . . . . . . . . . . . . . . 479

how to tell what dimension you live in

. . . . . . . . . . . . . . . . . . . . . . 471

hyperbole. . . . . . . . . . . . . . . . . . . . . 335

hypotenuse. . . . . . . . . . . . . . . . . . . . . 94

hypothesis. . . . . . . . . . . . . . . . . . 36, 110

icosahedron.. . . . . . . . . . . . . . . . . . . 451

iff. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

incenter of a triangle. . . . . . . . . 422, 550

inductive and deductive reasoning. . 389

hunch/hypothesis/theory/law. . . 390

swans. . . . . . . . . . . . . . . . . . . . . 391

inscribed angle of a circle. . . . . . . . 369

intercept. . . . . . . . . . . . . . . . . . . . . . 221

irony. . . . . . . . . . . . . . . . . . . . . . . . . . 22

Isosceles Triangle Theorem. . . . . . . 109

a second proof. . . . . . . . . . . . . . 111

a third proof. . . . . . . . . . . . . . . . 113

converse. . . . . . . . . . . . . . . . . . . 110

ITT. . . . . . . . . . . . . . . . . . . . . . . . . . 109

kite. . . . . . . . . . . . . . . . . . . . . . . . . . 195

legs. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

lemma. . . . . . . . . . . . . . . . . . . . . . . . 169

limit of function f(x) as x approaches a

. . . . . . . . . . . . . . . . . . . . . . 380

line segment. . . . . . . . . . . . . . . . . . . . 46

linear pair of angles. . . . . . . . . . 73, 535

lines

parallel. . . . . . . . . . . . . . . . . . . . 120

perpendicular. . . . . . . . . . . . . . . . 89

skew. . . . . . . . . . 121, 443, 445, 552

locus of points. . . . . . . . . . . . . 500, 554

logically equivalent. . . . . . . . . . . 48, 534

Lysistrata. . . . . . . . . . . . . . . . . . . . . 119

major arc.. . . . . . . . . . . . . . . . . 368, 546

measure of a major arc. . . . . . . . 369

Maslow, Abraham.. . . . . . . . . . . . . . 495

mathematical theory. . . . . . . . . . . 33, 34

consistent. . . . . . . . . . . . . . . . . . 434

models. . . . . . . . . . . . . . . . . . . . 292

palm tree illustration.. . . . . . 34, 129

tall and slender. . . . . . . . . . . . . . 260

mean proportional. . . . . . . . . . . . . . . 337

median. . . . . . . 113, 180, 423, 537, 551

midpoint formula. . . . . . . . . . . . . . . 493

midsegment.. . . . . . . . . . . . . . . 211, 541

Midsegment Theorem. . . . . . . . 212, 541

converse. . . . . . . . . . . . . . . . . . . 212

556

minor arc.. . . . . . . . . . . . . . . . . 368, 546

measure of minor arc. . . . . . . . . 369

minutes. . . . . . . . . . . . . . . . . . . . 66, 535

Moby Dick. . . . . . . . . . . . . . . . . . . . 314

models. . . . . . . . . . . . . . . . . . . . . . . 292

Modus Ponens. . . . . . . . . . . . . . . . . 334

Moore, Robert L.. . . . . . . . . . . . . . . 511

mutatis mutandis. . . . . . . . . . . . . . . . . 80

obscurantism.. . . . . . . . . . . . . . . . . . . 53

obtuse angles. . . . . . . . . . . . . . . . . . . 62

octahedron. . . . . . . . . . . . . . . . . . . . 450

opposite rays. . . . . . . . . . . . . . . . . 55, 56

orthogonal coordinate system. . . . . . 488

“Ozymandias”.. . . . . . . . . . . . . . . . . 355

PAI Theorem. . . . . . . . . . . . . . 141, 142

Parallel Postulate. . . . . . . . . . . . . . . 128

parallelogram. . . . . . . . . . . . . . . . . . 195

area. . . . . . . . . . . . . . . . . . . . . . . 245

perimeter.. . . . . . . . . . . . . . . . . . . . . 246

perpendicular. . . . . . . . . . . . . . . 89, 536

perpendicular bisector. . . . . . . . . . . . 178

Perpendicular Bisector Theorem. . . . . . .

. . . . . . . . . . . . . . . . . . 180, 540

poetry

enjambment. . . . . . . . . . . . . . . . . 59

feet. . . . . . . . . . . . . . . . . . . . . . . . 58

Fred's. . . . . . . . . . . . . . . . . . . . . . 57

point

a picture of one. . . . . . . . . . . . . . . 32

polygon. . . . . . . . . . . . . . . . . . . 254, 255

definition of exterior.. . . . . . . . . 258

definition of interior. . . . . . . . . . 258

regular polygon.. . . . . . . . . . . . . 378

polyhedron. . . . . . . . . . . . . . . . 450, 553

interior of a polyhedron. . . . . . . 458

Pons Asinorum. . . . . . . . . . . . . . . . . 110

postulate

definition of. . . . . . . . . . . . . . . . . 33

list of the first 13. . . . . . . . . . . . 288

Postulate 1

Two points determine a line. . . . . 33

Postulate 2. . . . . . . . . . . . . . . . . . . . . 39

Ruler Postulate. . . . . . . . . . . . . . . 41

Postulate 3

Angle Measurement Postulate. . . 60

Postulate 4

linear pair implies supplementary

. . . . . . . . . . . . . . . . . . . . . . . 74

Postulate 5

Angle Addition Postulate. . . . . . . 88

Postulate 6

SSS.. . . . . . . . . . . . . . . . . . . . . . 103

Postulate 7

SAS. . . . . . . . . . . . . . . . . . . . . . 105

Postulate 8

ASA. . . . . . . . . . . . . . . . . . . . . . 106

Postulate 9

Parallel Postulate. . . . . . . . . . . . 128

Postulate 10

Area Postulate. . . . . . . . . . 256, 542

Postulate 11

congruent triangles have equal areas

. . . . . . . . . . . . . . . . . . 256, 542

Postulate 12

Area Addition Postulate. . . 256, 543

Postulate 13

area of a square.. . . . . . . . . . . . . 267

Postulate 14

AA. . . . . . . . . . . . . . . . . . . . . . . 304

Postulate 15

three noncollinar points determine

a plane. . . . . . . . . . . . . . . . 445

Postulate 16

Flat Plane Postulate. . . . . . 445, 552

prime numbers. . . . . . . . . . . . . 227, 228

prism.. . . . . . . . . . . . . . . . . . . . . . . . 457

volume. . . . . . . . . . . . . . . . . . . . 459

proof

by cases. . . . . . . . . . . . . . . 370, 372

indirect proof. . . . . . . . . . . . . . . 123

outline of a proof or sketching a

proof. . . . . . . . . . . . . . . . . . 182

557

possible reasons. . . . . . . . . 124, 130

the two rules for a valid proof.. . . 80

proportions. . . . . . . . . . . . . . . . . . . . 306

extremes. . . . . . . . . . . . . . . . . . . 308

five favorite tricks.. . . . . . . . . . . 307

geometric mean. . . . . . . . . . . . . 353

interchanging the extremes. . . . . 308

means. . . . . . . . . . . . . . . . . . . . . 308

proposition. . . . . . . . . . . . . . . . . 46, 169

protractor. . . . . . . . . . . . . . . . . . . . . . 62

pyramid.. . . . . . . . . . . . . . . . . . . . . . 460

Pythagorean Theorem. . . . 276, 489, 543

converse. . . . . . . . . . . . . . . . . . . 283

Garfield’s proof. . . . . . . . . . . . . 277

quadrant. . . . . . . . . . . . . . . . . . . . . . 490

radian measurement. . . . . . . . . . . . . . 68

radius. . . . . . . . . . . . . . . . . . . . 362, 545

ray.. . . . . . . . . . . . . . . . . . . . . . . . 53, 56

rectangle. . . . . . . . . . . . . . . . . . . . . . 196

area. . . . . . . . . . . . . . . . . . . . . . . 245

rectangular coordinate system. . . . . . 488

reflexive law of equality. . . . . . . . . . 170

regular polygon. . . . . . . . . . . . . . . . . 378

remote interior angle. . . . . . . . . . . . . 131

rhombus. . . . . . . . . . . . . . . . . . 183, 195

area. . . . . . . . . . . . . . . . . . . . . . . 245

right angle. . . . . . . . . . . . . . . . . . . . . . 61

right triangle. . . . . . . . . . . . . . . . . . . . 94

30º–60º–90º triangle. . . . . . . . . . 341

3–4–5 right triangle. . . . . . . . . . 340

45º right triangle. . . . . . . . . . . . . 340

hypotenuse. . . . . . . . . . . . . . . . . . 94

legs. . . . . . . . . . . . . . . . . . . . . . . . 94

Three Famous Right Triangles

. . . . . . . . . . . . . . . . . . . . . . 340

rusty compass construction. . . . . . . . 410

SAS. . . . . . . . . . . . . . . . . . . . . . . . . 105

sea chanty. . . . . . . . . . . . . . . . . . . . . 376

secant. . . . . . . . . . . . . . . . . . . . 362, 545

secant line. . . . . . . . . . . . . . . . . . . . . . 28

seconds. . . . . . . . . . . . . . . . . . . . . . . . 67

sector. . . . . . . . . . . . . . . . . . . . . 23, 394

segment

congruent segments. . . . . . . . . . . 65

endpoints. . . . . . . . . . . . . . . . . . . 19

semicircle. . . . . . . . . . . . . . . . . 368, 546

semiperimeter. . . . . . . . . . . . . . . . . . 280

Seven Wonders of the Ancient World

. . . . . . . . . . . . . . . . . . . . . . 460

Shelley, Percy Bysshe. . . . . . . . . . . . 355

similar.. . . . . . . . . . . . . . . . . . . . . . . 301

triangles. . . . . . . . . . . . . . . . . . . 303

sphere. . . . . . . . . . . . . . . . . . . . . . . . 465

equation of a sphere. . . . . . . . . . 497

surface area.. . . . . . . . . . . . . . . . 466

square. . . . . . . . . . . . . . . . . . . . . . . . 196

area. . . . . . . . . . . . . . . . . . . . . . . 245

square the circle. . . . . . . . . . . . . . . . 416

SSS. . . . . . . . . . . . . . . . . . . . . . . . . . 103

stereochemistry. . . . . . . . . . . . . . . . . 479

supplement. . . . . . . . . . . . . . . . . . . . . 91

supplementary angles. . . . . . . . . 73, 535

symmetric property of equality. . . . . . 44

tangent function. . . . . . . . . . . . . . . . 345

table. . . . . . . . . . . . . . . . . . . . . . 347

tautology. . . . . . . . . . . . . . . . . . . . . . 333

tesseract. . . . . . . . . . . . . . . . . . 480-482

tetrahedron. . . . . . . . . . . . . . . . . . . . 450

The Elements. . . . . . . . . . . . . . . . . . . 51

theorem. . . . . . . . . . . . . . . . . . . . . . . 169

def of. . . . . . . . . . . . . . . . . . . . . . 26

theory. . . . . . . . . . . . . . . . . . . . . . . . . 34

palm tree illustration.. . . . . . . . . . 34

transitive law. . . . . . . . . . . . . . . . . . 115

transitive law of equality.. . . . . . 43, 143

Transitive Property of Congruent Angles

Theorem. . . . . . . . . . . 143, 538

transversal. . . . . . . . . . . . . . . . . . . . . 137

trapezoid. . . . . . . . . . . . . . . . . . . . . . 195

area. . . . . . . . . . . . . . . . . . . . . . . 245

isosceles. . . . . . . . . . . . . . . . . . . 196

558

triangle

acute triangle. . . . . . . . . . . . 97, 536

area. . . . . . . . . . . . . . . . . . . . . . . 244

circumcenter. . . . . . . . . . . . . . . . 423

congruent. . . . . . . . . . . . . . . . . . 101

equilateral. . . . . . . . . . . . . . 112, 537

incenter.. . . . . . . . . . . . . . . . . . . 422

isosceles triangle.. . . . . . . . . 98, 536

obtuse triangle. . . . . . . . . . . 97, 536

scalene triangle. . . . . . . . . . . 98, 537

triangle inequality. . . . . . . . . . . 282, 543

trisect an angle. . . . . . . . . . . . . . . . . 416

truth tables. . . . . . . . . . . . . . . . . . . . 330

for ∨ (“or”). . . . . . . . . . . . . . . . . 331

for “not”. . . . . . . . . . . . . . . . . . . 330

for &.. . . . . . . . . . . . . . . . . . . . . 331

for ➜ . . . . . . . . . . . . . . . . . . . . . 331

valid arguments. . . . . . . . . . . . . 332

undefined terms. . . . . . . . . . . . . . . . . 31

vertex

of a triangle. . . . . . . . . . . . . . . . . 22

of an angle. . . . . . . . . . . . . . . . . . 59

Vertical Angle Theorem. . . . . . . . . . . 82

vertices. . . . . . . . . . . . . . . . . . . . . . . 533

volume formulas. . . . . . . . . . . . . . . . . 29

cone. . . . . . . . . . . . . . . . . . . . . . 459

cylinder.. . . . . . . . . . . . . . . . . . . 459

prism. . . . . . . . . . . . . . . . . . . . . 459

➜ (“implies”). . . . . . . . . . . . . . 192, 540

∨ (“or”). . . . . . . . . . . . . . . . . . . 192, 540

559