31
Teoría de Estructuras y Construcciones Industriales. 2014-2015 CHAPTER 1. Introduction to Structural Analysis

Lesson 1. Introduction to Structural Analysis.pdf

Embed Size (px)

Citation preview

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    CHAPTER 1. Introduction to Structural Analysis

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    Lesson 1. Introduction to Structural Analysis

    1.1. Objectives of structural analysis.

    1.2. Structural models.

    1.3. Structural forms.

    1.4. Simplified structural models.

    1.5. Types of internal forces.

    1.6. Types of external loading.

    1.7. Types of supports and reactions.

    1.8. Determinacy and freedom degrees.

    1.9. Design hypothesis: first and second order theories.

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    3

    Structure could be a load-bearing element or a group of load-bearing elements with functional requirements.

    The main objective of structural analysis is to determine how a structure responds to specified loads and actions.

    1.1. Objectives of structural analysis

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 4 -

    Conceptual and preliminary stages (types of structure,

    materials and loading),

    Calculation stage (internal forces and displacements),

    Final stage (design drawings with written

    specifications of materials and

    pertinent codes to be

    employed),

    Construction stage.

    The structural design process:

    1.1. Objectives of structural analysis

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 5 -

    Structural model

    (elements, materials,

    supports)

    Loading analysis

    Calculation of

    stresses and strains

    Checking limit states

    (design codes)

    Final design

    New structural

    design

    Calculation of

    displacements

    Calculatin of

    internal forces

    YES

    NO

    1.1. Objectives of structural analysis

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 6 -

    1.2. Simplified structural models

    (Idealization)

    Variables to define:

    Materials,

    Structural forms,

    Elements types,

    Joints (connections) types,

    Supports,

    External loading,

    Type of calculation (static,

    dynamic, etc.)

    Type of structural analysis

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 7 -

    1.3. Structural forms

    Clasification by structural funtion:

    Houses, offices and industrial buildings.

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 8 -

    1.3. Structural forms

    Industrial equipment (cranes,

    pressure vessels, silos)

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 9 -

    1.3. Structural forms

    Gateways, bridges and slabs.

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 10 -

    1.4. Simplified structural models

    Classification of structures: Rigid and pin joint structures.

    Rigid joint: same angle before and after deformation.

    2D and 3D Rigid joint structures (Frames)

    Before

    deformation

    After

    deformation

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 11 - 2D Pin joint structures (Trusses)

    Pin Joint: free rotation (hinge)

    1.4. Simplified structural models

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 12 -

    Element types:

    1D elements (bar elements)

    2D elements:

    - Membranes,

    - Plates,

    - Shells,

    - Shear walls.

    3D elements.

    1.4. Simplified structural models

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 13 -

    1.5. Types of internal forces

    b)

    1D elements: bars elements

    2D and 3D Rigid elements

    (Axial and Shear Forces and

    Bending and Torsion Moments)

    Cables

    (Axial Force: Tension)

    Pin joint elements

    (Axial Force: Tension and Compression)

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 14 -

    2D elements: Membranes

    1.5. Types of internal forces

    Membranes examples

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 15 -

    2D elements: Plates

    1.5. Types of internal forces

    Plates examples

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 16 -

    2D elements: Shells

    1.5. Types of internal forces

    placamembranaMembrane Plate

    Shells examples

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 17 -

    2D elements: Shear walls

    1.5. Types of internal forces

    Shear wall example

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 18 -

    3D elements

    1.5. Types of internal forces

    Dam example

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 19 -

    1.6. Types of external loading

    Classification (actions):

    Surface and volume loads. Static and dynamic loads. Permanent and variable loads.

    Point and distributed loads. Thermal load. Enforced displacements. Fitting defects.

    Classification (actions): own weight load snow load

    wind load

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 20 -

    Support clasification:

    Pin and roller (rocker) supports

    Fixed or clamped (encastre) support

    Guide

    Spring supports: linear ad torsional springs.

    1.7. Types of supports and reactions

    Pin support

    Spring support

    Roller support

    Fixed support

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 21 -

    1.7. Types of supports and reactions

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 22 -

    3 linear displacements (u, v, w )

    3 rotations (Fx, Fy, Fz)

    3D element section

    (6 degrees of freedom)

    Fixed: Restriction of 6 FD 6 Reactions (Unknowns)

    Pin: Restriction of 3 FD 3 Reactions (Unknowns)

    1.7. Types of supports and reactions

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 23 -

    1.7. Types of supports and reactions

    1 rotation (Fz)

    2D element section

    (3 degrees of freedom)

    2 linear displacements (u, v)

    Pin support Roller support Fixed support Guide

    Schematic representation

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 24 -

    Spring supports: partially limitation of linear and rotation

    displacements. The reactions depend on the rigid constant (k = sm).

    RV

    Linear spring support Torsional spring support

    1.7. Types of supports and reactions

    RH

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 25 -

    1.8. Determinacy grade: DG ( = GH) = r - 3

    If DG < 0 Unstable structures (mechanisms) (No. unknowns < No. available equilibrium equations)

    If DG = 0 Statically determinate structures (No. unknowns = No. available equilibrium equations)

    If DG > 0 Statically indeterminate structures

    (No. unknowns > No. available equilibrium equations)

    DG=1 DG=3

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    Rigid joint open structures:

    DG = DGext + DGint = r - 3 ao

    DGext = r 3 ao

    DGint = 0

    r = No. reactions

    ao = bo 1 = hinge equations (open contours)

    Rigid joint closed structures:

    DG = DGext + DGint = r + 3 cc - 3 (ao + ac)

    DGext = r 3 - aa

    DGint = 3 cc ac

    r = No. reactions,

    cc = No. closed contours,

    ao = bo - 1= hinge equations (open contours)

    ac = bc 1 = hinge equations (closed contours)

    DG = DGext = 3 DG = DGext = 2

    DG = 3+3=6

    DGext = 3

    DGint = 3

    DG = 3+2=5

    DGext = 3

    DGint = 2

    1.8.a) Statically indeterminate rigid joint structures.

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    DG = DGext + DGint = r + b 2n

    DGext = r - 3

    DGint = DG - DGext = b 2n + 3

    b = No. bars, r = No. reactions, n = No. joints

    b = 17

    r = 3

    n = 10

    b = 17

    r = 3

    n = 10

    b = 18

    r = 3

    n = 10 A

    Sm

    50kN

    50kN

    4m 4m

    3m

    C

    D

    B

    b = 5

    r = 4

    n = 4 d)

    DG=0 DG=0

    DG=DGint=1 DG=DGext=1

    1.8.b) Statically indeterminate pin joint structures.

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 28 -

    Structures without sidesway: If AE = (axial deformations, e = 0), kinematic unknowns

    (freedom degrees) are rotation of joints (NR) only, because bar rotation are cero (BR = 0).

    A B C DA B C D

    jB jC

    CIR

    1.8.c) Kinematically indeterminate structures:

    Degrees of freedom FD (= GL) = NR + BR

    FD = NR = 2 (jB , jC)

    Structures with sidesway: If AE= (axial

    deformations, e = 0), kinematic unknowns

    (freedom degrees) are both joint rotations (NR)

    and bar rotations (BR).

    A

    B C

    D

    UB UC

    VB VCjB

    jC

    q q

    yAB yDC

    yBC

    FD = NR + BR = 3 (jB , jC , yAB)

    yBC = f (yAB)

    yDC = f (yAB)

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 29 -

    Requirements of first order theory:

    Linear-elastic material behaviour.

    Small strain and displacements

    These conditions permit:

    Equilibrium applied to undeformed structure geometry.

    Linear equation systems solution.

    Superposition principle.

    1.9. Design hypothesis: First and second order theories

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 30 -

    First order theory:

    1.9. Design hypothesis: First and second order theories

  • Teora de Estructuras y Construcciones Industriales. 2014-2015

    - 31 -

    Second order theory:

    1.9. Design hypothesis: First and second order theories