7
Lessons for Interstellar Travel from the G&C Design of the NEA Scout Solar Sail Mission Andrew Heaton, NASA MSFC Benjamin L. Diedrich, Jacobs ESSSA (Dynamic Concepts Inc.) Abstract NASA is developing the Near Earth Asteroid (NEA) Scout mission that will use a solar sail to travel to an asteroid where it will perform a slow flyby to acquire science imagery. A guidance and control system was developed to meet the science and trajectory requirements. The NEA Scout design process can be applied to an interstellar or precursor mission that uses a beam-propelled sail. The scientific objectives are met by accurately targeting the destination trajectory position and velocity. The destination is targeted by understanding the force on the sail from the beam (or sunlight in the case of NEA Scout) over the duration of the thrust maneuver. The propulsive maneuver is maintained by accurate understanding of the torque on the sail, which is a function of sail shape, optical properties, and mass properties, all of which apply to NEA Scout and beam propelled sails. NEA Scout uses active control of the sail attitude while trimming the solar torque, which could be used on a beamed propulsion sail if necessary. The biggest difference is that NEA Scout can correct for uncertainties in sail thrust modeling, spacecraft orbit, and target orbit throughout the flight to the target, while beamed propulsion needs accurate operation for the short duration of the beamed propulsion maneuver, making accurate understanding of the sail thrust and orbits much more critical. Introduction The Near Earth Asteroid (NEA) Scout mission has two primary goals. One is to image and characterize a NEA during a slow flyby. The other is to demonstrate a low cost method of performing asteroid reconnaissance 1 . To achieve this goal, a spacecraft has been designed and developed that deploys an 86 m 2 solar sail from a 6U cubesat bus that will sail to the asteroid after launch as a secondary payload on the first Space Launch System (SLS) launch. NEA Scout then uses a series of propulsive maneuvers, sail thrusting, and lunar gravity assists to depart the Earth-Moon system. The NEA Scout mission requires an end-to-end spacecraft and mission design that accounts for all the uncertainties in navigation, attitude determination and control, thrust and torque of the sail, and target orbit while still allowing a successful science campaign. https://ntrs.nasa.gov/search.jsp?R=20170012413 2020-02-01T01:36:31+00:00Z

Lessons for Interstellar Travel from the G&C Design of the ... · applied to an interstellar or precursor mission that uses a beam-propelled sail. The scientific objectives ... ,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lessons for Interstellar Travel from the G&C Design of the ... · applied to an interstellar or precursor mission that uses a beam-propelled sail. The scientific objectives ... ,

LessonsforInterstellarTravelfromtheG&CDesignoftheNEAScoutSolarSailMissionAndrewHeaton,NASAMSFC

BenjaminL.Diedrich,JacobsESSSA(DynamicConceptsInc.)

AbstractNASAisdevelopingtheNearEarthAsteroid(NEA)Scoutmissionthatwilluseasolarsailtotraveltoanasteroidwhereitwillperformaslowflybytoacquirescienceimagery.Aguidanceandcontrolsystemwasdevelopedtomeetthescienceandtrajectoryrequirements.TheNEAScoutdesignprocesscanbeappliedtoaninterstellarorprecursormissionthatusesabeam-propelledsail.Thescientificobjectivesaremetbyaccuratelytargetingthedestinationtrajectorypositionandvelocity.Thedestinationistargetedbyunderstandingtheforceonthesailfromthebeam(orsunlightinthecaseofNEAScout)overthedurationofthethrustmaneuver.Thepropulsivemaneuverismaintainedbyaccurateunderstandingofthetorqueonthesail,whichisafunctionofsailshape,opticalproperties,andmassproperties,allofwhichapplytoNEAScoutandbeampropelledsails.NEAScoutusesactivecontrolofthesailattitudewhiletrimmingthesolartorque,whichcouldbeusedonabeamedpropulsionsailifnecessary.ThebiggestdifferenceisthatNEAScoutcancorrectforuncertaintiesinsailthrustmodeling,spacecraftorbit,andtargetorbitthroughouttheflighttothetarget,whilebeamedpropulsionneedsaccurateoperationfortheshortdurationofthebeamedpropulsionmaneuver,makingaccurateunderstandingofthesailthrustandorbitsmuchmorecritical.

IntroductionTheNearEarthAsteroid(NEA)Scoutmissionhastwoprimarygoals.OneistoimageandcharacterizeaNEAduringaslowflyby.Theotheristodemonstratealowcostmethodofperformingasteroidreconnaissance1.Toachievethisgoal,aspacecrafthasbeendesignedanddevelopedthatdeploysan86m2solarsailfroma6UcubesatbusthatwillsailtotheasteroidafterlaunchasasecondarypayloadonthefirstSpaceLaunchSystem(SLS)launch.NEAScoutthenusesaseriesofpropulsivemaneuvers,sailthrusting,andlunargravityassiststodeparttheEarth-Moonsystem.TheNEAScoutmissionrequiresanend-to-endspacecraftandmissiondesignthataccountsforalltheuncertaintiesinnavigation,attitudedeterminationandcontrol,thrustandtorqueofthesail,andtargetorbitwhilestillallowingasuccessfulsciencecampaign.

https://ntrs.nasa.gov/search.jsp?R=20170012413 2020-02-01T01:36:31+00:00Z

Page 2: Lessons for Interstellar Travel from the G&C Design of the ... · applied to an interstellar or precursor mission that uses a beam-propelled sail. The scientific objectives ... ,

Figure1.NEAScoutsolarsailandspacecraftbusshowingbodyaxesthatareinplane(XandY)andoutofplane(Z).

Precursorandinitialinterstellarmissionsemployingbeamedpropulsionsimilarlyrequireanunderstandingofhowuncertaintiesinthevariouselementsofthesystemaffecttheabilitytoperformascientificreconnaissanceofthetarget.Earlyinterstellarmissionsmaybetocharacterizeatargetstarorstarsandtheirplanets,sothatfollow-onmissionscanpursuemorecomprehensiveortargetedscientificobjectives.Interstellarprecursormissionsmaydemonstrateinterstellarcapabilitiesby,forexample,surveyingKuiperBeltorOortCloudobjects.Ineithercase,thespacecraftneedtoaccuratelytargetspecificbodies,andflybywithinarangeoftimes,distances,orvelocitiesthatallowsuccessfulobservation.Todothis,theuncertaintiesofthebeamedpropulsionsystem,spacecraftorbitdetermination,sailforcesandtorquesinresponsetothebeam,gravitationalandotherperturbationsonthespacecraftorbit,andknowledgeofthetargetbodiesneedtobeaccountedforindesigningthespacecraftandmission.

Precursormissionstoexplorethespaceenvironmentwheretheouterheliosphereinteractswithinterstellarspacearelessconstrainedbytheirdestination.Theystillrequireaccurateenoughguidanceofthebeamonthesail,accountingforallthesameuncertaintiesasaflybyexceptforthetargetorbit.

ScientificObjectivesNEAScoutThescientificobjectivesofNEAScoutaretoperformlongrangeopticalnavigationofthetargetasteroid,mediumrangereconnaissance,andcloseproximityimaging.Thetargetasteroidis1991VG.Itisasmall~5-12mdiameterasteroidwithunknownalbedoandanEarth-likeorbitthatisreachablebyNEAScoutwithina2.5yearmissionduration.1

Opticalnavigationisperformedstartingat50,000kmfromtheasteroid,andisusedtoupdatetheorbitestimateoftheasteroidasthesailapproaches.Duringapproach,opticalnavigationdataisdownlinkedtoEarth,theorbitoftheasteroidisupdated,andthesteeringguidanceofthesolarsailisupdatedtomoreaccuratelytargetthecloseapproach.Mediumrangeobservationswithin100kmoftheasteroidand50cm/pixelresolutionover80%oftheasteroid,willcharacterizethevolume,shape,spinproperties,andlocalenvironment.Closeproximityimagingat10cm/pixelresolutionover30%ofthesurfacewillcharacterizetheasteroid’slocalmorphologyandregolithproperties.Theminimumscientific

Page 3: Lessons for Interstellar Travel from the G&C Design of the ... · applied to an interstellar or precursor mission that uses a beam-propelled sail. The scientific objectives ... ,

objectiveswillbemetwithaclosestapproachof28km,althoughthegoalistotargetunder1km.Achievingthesegoalswillfullydemonstrateanabilitytoperformasteroidreconnaissancewithasmallsolarsailspacecraft,employingcubesattechnologies,andallowtheidentificationofhighsciencevaluetargetstovisitwithfollow-onmissions.2

Figure2.PhasesofNEAScoutscience,fromtargetdetectionandopticalnavigation,mid-rangereconnassaince,andclose

proximityscienceimaging.

Thekeydriversforthedesignofthemissionaretotargetacloseenoughdistancetotheasteroidataslowenoughrelativevelocity,withknowledgeofwheretopointthesciencecamera,toacquiretheimagesrequiredtoresolvethephysicalproperties.Additionally,theattitudecontrolmustbeaccurateandstableenoughtopointattheasteroidwithoutjitterblurringtheimages.

InterstellarandPrecursorMissionsInterstellarandprecursormissionstoperformreconnaissanceofanotherstaroranoutersolarsystembodywillhavesimilarscientificobjectives.Theserequirementsneedtobedevelopedinordertodetermineifthetechnologyanddesignoftheinterstellarmissionaresufficienttoachieveusefulresults.Ifnot,lessambitiousgoalscanbepursuedfirst,togainexperienceforfollow-onmissions.

Aprimarygoalofafirstinterstellarmissionmaybetocharacterizetheorbitsandgeneralphysicalpropertiesofthetargetstarsandplanets,sothatfollow-onmissionscanperformmorecomprehensiveobservations.ThiswouldbelikeperformingtheopticalnavigationandlimitedmediumrangephysicalobservationsofNEAScout.Oncetheorbitalandphysicalpropertiesofthetargetsystemarebetterunderstood,followonmissionscouldmoreaccuratelytargettheplanetsandstarsthemselvesforin-depthobservations.

BecauseNEAScoutisaninterplanetarymissionthatoperatesat~1AUfromthesun,itstrajectorycanbecontinuouslyupdatedwithsteeringguidancefromgroundcontrollersonEarthtomoreaccurately

Page 4: Lessons for Interstellar Travel from the G&C Design of the ... · applied to an interstellar or precursor mission that uses a beam-propelled sail. The scientific objectives ... ,

flybythetargetbody.Earlyinterstellarandprecursormissionsmaynothavethiscapability,duetoonboardmassconstraints,propulsiontechnologylimitations,andtheseveretimelagtoEarth.

PrecursormissionstosurveyKuiperBeltandOortCloudobjectsmayperformmorein-depthstudiesofthosebodies,becausetheirorbitsmaybemoreaccuratelydeterminedbyobservationsfromEarththanexoplanets,anderrorsinthetrajectorymaybesmallerthaninterstellarmissionsbecauseoftheshorterdistancefromEarthandlowervelocityrequiredtoreachtheminareasonablemissionduration.

Precursormissionstoexploretheheliospheretypicallycarryin-situsensorstomeasurethemagneticfield,chargedparticlepopulation,andplasmapropertiesofthespaceenvironment.Thesesensorsdonotrequirepreciseattitudetopointataparticulartarget,andcanbetakenoveramuchlargerareaofspacethanimagingasolarsystembody.Forthisreason,missionstostudytheouterheliospherewhereitinteractswithinterstellarspacemaybeaneasiertestbedforinterstellarprecursormissions,toemploytechnologieslikebeamedsailpropulsion,whilestillgeneratingusefulscienceresults.

NavigationandGuidanceNEAScoutTheNEAScoutmissionmeetstheposition,velocity,andpointingsciencerequirementsbycontinuouslyupdatingthesteeringguidanceofthesailbasedontrajectoryestimatesofthespacecraftandorbitestimateupdatesofthetarget.Thiscanbereferredtoas“closedloop”navigationofthesail,andallowsforuncertaintiesinthesailforcemodel,navigationaccuracy,perturbations,andattitudecontroltobecorrectedforthroughoutthemission.Radiometricrangeobservationsduringflightareusedtoupdatethetrajectoryestimateandupdatetheforcemodelusedtopredictsailacceleration.Theseareusedtosolvefornewsailsteeringguidancetotargettheapproachtotheasteroid.Duringthemonthlongapproachphase,thenavigationincludesbothradiorangingandopticalnavigationrelativetotheasteroid,withobservationsoftheasteroidmadetwiceaday,andthreetimesadayduringthefinalapproach.

InterstellarandPrecursorUnlikeNEAScout,earlyinterstellarorprecursormissionswillhavelimitedopportunitiesfor“closingtheloop”betweenobservationsoferrorsinthetrajectory,sailthrust,andbeampropertieswithchangestothebeamguidanceorsailattitude(assumingthesailhasactiveattitudecontrol).Forthesakeofdiscussion,thefollowingassumptionsaremadeaboutanearlybeamedpropulsionsystem.Itconsistsofalaserorotherfrequencybeamsystem,locatedonEarthorinorbit,andaspacecraftwithasailonit.Thespacecraftmayhaveactiveattitudecontrolduringbeamedpropulsion,orrelyonpassivestabilityonthebeam.Duetomassconstraints,theremaybelittleornoonboardactivetrajectorymaneuvercapability.Whilethespacecraftcouldsailoncloseapproachusinglightfromthetargetstar,thetrajectorymustfirstbeaccurateenoughtogetcloseenoughforusefulsolarpressure.

Unlessabeamedsailmissionisdoneinmultiplephaseswithanopportunitytoperformtrajectoryestimationandupdatebeamguidancebetweenpropulsionphases,therewillbeonlyonechancetoperformthethrustphaseaccuratelyenoughtoreachthedestination.Onceallpropulsionphasesarecomplete,thesailwillcoasttoitsdestination,subjectonlytothegravitationalandotherenvironmentalperturbations.Theaccuracyofthefinalorbitstateatcompletionofthepropulsionphasemustbehighenoughtoensuretheposition,velocity,andtimingrequirementsofthetargetflybyaremet.

Page 5: Lessons for Interstellar Travel from the G&C Design of the ... · applied to an interstellar or precursor mission that uses a beam-propelled sail. The scientific objectives ... ,

Beforefiringthelaser,theorbitofthespacecraftneedstobeknownwithenoughaccuracytotargetitwiththebeam.Thebeamsteeringneedstobeaccurateenoughtopointitatthepredictedlocationofthesail.Becauseofthespeedoflightandtimeittakestoperformorbitdetermination,therewillnotbetimetoupdatethebeamsteeringinresponsetotheobservedtrajectoryofthesail.Thesailtrajectoryinresponsetothebeamneedstobeaccurateenoughthatsailstaysonthebeam,andthethrustoverthecourseofthemaneuverisaccurateenoughtoputthesailoncoursetothetarget.

ForceandTorqueModelingNEAScoutTheNEAScoutforceandtorquemodelpredictsthethrustrelativetothedirectionofsunlightafunctionofthesailshapeandopticalproperties.Thesedeterminelinearandangularaccelerationsthesailexperienceswhenilluminatedbysunlight.Thismodeliscurrentlyanestimate,andisbasedonmeasurementsofsailmembraneopticalpropertiesandfiniteelementmodelingofthesailboomsandmembranewhensubjecttothermalheatingfromsunlight.Imperfectreflectionresultsinasignificantin-planeforcecomponentwhenthesailisatanangletotheincomingsunlightbecauseofthedifferencebetweenabsorbedandreflectedlight.Thisin-planecomponentresultsinasignificantsolartorquethatmustbecontrolled.3

Afterdeployment,thesailtorquemodelwillbecalibratedbyslewingtoavarietyofsailattitudes,andobservingthereactionoftheattitudecontrolactuatorstosolartorque(seesection“AttitudeDynamicsandControl”).Duringtheearlyphaseofthemission,thesailthrustwillbeestimatedbyusingradiorangingtoobservetheactualtrajectoryandestimatingtheaccelerationrequiredtoproduceit.Differencesinthrustwillshowupindeviationsoftheactualtrajectoryfromthatpredictedusingthepre-launchthrustmodel.Theserefinementswillbeusedtomakethesteeringguidancemoreaccurateduringtheflighttotheasteroid.

Wellbeforelaunch,expecteddeviationsintheshapeandopticalpropertiesneedtobeaccountedfor,toensurethatthesailasmanufacturedissufficienttocompletethemissiontotheasteroid.Toensurethisisthecase,missionplanningassumesareductionfactorinthethrustduetovariationsinsailsize,shape,opticalparameters,andtimespentpointingtowardsEarthforcommunication.Inthisway,thereisconfidencethatthesailhasmorethrustthanisneededtocompletethemission,tocoverunforeseenproblemswiththesaildeploymentormissionoperationsthatresultinlessthrustthanexpected.Sailmodelsthatweredeformedorhadholesinthematthecornersofthesailwereanalyzedtoensuretheattitudecontrolsystemhadenoughmargintocontrolsailswithunexpecteddeploymentproblems.

InterstellarandPrecursorBecauseofthelimitedopportunitiestocorrectforuncertaintiesinthethrustofthebeamedpropulsionsail,thethrustonthedeployedsailshouldbeestimatedbeforelaunchwithenoughaccuracytoensurethemanufacturedsailcombinedwiththebeamsystemcanachievethetrajectorytothetarget.LikeNEAScout,thesailthrustandtorquemodelandbeampowerpropertiescanbecalibratedafterdeploymentinspacewithalowpowertestusingthebeam.Withoutcalibration,thebeamedpropulsionsystemcouldproducetoomuchortoolittleacceleration,resultinginatrajectorythatistoofarfromthetarget,movingtoofastortooslow,orpossiblyresultinthesailfailingtostayilluminatedbythebeamforthefullduration.Withouttorquemodelcalibration,thesailcouldbecomeunstableonthebeam,orhaveoscillationsthataretoolargeandreducetheaverageaccelerationonthesail.

Page 6: Lessons for Interstellar Travel from the G&C Design of the ... · applied to an interstellar or precursor mission that uses a beam-propelled sail. The scientific objectives ... ,

Stabilityofthesailpositiononthebeamisneededtokeepthebeamonthesailforthedurationofallpropulsionmaneuvers.Thisrequiresarestoringforcethatsendsthesailbacktothecenterofthebeam.NEAScouthasnosuchrequirement;itjustrequiresaccurateknowledgeoftheforcemodeltoplansailingmaneuversusingapredictionofthethrustmodelbeforelaunchandcalibrationaftersaildeploymentinresponsetothesourceofillumination.Bothwillbecriticaltoensurestabilityofabeamedpropulsionsail.

AttitudeDynamicsandControlNEAScoutNEAScoutsteersthesailusinganactiveattitudecontrolsystem.Itusesreactionwheelsforpreciseattitudecontrol,whicharesmallflywheelsthatspinupoppositethedirectionthespacecraftneedstosteer.Astartrackercamerameasuresattituderelativetothebackgroundstars.Solartorqueswouldeventuallydrivethereactionwheelstohitthespeedlimitoftheirbearings,soanActiveMassTranslator(AMT)shiftsthecenterofmassinordertokeepwheelspeedsandsolartorqueundercontrolaboutthetwobodyaxesthatarealignedwiththesailbooms.Areactioncontrolsystem(RCS)usessmallthrusterswithcoldgaspropellanttomanagetorqueaccumulationabouttheaxisnormaltothesail(ZaxisinFigure1),whichismuchsmallerthantorquesaboutthebooms(axesXandYinFigure1).Designofthiscontrolsystemrequiresthesolartorquemodelofthesail.Thecontrolactuatorsneedtobesizedwithenoughmargintohandlereasonableuncertaintiesinthesolartorque,duetothesamefactorsthataffectsailthrust–size,shape,andopticalproperties–aswellasshapedifferencesnotreflectedinsailthrustandlocationofthecenterofmass.6

Figure3.ActiveMassTranslator(AMT)forshiftingthecenterofmassofNEAScouttocontrolthesolartorqueonthevehicle.

Japan’sIKAROSsolarsailusedliquidcrystaldiode(LCD)reflectivecontroldevices(RCDs)tocontrolsolartorqueaboutthetwobodyaxesthatlieintheplaneofthesail,liketheAMTdoesforNEAScout.4TheRCDsworkbyelectronicallycontrollingtheamountofsunlightreflectedalongthedifferentedgesorcornersofthesail,resultinginatorqueonthesail.NASAMSFCisworkingwiththeUniversityofMarylandtodevelopsimilarRCDsforpossibleuseonfutureNASAsolarsailmissions.5Withoutactivecontrolbythereactionwheels,AMT,orRCS,NEAScoutisnotpassivelystable,andtheattitudewoulddeviateifuncontrolled.

Page 7: Lessons for Interstellar Travel from the G&C Design of the ... · applied to an interstellar or precursor mission that uses a beam-propelled sail. The scientific objectives ... ,

InterstellarandPrecursorProposalsfornear-termbeamedpropulsiondonotassumeactiveattitudecontrol,tokeeponboardmasslow.Rather,thesailisdesignedtobepassivelystable,bygeneratingrestoringtorquestoreturntotheneededattitudeonthebeamforgeneratingthrusttoachievetherequiredtrajectoryaccuracy.Ifthesailisnotstabilized(activelyorpassively),itcouldfailtogeneratethethrusttostayonthebeamandreachthetarget.Evenifthesailisstable,oscillationsaboutthestablepointwillreducetheaveragethrust,andmayfailtomeetthetrajectoryrequirementsiftheyaretoolarge.

Onelimitationofapassivelystablesailisthatitmaynotbeabletogeneratetheattitudeneededtothrusttowardsthetargetdestination.SolarsailslikeNEAScoutregularlyneedtopointatanangletotheincidentsunlighttogeneratesidewaysthrustforchangingtheorbitenergy.Ifabeamedpropulsionsailcansteertoattitudeatanangletothelaser,itmayopenupmuchmoreflexibilityforgeneratingthethrustneeded.Thisisanareathatrequiresfurtherstudy.Actuatorslikecenterofmassshiftingorreflectivitycontrolmaybeconsideredforactivelymaintainingsailattitudeandpossiblypositionofthesailonthebeam.Evenwithactivecontrol,passivestabilityhelpsmaintainthecommandedattitudewithlesseffortbythecontrolsystem.

ConclusionsThedesignandimplementationoftheNEAScoutsolarsailmissiontovisitanasteroidhighlightsseveralaspectsofsailpropelledmissionsthatareincommonwithbeamedpropulsionmissionstotheoutersolarsystemandtonearbystars,despitethelargedifferencesbetweenthemissions.Accurateknowledgeofthespacecraftandtargetorbitsareneededforbothmissions,whiletheaccuracyforinterstellarandprecursormissionsarefarhigher,becauseofthelimitedopportunitiestocorrectthetrajectorytoaccountforuncertainties.CalibrationoftheforceandtorquemodelimprovesthenavigationandattitudecontrolperformanceofNEAScout,andmaybeessentialtomeetingnavigationrequirementsforaninterstellarmission.

References1) Johnson,L.,Dervan,J.,andMcNutt,L.;NearEarthAsteroid(NEA)Scout;4thInternational

SymposiumonSolarSailing(ISSS2017);January17-20,2017;Kyoto,Japan2) Bach,V.,Becker,C.,Dervan,J.,andothers;NearEarthAsteroid(NEA)ScoutSolarSail

Implementation;SmallSatelliteConference,2016,Logan,UT3) Heaton,A.,Ahmad,N.,andMiller,K.;NearEarthAsteroidScoutSolarSailThrustandTorque

Model;4thInternationalSymposiumonSolarSailing(ISSS2017);January17-20,2017;Kyoto,Japan

4) Mori,O.,Sawada,H.,andothers;FirstSolarPowerSailDemonstrationbyIKAROS;27thInternationalSymposiumonSpaceTechnologyandScience,July5-102009,Tsukuba,Japan

5) Ma,D.,Murray,J.,andMunday,J.;ControllablePropulsionbyLight:SteeringaSolarSailviaTunableRadiationPressure;AdvancedOpticalMaterials,Vol5,Issue4,2017

6) Orphee,J.,Diedrich,B.,Stiltner,B.,Becker,C.,andHeaton,A.;SolarSailAttitudeControlSystemfortheNASANearEarthAsteroidScoutMission;4thInternationalSymposiumonSolarSailing(ISSS2017);January17-20,2017;Kyoto,Japan