15
Ley de los gases ideales Diagrama presión-volumen a temperatura constante para un gas ideal. La ley de los gases ideales es la ecuación de estado del gas ideal , un gas hipotético formado por partículas puntuales, sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos (conservación de momento y energía cinética ). Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta temperatura. Empíricamente, se observan una serie de relaciones entre la temperatura , la presión y el volumen que dan lugar a la ley de los gases ideales, deducida por primera vez por Émile Clapeyron en 1834 . La ecuación de estado La ecuación que describe normalmente la relación entre la presión, el volumen, la temperatura y la cantidad (en moles ) de un gas ideal es: Donde: = Presión = Volumen = Moles de Gas

Ley de Los Gases Ideales

  • Upload
    hmenag

  • View
    198

  • Download
    0

Embed Size (px)

DESCRIPTION

ley de avogadro

Citation preview

Page 1: Ley de Los Gases Ideales

Ley de los gases ideales

Diagrama presión-volumen a temperatura constante para un gas ideal.

La ley de los gases ideales es la ecuación de estado del gas ideal, un gas hipotético formado por partículas puntuales, sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos (conservación de momento y energía cinética). Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta temperatura.

Empíricamente, se observan una serie de relaciones entre la temperatura, la presión y el volumen que dan lugar a la ley de los gases ideales, deducida por primera vez por Émile Clapeyron en 1834.

La ecuación de estado

La ecuación que describe normalmente la relación entre la presión, el volumen, la temperatura y la cantidad (en moles) de un gas ideal es:

Donde:

= Presión = Volumen = Moles de Gas = Constante universal de los gases ideales = Temperatura absoluta

Teoría cinética molecular

Esta teoría fue desarrollada por Ludwig Boltzmann y Maxwell. Nos indica las propiedades de un gas ideal a nivel molecular.

Todo gas ideal está formado por N pequeñas partículas puntuales (átomos o moléculas).

Page 2: Ley de Los Gases Ideales

Las moléculas gaseosas se mueven a altas velocidades, en forma recta y desordenada.

Un gas ideal ejerce una presión continua sobre las paredes del recipiente que lo contiene, debido a los choques de las partículas con las paredes de este.

Los choques moleculares son perfectamente elásticos. No hay pérdida de energía cinética.

No se tienen en cuenta las interacciones de atracción y repulsión molecular. La energía cinética media de la translación de una molécula es directamente

proporcional a la temperatura absoluta del gas.

En estas circunstancias, la ecuación de los gases se encuentra teóricamente:

donde κB es la constante de Boltzmann, donde N es el número de partículas.

La ecuación de estado para gases reales

Artículo principal: Ley de los gases realesValores de R

Haciendo una corrección a la ecuación de estado de un gas ideal, es decir, tomando en cuenta las fuerzas intermoleculares y volúmenes intermoleculares finitos, se obtiene la ecuación para gases reales, también llamada ecuación de Van der Waals:

Page 3: Ley de Los Gases Ideales

Donde:

= Presión del gas = Volumen del gas = Número de moles de gas = Constante universal de los gases ideales = Temperatura del gas y son constantes determinadas por la naturaleza del gas con el fin de que haya la

mayor congruencia posible entre la ecuación de los gases reales y el comportamiento observado experimentalmente.

Ecuación general de los gases ideales

Partiendo de la ecuación de estado:

Tenemos que:

Donde R es la constante universal de los gases ideales, luego para dos estados del mismo gas, 1 y 2:

Para una misma masa gaseosa (por tanto, el número de moles «n» es constante), podemos afirmar que existe una constante directamente proporcional a la presión y volumen del gas, e inversamente proporcional a su temperatura.

Formas alternativas

Como la cantidad de sustancia podría ser dada en masa en lugar de moles, a veces es útil una forma alternativa de la ley del gas ideal. El número de moles (n) es igual a la masa (m) dividido por la masa molar (M):

Page 4: Ley de Los Gases Ideales

y sustituyendo , obtenemos:

donde:

Esta forma de la ley del gas ideal es muy útil porque se vincula la presión, la densidad ρ = m/ V, y la temperatura en una fórmula única, independiente de la cantidad del gas considerado.

En mecánica estadística las ecuaciones moleculares siguientes se derivan de los principios básicos:

Aquí k es el constante de Boltzmann y N es el número actual de moléculas, a diferencia de la otra fórmula, que utiliza n, el número de moles. Esta relación implica que Nk = nR, y la coherencia de este resultado con el experimento es una buena comprobación en los principios de la mecánica estadística.

Desde aquí podemos observar que para que una masa de la partícula promedio de μ veces la constante de masa atómica m U (es decir, la masa es μ U)

y desde ρ = m/ V, nos encontramos con que la ley del gas ideal puede escribirse como:

Procesos gaseosos particulares

Procesos realizados manteniendo constante un par de sus cuatro variables (n, P , V, T), de forma que queden dos; una libre y otra dependiente. De este modo, la fórmula arriba expuesta para los estados 1 y 2, puede ser operada simplificando 2 o más parámetros constantes. Según cada caso, reciben los nombres:

Page 5: Ley de Los Gases Ideales

Ley de Boyle-Mariotte

Artículo principal: Ley de Boyle-Mariotte

También llamado proceso isotérmico. Afirma que, a temperatura y cantidad de gas constante, el volumen de un gas es inversamente proporcional a su presión:

Leyes de Charles y Gay-Lussac

En 1802, Louis Gay Lussac publica los resultados de sus experimentos, basados en los que Jacques Charles hizo en el 1787. Se considera así al proceso isobárico para la Ley de Charles, y al isocoro (o isostérico) para la ley de Gay Lussac.

[editar] Proceso isobaro ( Charles)

Artículo principal: Ley de Charles y Gay-Lussac

] Proceso isocoro ( Gay Lussac)

Artículo principal: Segunda ley de Gay-Lussac

Ley de Avogadro

Artículo principal: Ley de Avogadro

Page 6: Ley de Los Gases Ideales

La Ley de Avogadro fue expuesta por Amedeo Avogadro en 1811 y complementaba a las de Boyle, Charles y Gay-Lussac. Asegura que en un proceso a presión y temperatura constante (isobaro e isotermo), el volumen de cualquier gas es proporcional al número de moles presente, de tal modo que:

Esta ecuación es válida incluso para gases ideales distintos. Una forma alternativa de enunciar esta ley es:

El volumen que ocupa un mol de cualquier gas ideal a una temperatura y presión dadas siempre es el mismo.

Gases Ideales

La materia puede presentarse en tres estados: sólido, líquido y gaseoso. En este último estado se encuentran las sustancias que denominamos comúnmente "gases".

Ley de los gases Ideales

Según la teoría atómica las moléculas pueden tener o no cierta libertad de movimientos en el espacio; estos grados de libertad microscópicos están asociados con el concepto de orden macroscópico. Las libertad de movimiento de las moléculas de un sólido está restringida a pequeñas vibraciones; en cambio, las moléculas de un gas se mueven aleatoriamente, y sólo están limitadas por las paredes del recipiente que las contiene.

Se han desarrollado leyes empíricas que relacionan las variables macroscópicas en base a las experiencias en laboratorio realizadas. En los gases ideales, estas variables incluyen la presión (p), el volumen (V) y la temperatura (T). 

La ley de Boyle - Mariotte relaciona inversamente las proporciones de volumen y presión de un gas, manteniendo la temperatura constante: P1. V1 = P2 . V2 

Page 7: Ley de Los Gases Ideales

La ley de Gay-Lussac afirma que el volumen de un gas, a presión constante, es

directamente proporcional a la temperatura absoluta: *

La ley de Charles sostiene que, a volumen constante, la presión de un gas es directamente

proporcional a la temperatura absoluta del sistema: *

* En ambos casos la temperatura se mide en kelvin (273 ºK = 0ºC) ya que no podemos dividir por cero, no existe resultado.

De las tres se deduce la ley universal de los gases:

Teoría Cinética de los Gases

El comportamiento de los gases, enunciadas mediante las leyes anteriormente descriptas, pudo explicarse satisfactoriamente admitiendo la existencia del átomo. 

El volumen de un gas: refleja simplemente la distribución de posiciones de las moléculas que lo componen. Más exactamente, la variable macroscópica V representa el espacio disponible para el movimiento de una molécula. 

La presión de un gas, que puede medirse con manómetros situados en las paredes del recipiente, registra el cambio medio de momento lineal que experimentan las moléculas al chocar contra las paredes y rebotar en ellas. 

La temperatura del gas es proporcional a la energía cinética media de las moléculas, por lo que depende del cuadrado de su velocidad. 

La reducción de las variables macroscópicas a variables mecánicas como la posición, velocidad, momento lineal o energía cinética de las moléculas, que pueden relacionarse a través de las leyes de la mecánica de Newton, debería de proporcionar todas las leyes empíricas de los gases. En general, esto resulta ser cierto.

La teoría física que relaciona las propiedades de los gases con la mecánica clásica se denomina teoría cinética de los gases. Además de proporcionar una base para la ecuación de estado del gas ideal. La teoría cinética también puede emplearse para predecir muchas otras propiedades de los gases, entre ellas la distribución estadística de las velocidades moleculares y las propiedades de transporte como la conductividad térmica, el coeficiente de difusión o la viscosidad.

Page 8: Ley de Los Gases Ideales

Densidad de un gas

En un determinado volumen las moléculas de gas ocupan cierto espacio. Si aumenta el volumen (imaginemos un globo lleno de aire al que lo exponemos al calor aumentando su temperatura), la cantidad de moléculas (al tener mayor espacio) se distribuirán de manera que encontremos menor cantidad en el mismo volumen anterior. Podemos medir la cantidad de materia, ese número de moléculas, mediante una magnitud denominada masa. La cantidad de moléculas, la masa, no varía al

aumentar o disminuir (como en este caso) el volumen, lo que cambia es la relación masa volumen. Esa relación se denomina densidad (). La densidad es inversamente proporcional al volumen (al aumentar al doble el volumen , manteniendo constante la masa, la densidad disminuye a la mitad) pero directamente proporcional a la masa (si aumentamos al doble la masa, en un mismo volumen, aumenta al doble la densidad).

Hipótesis de Avogadro

Esta hipótesis establece que dos gases que posean el mismo volumen (a igual presión y temperatura) deben contener la misma cantidad de moléculas. 

Cada molécula, dependiendo de los átomos que la compongan, deberán tener la misma masa. Es así que puede hallarse la masa relativa de un gas de acuerdo al volumen que ocupe. La hipótesis de Avogadro permitió determinar la masa molecular

relativa de esos gases. 

Analicemos el orden lógico que siguió:

1. La masa de 1 litro de cualquier gas es la masa de todas las moléculas de ese gas. 2. Un litro de cualquier gas contiene el mismo número de moléculas de cualquier otro

gas 3. Por lo tanto, un litro de un gas posee el doble de masa de un litro otro gas si cada

molécula del primer gas pesa el doble de la molécula del segundo gas. 4. En general las masas relativas de las moléculas de todos los gases pueden

determinarse pesando volúmenes equivalentes de los gases.

En condiciones normales de presión y temperatura (CNPT) [ P = 1 atm y T = 273 ºK ] un lito de hidrógeno pesa 0,09 g  y un litro de oxígeno pesa 1,43 g. Según la hipótesis de Avogadro ambos gases poseen la misma cantidad de moléculas. La proporción de los pesos entre ambos gases es: 1,43 : 0,09 = 15,9 (aproximadamente) 16. Es la relación que existe entre una molécula de oxígeno e hidrógeno es 16 a 1. Las masas atómicas relativas

Page 9: Ley de Los Gases Ideales

que aparecen en la tabla periódica están consideradas a partir de un volumen de 22,4 litros en CNPT.

Ley de los Gases Generalizada

Como consecuencia de la hipótesis de Avogadro puede considerarse una generalización de la ley de los gases. Si el volumen molar (volumen que ocupa un mol de molécula de gas) es el mismo para todos los gases en CNPT, entonces podemos considerar que el mismo para todos los gases ideales a cualquier temperatura y presión que se someta al sistema. Esto es cierto por que las leyes que gobiernan los cambios de volumen de los gases con variaciones de temperatura y presión son las mismas para todos los gases ideales. Estamos relacionando proporcionalmente el número de moles (n), el volumen, la presión y la temperatura: P.V ~ n T. Para establecer una igualdad debemos añadir una constante (R) quedando:

P.V = n . R . T

El valor de R podemos calcularlo a partir del volumen molar en CNPT:

Por definición n (número de moles) se calcula dividiendo la masa de un gas por el Mr (la masa molecular relativa del mismo).

Que es otra forma de expresar la ley general de gases ideales.

Los gasesSegún el diagrama de fases, la mayor parte de los elementos químicos y las sustancias pueden existir en tres estados, esto es: sólido, líquido y gaseoso. Y cada uno de nosotros puede muy fácilmente determinar esos estados solo observando el comportamiento cuando nos enfrentamos a una sustancia.Cada uno de los estados, ha sido estudiado durante años por los hombres de ciencia, con el objetivo de determinar las leyes físicas, que puedan predecir su comportamiento con el cambio de las circunstancias que lo rodean. En este caso nos ocuparemos de los gases.Empezaremos por definir que es un gas.

Page 10: Ley de Los Gases Ideales

El gas

La definición de un gas puede ser muy simple y reducirse solo a decir:"Un gas es una sustancia cuyo volumen es igual al volumen del recipiente que lo contiene".Esto es cierto, los gases se expanden hasta ocupar todo el volumen del recipiente que lo contiene, pero ese efecto no es único. Si inyectamos a muy alta velocidad un líquido por un pequeño orificio para formar un aerosol dentro de un volumen vacío, las pequeñas y rapidísimas partículas de líquido, también terminarán por ocupar todo el volumen formando una niebla, por lo que a nuestra escueta definición hay que agregarle algo para evitar la confusión.Podemos arreglar este problema agregando que un gas "deberá estar formado por un gran número de moléculas". Pero bueno... el líquido también está formado por muchas moléculas, así que aun no está resuelto del todo, nos falta aun algo, por eso agregamos que "las moléculas se mueven en todas direcciones" cosa que no sucede en el líquido del aerosol, donde el grupo de moléculas que forman la partícula se mueven todas en la misma dirección debido a la interacción molecular que mantienen y que a su vez impide la libre expansión.Al parecer ahora si ya tenemos definido el gas, pero para que esta última condición se cumpla debe cumplirse a su vez que: "el tamaño de la molécula debe ser despreciable, comparado con la distancia entre ellas" de forma tal que esa enorme distancia relativa, hace que no haya interacción, y que esta solo se limite a su choque físico eventual.Finalmente un gas es entonces. Una sustancia que cumple con las condiciones siguientes:

Ocupa el volumen del recipiente que lo contiene Está formado por un gran número de moléculas Estas moléculas se mueven individualmente al azar en todas direcciones La interacción entre las moléculas se reduce solo a su choque.

En la realidad, estas condiciones se cumplen con suficiente aproximación, en los gases a las condiciones normales de presión y temperatura como para ser consideradas ciertas, pero ¿qué pasa si el gas se somete a muy elevadas presiones?, por ejemplo reduciendo notablemente el recipiente que lo contiene, está claro, la distancia entre las moléculas se reduce y su interacción comienza a tener mas y mas influencia en el comportamiento, a medida que mas y mas se aumente la presión; nuestro gas va "apartándose de la definición de gas"  a la que hemos llegado, por tal motivo y debido a que un gas puede ser "mas o menos gas" se establece una "patrón de gas" que servirá para establecer las leyes del comportamiento de todos los gases y que podrá ser usada con suficiente aproximación en la mayor parte de las aplicaciones prácticas, este patrón se llama "gas ideal".

El gas ideal

Para definir un patrón de gas que sirva para establecer reglas de comportamiento se crea el concepto de gas ideal, este gas ideal cumple las condiciones siguientes:

Ocupa el volumen del recipiente que lo contiene.

Page 11: Ley de Los Gases Ideales

Está formado por moléculas. Estas moléculas se mueven individualmente y al azar en todas direcciones. La interacción entre las moléculas se reduce solo a su choque. Los choques entre las moléculas son completamente elásticos (no hay pérdidas de

energía). Los choque son instantáneos (el tiempo durante el choque es cero).

Los gases reales, siempre que no estén sometidos a condiciones extremas de presión y temperatura, cumplirán muy aproximadamente las reglas establecidas para los gases ideales.

Las leyes de los gases ideales

Se han desarrollado leyes empíricas que relacionan las principales variables de un gas en base a las experiencias de laboratorio realizadas. En los gases ideales, estas variables incluyen la presión (p), el volumen (V) y la temperatura (T).

1.- La ley de Boyle - Mariotte. Esta ley dice que, si se mantiene la temperatura constante, cuando se aumenta la presión de un gas ideal, su volumen disminuye en la misma proporción. Es decir P1. V1 = P2 . V2

2.-La ley de Gay-Lussac. Esta ley dice que si se mantiene la presión constante, el volumen del gas aumentará en la misma proporción en que aumente su temperatura absoluta:

3.- La ley de Charles Esta ley dice que, si se mantiene el volumen constante, la presión de un gas aumenta en la misma proporción en la que aumenta su temperatura absoluta :