16
© 2014 The Aerospace Corporation Lessons From Revolutionary Systems Mark Maier [email protected] 19-March-2014

Lessons From Revolutionary Systems

  • Upload
    nituna

  • View
    23

  • Download
    0

Embed Size (px)

DESCRIPTION

Lessons From Revolutionary Systems. Mark Maier [email protected]. 19-March-2014. Outline of Talk. What is a “Revolutionary System?” The big lessons Threshold capabilities and non-linear effects Intentional, but uncertain architecting Co-evolution of CONOPS and technology The DC-3 - PowerPoint PPT Presentation

Citation preview

Page 1: Lessons From Revolutionary Systems

© 2014 The Aerospace Corporation

Lessons From Revolutionary Systems

Mark [email protected]

19-March-2014

Page 2: Lessons From Revolutionary Systems

2

Outline of Talk

• What is a “Revolutionary System?”• The big lessons

– Threshold capabilities and non-linear effects– Intentional, but uncertain architecting– Co-evolution of CONOPS and technology

• The DC-3• The Global Positioning System (GPS)• Should we care?

Page 3: Lessons From Revolutionary Systems

3

What is a Revolutionary System?

• We’re never going to get a precise definition, but we know one when we see one

• A system with huge effect, one that makes large changes to how military operations or business is done. A system that accomplishes this through new technology.

• Famous examples– DC-3, created the modern airline business– IBM 360– Nuclear submarines, Polaris missiles– Global Positioning System– iPod/iPhone

• Don’t happen very often, hugely important when they do

Page 4: Lessons From Revolutionary Systems

4

Three Big Lessons

• Threshold capabilities and non-linear effects– Moderate changes in capability can lead to huge changes in impact– Big impact comes from passing a “threshold” of technical capability– The threshold is when users do new things

• Intentional, but uncertain architecting– The decisions on the revolutionary systems were made intentionally, but

not with knowledge of exactly where the thresholds lie• Co-evolution of technology and CONOPS

– Revolution happens when technology enables a new CONOPS, and the new CONOPS drives technology

– Grafting technology onto an existing CONOPS is very unlikely to have revolutionary effect, even with dramatic technology

Page 5: Lessons From Revolutionary Systems

5

Using Technology to Evolve

New TechnologyMonocoque fuselageAerodynamicsNew Engines

Do what we do, but betterProfits come from Federal airmail, carry the airmail betterBoeing 247 an optimized response to existing CONOPSClearly better airplane, but no threshold effect

1930 1935 1940

199 produced8 passengersFord Trimotor

75 produced10 passengers+mail

Boeing 247

1945 1950

Page 6: Lessons From Revolutionary Systems

6

In Search of the Threshold

Competitors belief in thresholdDouglas won’t built what he’s asked for, builds what he thinks they need

Starts with a demonstrator, scales upBig success, but no threshold

1930 1935 1940

199 produced8 passengersFord Trimotor

75 produced10 passengers+mail

Boeing 247

1 produced12 passengers

DC-1

156 produced14 passengers

DC-2

1945 1950

Page 7: Lessons From Revolutionary Systems

7

Then the Breakthrough

Douglas takes a big step, by going much biggerNew CONOPS+new technology = revolution

Airlines can make profit without airmail, enables CONOPS shift

1930 1935 1940

199 produced8 passengersFord Trimotor

75 produced10 passengers+mail

Boeing 247

1 produced12 passengers

DC-1

156 produced14 passengers

DC-2

455+10,174 produced28 passengers

DC-3

1945 1950

Page 8: Lessons From Revolutionary Systems

8

Reflecting on: Who Are You?

• Did the architect’s of the Boeing 247 do a good job?– If the client gets what he asked for, but lives to regret asking for it, is that

the client’s fault or the architect’s?– How far does the architect’s responsibility go? Does it matter if he is

inside or outside the client’s organization?• Consider your own organization (local or enterprise). Is their job to

build Boeing 247s or DC-3s?– If it is to build 247s, then whose job is it to build the DC-3s? Or will you

wait until somebody else does?• Bigger strategic variations

– Being a shaper versus and adapter. Leading or being a fast follower.– “Preparing to win the last war” syndrome and architectural competition in

the large• Lessons: Threshold effect, intentionality, coupled change

Page 9: Lessons From Revolutionary Systems

9

The Roots of GPS

• First origin, Transit– Serendipitous discovery– Social Context: Purpose driven, had a killer app

• Timation– Key CONOPS idea, advocacy for clocks– Both evolutionary and revolutionary– Social Context: The Navy labs

• Project 621B– Systematic study– The second key, the signals– Social context: The Air Force approach and California in the 60’s

• The human catalyst

Page 10: Lessons From Revolutionary Systems

10

TransitThe First Navigational Satellite System

• Concept of satellite navigation proposed by Frank McClure (APL) after APL analysis of Sputnik signals– Quickly realized “killer app” in SSBN inertial guidance correction

• ARPA-funded project began in 1958; became a Navy project in 1960– 15 navigation satellites and 8 research satellites launched, 1959 to 1964, IOC 1964– Made available for civilian use, 1967– Last satellite launched, 1988, ceases operation 1996

• Worldwide navigational aid for surface ships and submarines– Not particularly demanding requirements, 2-D only– Much better than alternatives available at the time (like LORAN-C)– Eventually, tens of thousands of civilian users (far outstripping military users)

• Not scalable to global, 3-D

– Signal limitations (mutual interference)

– LEO constellation scalability

Page 11: Lessons From Revolutionary Systems

11

Timation: First set of Key Ideas

• Starts as Roger Easton’s program for precision time transfer among fixed earth locations

– Easton realizes multiple satellites with clock signals can allow simultaneous time and position determination

– Started flying precision clocks in space in the late 1960’s

• Clock corrections and ephemeris determined by ground segment, embedded into the satellite signal

• Satellite broadcasts side-tone ranging signal– Poor anti-jam performance, poor frequency management, good penetration

• Receiver does all position determination from satellite signals

• NRL development model– In house satellite development, mostly of LEO satellites– Lab-centric development and system integration, external sub-contracting– Envisioned growing to global 3-D constellation

Page 12: Lessons From Revolutionary Systems

12

Program 621B: The Air Force and the second key

• Analytical work done by The Aerospace Corporation on a global navigation concept for aircraft, 1960-1963

• Air Force created an official program in 1963 - Project 621B– Broad operational objective - better positioning system for its aircraft, 3-D

worldwide– Conducted systematic study of satellite, ground-station, and terminal

approaches– Woodford-Nakamura study identified eventual GPS as preferred

concepts, but assessed it as overly high risk (in the late 1960’s)

• Devised a single-frequency, spread-spectrum, coded signal (CDMA)– Eased frequency spectrum allocation problems– Substantially reduced vulnerability to jamming and interference– Tested it from aircraft

Page 13: Lessons From Revolutionary Systems

13

Right People, Right Time Convergence

• Not much progress toward a global solution– “Locked in a death struggle and going nowhere”

• Brad Parkinson arrives at SMC to take over 621B. Sells DDR&E on the concept of a global program (on his own initiative)– Takes it to the DSARC, and is rejected– Labor Day weekend 1971, the “Lonely Halls Meeting.” GPS as we know it today

emerges.• An actual best-of-breed synthesis, not a political compromise

– CDMA signal approach from the Air Force (very sporty in 1973, key for today)– Atomic clocks and overall concept from Timation– Compromise on orbits (Timation with an AF-inspired twist)– Many practical details from Transit, like ionospheric compensation– Envelopes performance requirements to the most stressing (very aggressive,

problematic, and yet critical choice)• Is approved and becomes a JPO

Page 14: Lessons From Revolutionary Systems

14

A GPS Timeline

1960 1970 1980 1990 2000

Transit

TIMATION

Air ForcePrecursors

GPS

FirstSatellite

IOC

Civilian Use

Last Launch

SystemTerminated

TIMATION 1, 2 Launch

Influence

Pseudolite ExperimentsLabor Day Design

Rebadged TIMATION Launches

Block 1 Launches (11)

Block II, IIA Launches (28)

Block 11R and M Launches

(15+)

Commercial Use Begins

IOC, FOC

Page 15: Lessons From Revolutionary Systems

15

GPS and Lessons

• Threshold and Non-Linear Effects– The very aggressive technical choices made in 1973 (performance

targets, signals, and atomic clocks) enabled the wide range of applications we see today. Less likely would not have cut it.

• Intentionality and Uncertainty– Parkinson and company allowed for civilian signals and access, even

though licensing came later (but Transit precedent)– Signals and atomic clocks were architectural choices for the long-term

• Coupled technology and CONOPS changes– The largest impacts of GPS are not from the user knowing his position, it

is from the compounded change• Consider location-based social media, B-1 bombers as close support

aircraft, guide-the-weapon, network time synchronization, and now emerging vulnerabilities

Page 16: Lessons From Revolutionary Systems

16

Should We Care?

• Maybe not. Maybe we are fully satisfied building “Boeing 247s.”• Maybe we are in the contractor model, we build what we are told to

build, and we try to be as competitive as possible at it• But…maybe we really do need to care

– We are immersed, willingly or not, in a situation where technology and CONOPS are changing rapidly.

– Sometimes the price of not building a revolutionary system is for somebody else to pull the revolution

– It can be very expensive, in various “currencies,” to be the second or third to the revolution

• And…maybe we want to care– Maybe we are in a position where we want to build a revolution and we

need to know how