71
LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations P08427 Detailed Design Review Friday, 6 February 2009

LED Lighting Technologies for a Sustainable Lighting

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LED Lighting Technologies for a Sustainable Lighting

 

 

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations

P08427

Detailed Design Review Friday, 6 February 2009

Page 2: LED Lighting Technologies for a Sustainable Lighting

 

 

Table of Contents 

1  AGENDA .............................................................................................................................................. 4 2  PROJECT SUMMARY .......................................................................................................................... 5 3  DETAIL DESIGN REVIEW OBJECTIVES ........................................................................................ 6 4  ACTION ITEMS FROM SYSTEM LEVEL DESIGN REVIEW ......................................................... 6 5  NEEDS AND SPECIFICATIONS ....................................................................................................... 7 6  CONCEPT ............................................................................................................................................. 9 

6.1  Power Module ............................................................................................................................ 9 6.2  Lighting Module ....................................................................................................................... 11 

7  POWER MODULE ............................................................................................................................. 13 7.1  Power Generation ..................................................................................................................... 13 7.2  Power Conditioning (Jesse) ....................................................................................................... 15 

8  LIGHTING MODULE ....................................................................................................................... 17 8.1  Power Conditioning (Mike) ....................................................................................................... 17 8.2  Light Distribution ..................................................................................................................... 18 8.3  Thermal Analysis ...................................................................................................................... 19 

9  MATERIALS & ENVIRONMENTAL IMPACT ................................................................................ 21 10  ACTION PLAN (MATT) .................................................................................................................... 23 11  REFERENCES ................................................................. ERROR! BOOKMARK NOT DEFINED. 12  BILL OF MATERIALS ...................................................................................................................... 24 13  RISK ASSESSMENT .......................................................................................................................... 25 14  DRAWING PACKAGE (LIGHTING MODULE) ............................................................................. 26 15  DRAWING PACKAGE (POWER MODULE) .................................................................................. 34 16  LIFE CYCLE ANALYSIS .................................................................................................................. 38 17  ELECTRICAL SCHEMATICS ........................................................................................................... 43 

 

 

List of Tables 

Table 1. SLDR Action Items ...................................................................................................................... 6 Table 2. Customer Needs ............................................................................................................................ 7 Table 3. Mapping Needs to Specifications ................................................................................................. 7 Table 4. Engineering Specifications ........................................................................................................... 8 Table 5. Power Module Rankings ............................................................................................................... 9 Table 6. Treadle vs. Bike Concept ............................................................................................................. 10 Table 7. Treadle vs. Bike Rankings ........................................................................................................... 10 Table 8. Gear Ratio and RPM Analysis ..................................................................................................... 13 Table 9. Heat Transfer Calculations for 3W ............................................................................................. 20 Table 10. Heat Transfer Calculations for 2.5W ........................................................................................ 21 

 

 

Page 3: LED Lighting Technologies for a Sustainable Lighting

 

 

 

List of Figures 

Figure 1. Power Module Block Diagram ................................................................................................... 11 Figure 2. Proposed Lighting Module ......................................................................................................... 11 Figure 3. Proposed Light-Can Design ....................................................................................................... 12 Figure 4. Lighting Module Block Diagram ............................................................................................... 12 Figure 5. Complete Power Module ............................................................................................................ 13 Figure 6. Power Module Assembly ........................................................................................................... 14 Figure 7. Complete Lighting Module ....................................................................................................... 17 Figure 8. Light Intensity v. Distance from a Given Source ...................................................................... 18 Figure 9. Effect of lens on Light Intensity ................................................................................................ 19 Figure 10. Combined LCA for Complete System vs. Kerosene Lamp ..................................................... 22 

 

Page 4: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 4 Detail Design Review

 

 

1 AGENDA

 

(14:00) Design Review Objectives – Ian:  (14:03) Project Introduction & Overview ‐ Ian:  (14:08) Selected Concept & Overall Design ‐ Matt:  (14:15) Power Module 

(14:15) Bike Stand, Power Generation (Mech.), & Charging Enclosure – Matt (14:35) Electrical Components and Systems – Jesse 

 (14:50) Lighting Module 

(14:50) Electrical Components (Batteries, Power Conditioning, Circuits, LEDs) – Mike (15:10) Module Design/Materials – Matt/Luke (15:25) Light Distribution – Luke 

 (15:30) Project Bill of Materials – Matt 

Individual Team Members may need to justify their particular systems  (15:35) Project Risk Assessment – Ian: 

Individual Team Members may need to justify their particular systems  (15:40) Initial Life Cycle Assessment – Luke: 

This is a very early stage assessment (will likely take 10 weeks to complete)  (15:50) Action Plan – Matt: 

Going on from this point, project completion, test plans, etc.  

Page 5: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 5 Detail Design Review

 

 

2 PROJECT SUMMARY Project Background: The LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations Project represents a joint venture between RIT’s Multidisciplinary Senior Design and the United States Environmental Protection Agency’s People, Prosperity and the Planet Student Design Competition for Sustainability.  Additionally, the team will be partnering with Sarah Brownell of Sustainable Organic Integrated Livelihoods (SOIL) in Haiti.  It is through this newly forged alliance that the team hopes to find a clean, reliable lighting solution for use in developing nations.  Previous projects in MSD have addressed the use of LED’s for replacement of current RIT lighting systems.  

Problem Statement: Currently two billion people live without clean or reliable space lighting. Many of these people use gas and oil lamps, which produce a great deal of soot and carbon dioxide in addition to consuming vast amounts of fuel to produce relatively little usable light. This project seeks to provide a clean, reliable, inexpensive, and self‐sufficient source of light for use in developing nations.  

Objectives/Scope: 1. Work with sponsors in the field to determine the 

needs of the end user of the lighting system 2. Provide clean, reliable, high‐quality lighting at an 

affordable price with a design that can be built in the target nations 

3. Construct and test lighting system 4. Demonstrate at National Sustainable Design Expo in 

April  

Deliverables: • LED Lighting solution/system ready for preliminary 

deployment by sponsors in Haiti • Documentation of design and design process 

including drawings and sketches • Presentation at National Sustainable Design Expo • Stage II grant proposal for additional EPA funding • Potential direction for future projects 

 

Expected Project Benefits: • Provide a much needed resource to the people of 

developing nations • Establish RIT as an involved institution in the 

engineering needs of developing nations • Basis for future MSD projects 

 

Core Team Members: • Ian Frank – Team Manager, General Engineering • Matt Walter – Chief Engineer, ANSYS • Nick Balducci – CAD, Mechanical Design • Jesse Steiner – Power and Electrical Systems • Mike Celentano – Power Storage, Circuit Boards • Luke Spencer – Ergonomic Design, Life Cycle 

 

Strategy & Approach Assumptions & Constraints: 

1. A low‐cost solution is essential due to the limited available financial resources 

2. Manufacturing technology may be limited to what is available locally 

3. Time for the project is limited by the EPA deadline in mid‐April 

4. LED lighting technologies will be utilized 5. R&D Budget is limited to $2,500 6. No direct access to customers 

 

Issues & Risks: • Limited time for design‐testing‐design iterations • None of the team members are all that familiar with 

the nuances of lighting systems, such as acceptable lighting qualities and light modeling 

• Customer input will be difficult to obtain and the lead time may be extensive since it must be done through a middle man 

• Several potential solutions for one problem – will need to determine the most applicable and “novel” form of the solution. 

• Limited manufacturing technology and materials available for final production in target regions

  

 

Project #  Project Name  Project Track Project FamilyP08427 LED Lighting Technologies

for Developing Nations Sustainable Products, Systems, and Technologies

Sustainable Technologies for the Third World

Start Term  Team Guide  Project Sponsor Doc. Revision2008-2 Dr. Robert Stevens US EPA 2

Page 6: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 6 Detail Design Review

 

 

3 DETAIL DESIGN REVIEW OBJECTIVES

1. To receive feedback on the aspects of our current design 

2. Come away with direction for the final stages of the project 

a. Suggested changes to the design 

b. Additional prototype verification that should be conducted 

3. Be ready to provide the best possible product to our end users. 

 

4 ACTION ITEMS FROM SYSTEM LEVEL DESIGN REVIEW

After our system level design review, the following action items were created.  The table below shows the status of these items. 

Task  Responsible  Completion Date  Status Feasibility of One Unit System  See Below  19‐Jan‐09  Completed – Turned 

Down Power Generation, Distribution, & Storage 

Jesse    “  “ 

Power Storage  Mike    “  “ Materials for Prototyping, System Usage 

Luke    “  “ 

Bike Mechanical Components, Costs 

Nick    “  “ 

Treadle Mechanical Concepts, Costs 

Matt    “  “ 

Finalized Concept Selected  All  19‐Jan‐09  Completed Research Power Storage Concerns from SLDR 

Jesse & Mike  21‐Jan‐09  Completed – Final PS selected 

Determine battery charging cost and time to pay off capital equipment 

Luke  21‐Jan‐09  Open – Initial Estimates Made 

Determine Feasibility of Dimmer  Mike  21‐Jan‐09  Completed – Added to design 

Finalized Selection of Components  All  21‐Jan‐09  Completed Start Ordering Major Components for testing 

All  21‐Jan‐09  Completed 

Look into materials (PLA and PET)  Luke  23‐Jan‐09  Completed Benchmark Current Product Materials  Luke  23‐Jan‐09  Complete 

Table 1.  SLDR Action Items 

Page 7: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)Detail Design Review

 

 

5 NEEDS AND SPECIFICATIONS Table 2.  Customer Needs 

Customer Need #

Importance Description Comments/Status

1 1 Provides a Better Lighting Solution If this not met, product is useless2 2 Off‐Grid Energy Source Primary purpose

3 2 Low Purchase CostEnd user cost will have to by partially subsidized due to the 

high cost of the technology4 3 Low Operating Cost This cost should be zero there  are no consumables

5 4 Able to be Manufactured in Developing WorldAt least in part ‐ this plays into the micro‐economy part of the 

project6 5 Safe Should not be a fire or health hazard

7 6 Universal Application (Transferability)The product and the production of the production may be 

adapted to the many potential deployment markets8 7 Easy to Use Low Maintenance, Straightforward, etc.

9 8 Long Operation timePower storage unit can last for a decent amount of time before being charged ‐ Additionally, the life of the unit is long enough 

to justify initial costs10 9 Able to Withstand Harsh Climate Conditions Water Resistance/Particulate Proof11 9 Durable/Robust Withstands the rigors of operation

12 10 Provides Comfortable lightingQuality of lighting greatly determines usability of system ‐ however, nearly anything is better than what already exists

13 11 Can be made out of Recycled MaterialsLots of waste materials that could be used in manufacturing 

process14 12 Clean energy source EPA would like a planet‐friendly solution15 13 Can be easily recycled at end of life EPA would like a planet‐friendly solution  

Table 3.  Mapping Needs to Specifications 

Metrics Production Cost

Usable Tem

perature Range

Water Resistant

Particulate Resistant

Storage Capacity

Battery Lifetime

Base Unit Lifetim

e

Color of Light

Temperature of Light

Light Distribution 

Passes Drop Test

Meets U

L and CSA Standards

Exposed Components Resist Scratching

Battery Installation Time

Unit Start Tim

e

Charge time (m

anual)

Charge Time (solar)

Recyclable Parts

Environmentally Friendly

Assem

bly

Simple M

anufacture Process

Lifecycle Plan in Place

Weight (M

ass)

Needs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23Provides a Better Lighting Solution 1 X X X XOff‐Grid Energy Source 2 XLow Purchase Cost 3 XLow Operating Cost 4 XAble to be Manufactured in Developing World 5 X X XSafe 6 XUniversal Application (Transferability) 7 X X X XEasy to Use 8 X X X X XLong Operation time 9 X X XAble to Withstand Harsh Climate Conditions 10 X X X XDurable/Robust 11 X X X X XProvides Comfortable lighting 12 X X XCan be made out of Recycled Materials 13 X XClean energy source 14 X XCan be easily recycled at end of life 15 X X X  

Page 8: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  8 Detail Design Review 

 

 

 

Table 4.  Engineering Specifications 

# Metric UnitsImportance 

(Stars) Marginal Ideal Note/Comment

1 Production Cost U.S. $ ***** 40 20Unfortunately the technology requested is quite expensive…will probably need to have purchase cost subsidized

2 Usable Temperature Range °F or °C *** (4.5‐38)°C (0‐50)°C Tested with environmental chamber

3 Water Resistant IPX Standard  *** 3 3Perhaps only applies to some of the components…or different values for different components

4 Particulate Resistant Binary *** YES YES Tested with environmental chamber

5 Storage Capacity Hrs **** 10 30 Ideally the product would not have to be charged everyday (if using a central power station)

6 Battery Lifetime Years ***** 3 10 Based on 1000 charge cycles at 30 hours per charge and 8 hours of usage/day

7 Base Unit Lifetime Years ***** 10 30 Based on 100,000 hour lifetime of LED lights and 8 hours of usage/day

8 Color of Light CRI *** 89 100 LED Specifications

9 Temperature of Light K *** 4000K‐7000K 5000K‐6000K LED Specifications

10 Light Distribution  Lux  *****  >50 >150The metric is best tested by lighting a table (2mx2m) at a distance of about 1m ‐ This is similar to the conditions that the end product will be used in

11 Passes Drop Test Pass/Fail *** YES YES Functional Drop Height and Drop Cycles (+50 cycles @ 3m)

12 Meets UL and CSA Standards Pass/Fail **** YES YES13 Exposed Components Resist Scratching Mohs Hardness *** 5+ 6+14 Battery Installation Time sec *** <45 <20 Before and After Charging (if battery unit is removable)

15 Unit Start Time sec *** <5 <2 All you really have to do is push a button to turn it on, should be pretty easy to use

16 Charge time (manual) min *** ≤30 ≤517 Charge Time (solar) hrs *** ≤6 ≤418 Recyclable Parts % by weight  **  >25 >5019 Environmentally Friendly Meets ROHS  ***  YES YES Need better metric ‐ takes materials, efficiency, and recyclability into account

20 Assembly % of VA ** 25 ≥80 Value added in Local Economy

21 Simple Manufacture Process Pass/Fail **** YES YESParts to be manufacture in developing nations must be designed to be built on simple machinery that will be available in the countries of interest ‐ Phase II concentration

22 Lifecycle Plan in Place Pass/Fail **** YES YESCradle‐to‐grave or cradle‐to‐cradle manufacture process in place for full production runs.  As such some sort of end‐of‐life recollection/exchange/recycling program will need to be in place or at least conceived of

23 Weight (Mass) lb (kg) *  <6.5kg <4.5kg Weight of mobile portion of unit  

Page 9: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 9 Detail Design Review

 

 

6 CONCEPT

6.1 Power Module

As mentioned in the system design review, many different methods of power generation were considered for this projects including: Crank PV Bike Treadle Induction After much consideration, the team selected the modular bike power method.  Team rankings for these concepts are shown in Table 5 below. 

Selection Criteria Weight Rating Weighted Score Rating Weighted Score Rating Weighted Score Rating Weighted ScoreEasy to Use 10% 2.5 0.25 3 0.3 4 0.4 4 0.4Durable/Robust 8% 2.5 0.2 3.5 0.28 3 0.24 3 0.24Safe to Operate 9% 3.5 0.315 3.5 0.315 4 0.36 4 0.36Low Cost 13% 2.5 0.325 3.5 0.455 3 0.39 2 0.26Sustainable (cradle to grave) 4% 2.5 0.1 3.5 0.14 2.5 0.1 3 0.12Provides Sufficient Lighting  14% 3 0.42 3 0.42 2.5 0.35 2.5 0.35Provides Comfortable Lighting 4% 2.5 0.1 2.5 0.1 2.5 0.1 2.5 0.1Sufficient Power Storage 12% 3 0.36 3.5 0.42 2.5 0.3 3.5 0.42Transferibility of Application 11% 2 0.22 4 0.44 3 0.33 3.5 0.385Feasible to Implement 8% 2.5 0.2 3.5 0.28 2.5 0.2 3.5 0.28Ceates Micro‐Business 7% 3 0.21 4 0.28 2.5 0.175 4 0.28

100%Total Score

Treadle Peddle 

2.9 3.23.4

POWER MODULE CONCEPTS 

Induction Ankleband

2.7

Performance                                    Rating         not met                                                  0         poorly   met                                           1           

adequately met                                  2            well met                                                3             

execptionally met                             4

Key Components

*Foot (treadle) powered         *Internal battery                           *Wire connecting power unit to lamp

*Walking motion creates magnetic induction                  *Removable battery pack    

*Community solar charging station (free)                               *Removable pattery packs     

*Dynamo turned by biking     *Community charging station (pay‐per‐charge)                      *Removable battery packs

Community Bike Community PV

 Table 5. Power Module Rankings 

After the system design review, the team further investigated the treadle design per comments from some of the attending faculty.  A rough analysis of the treadle was performed to compare lifetime costs of the treadle vs. the bike.  The results are shown in Table 6. 

Page 10: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 10 Detail Design Review

 

 

Gears - Acetate QTY. Prototype price Final price Item QTY. Prototype price Final price20 tooth 2 3.84 0.94 Motor 1 65.00 65.00120 tooth 2 7.52 3.56 V-belt 1 11.00 11.00Crank arms motor mount.375" AL bar stock ~24" ~$4.57 4.57 L-stock ~6" ~4.00 4.00Motor Battery3 watt dc 1 6.00 6.00 AA NiMh 4 8.00 8.00

BatteryBattery/ electronics enclosure

AA NiMh 1 2.00 2.00 Battey enclosure 1 4.00 4.00Motor mount and gear housing Sheet metal container 1 ~8.00 8.00AL L - stock ~6" ~$4.00 4.01 Bike stand 1 50.00 30.00Foot pedals motor pulley 1 5.00 5.00DESIGN from stock 2 ~ 1.50 3.00 155.00 135.00HousingPrototype - stock sheet metal ~$5.00 ?Production - plastic ? 4.00

34.43 28.08

Treadle

Total

Bike

Total

Table 6. Treadle vs. Bike Concept 

An enhanced power ranking was also completed by the team as a whole based on new information and adjusting metrics.  Table 7 shows the updated rankings: 

Selection Criteria Weight Rating Weighted Score Rating Weighted ScoreEasy to Use 10% 3 0.3 3.5 0.35Durable/Robust 8% 2 0.16 3 0.24Safe to Operate 9% 3 0.27 3 0.27Low Cost 13% 2 0.26 2.5 0.325Sustainable (cradle to grave) 4% 3 0.12 2 0.08Provides Sufficient Lighting  14% 3 0.42 3 0.42Provides Comfortable Lighting 4% 3 0.12 3 0.12Sufficient Power Storage 12% 4 0.48 3 0.36Transferibility of Application 11% 4 0.44 3.5 0.385Feasible to Implement 8% 2.5 0.2 4 0.32Ceates Micro‐Business 7% 2 0.14 3 0.21

100%Total Score

Performance                                    Rating         not met                                                  0         poorly   met                                           1           

adequately met                                  2            well met                                                3             

execptionally met                             4

Key Components

*Foot (treadle) powered         *Internal battery                           *Wire connecting power unit to lamp

*Dynamo turned by biking     *Community charging station (pay‐per‐charge)                      *Removable battery packs

Community BikeTreadle Peddle 

3.082.91 Table 7. Treadle vs. Bike Rankings 

Page 11: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 11 Detail Design Review

 

 

Based upon the rankings from Table 3 along with additional consideration for cost, timeline, feasibility and faculty advisor input, the decision was made to pursue bike power generation.  Figure 1 shows the system level block diagram for the bike system. 

 

Figure 1. Power Module Block Diagram 

 

6.2 Lighting Module

In the system design review, the team presented concepts for different lighting modules as well as the selection process the team went through to determine the best concept.  During the system design review, a concept of a cylindrical base with a gooseneck‐supported LED was proposed, as shown in Figure 2. 

 

Figure 2. Proposed Lighting Module 

The team spent considerable time discussing alternative designs after the system design review.  One idea was to use food cans for the housing of the lighting module.  This idea was unanimously supported since it would greatly reduce the cost and complexity of the unit.  The team debated over whether or not the gooseneck should stay part of the design.  In the end, the team came to the conclusion that the gooseneck would not be needed, especially for a prototype.  Figure 3 shows the final can lighting module concept: 

Page 12: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 12 Detail Design Review

 

 

 Figure 3. Proposed Light‐Can Design 

While the housing for the lighting module has changed since the system design review, the system level block diagram remains the same, as shown in Figure 4. 

Figure 4. Lighting Module Block Diagram 

 

Page 13: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 13 Detail Design Review

 

 

7 POWER MODULE

 Figure 5. Complete Power Module 

7.1 Power Generation

Most humans can generate about 50 Watts of sustainable power.  Based on team member testing, 100 to 150 Watts can be sustained for relatively long periods of time (about 1 hour).  With this in mind, a 100 Watt DC motor has been selected to serve as the generator to charge the LED lanterns.  While parasitic losses are undetermined, a 100 Watt generator will be large enough to capture most of the energy a human can exert.   

The motor selected requires 2700 rpm at the shaft to deliver maximum power.  Gearing ratios were developed to deliver this rotation at a manageable input level.  The biggest ratio of standard bike gears is 3.71.  Assuming a 25” tire and a 1.25” friction drive on the motor, a total gear ratio of 46.43 is obtained before losses.  RPMs at the motor are calculated at different input RPMs in Table 8 below. 

RPM at Pedal

RPM at Motor

20 104030 1560

Gear ratios 40 2080Fastest GR on bike 3.71 50 2600Wheel Dia. To motor Dia. 20.00 60 3120

Efficiency 70 36400.70 80 4160

= 90 4680Total Gear ratio 52.00 100 5200

110 5720120 6240  

Table 8. Gear Ratio and RPM Analysis 

Page 14: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 14 Detail Design Review

 

 

A direct friction drive will be tested to determine the actual power output of the motor.  Should these tests determine a direct drive transmission is not viable, a belt and sprocket drive train will be used that will provide a more robust design.  However, due to cost and simplicity, a direct friction drive will be tested first. 

Figure 6 below shows the assembly of the power module.  Cheap and simple components were used where ever feasible. 

 Figure 6. Power Module Assembly 

The power module contains the Printed Circuit Board (PCB) a transformer and the wire interfaces associated with these.  Four male DC plugs are also interfaced with the module to charge multiple lamps simultaneously.  The aluminum enclosure selected has a detachable top that provides easy access to components should they need repaired.  Standard components are used throughout the power module. 

Motor Test Plan 

1. Attach roller to motor and mount on trainer.  The neoprene roller will replace the metal roller currently on the trainer. 

2. Adjust for good contact with tire and begin pedaling.  3. Measure amperage and voltage coming out of motor. 4. If needed, test different diameter rollers as well as different roller materials. 5. Reflect on results.  Consider pulley options if friction drive proves infeasible.  

 

Page 15: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 15 Detail Design Review

 

 

7.2 Power Conditioning (Jesse)

 

Circuit Operation 

The power begins at the generator, where a pulsed DC waveform is created.  This is then passed through the transformer, which steps it down to a more appropriate working voltage for the NiMH cells.  Here the circuit branches off to the separate NiMH charging circuits.  These are isolated from one another using a diode.  A capacitor is used to smooth out this voltage, and then the current can take two paths into the battery.  The first passes through a 90 Ohm resistor and a pair of diodes.  The resistor limits the current to one which is suitable for trickle charging of the battery, roughly 10 mA.  The battery fast charging is accomplished with the use of a dedicated MC33340 NiMH charger IC working in conjunction with an adjustable linear regulator.  The charger monitors the battery voltage and acts as a gate controller for the regulator, turning it on when charging is needed and off when charging is complete.  An indicator LED shows when the battery is fast charging.  Resistors R2 and R3 determine the fast charge current, which is designed to be 2 A.  Because of the high currents involved, R2 must be able to dissipate heat.  Two 1.5 Ohm power resistors in parallel accomplish this.  Resistors R6 and R5 form a resistor divider, designed to reduce the battery voltage to one which is within the 1‐2 V range of what the IC can read.  The IC uses this voltage to determine if the battery is under‐ or over‐charged, in either case the battery is allowed to trickle charge until it is within range. 

Design Considerations 

The battery charge circuit is meant to take the variable DC voltage coming from our generator, smooth it out to a constant value, and use it to charge 4 NiMH cells in series.  The nominal voltage of the cells is 1.2V each, for a total battery voltage of 4.8V.  At this point, very little is known about the details of the generator.  It was found as a 100W, 24V motor.  From current knowledge of DC motor operation, it is expected that the motor will 

Page 16: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 16 Detail Design Review

 

 

produce at best, a pulsating DC signal with a max voltage of 24V, but with RMS voltage much lower, likely to be on the order of 15‐17V.  Even with this considered, this creates a difference of over 10V between the battery and the NiMH battery.  In theory, a switching regulator could be used to reduce this voltage, however the appropriate regulators were prohibitively expensive.  It was determined that a transformer would be the best solution.  A transformer with a turns ratio of approximately 2.4:1 would bring our voltage down to a more manageable level.  The other potential problem arises in the frequency of operation.  Transformers available were all designed to operate at 50/60Hz, the mains frequency in most countries around the world.  Our working frequency will be much higher, although until the generator is tested, we will not know exactly how much higher.  In theory, transformers work better at higher frequencies, however the coil inductance and resistance in the system will work together to act as a low‐pass filter.  If our circuit fails to work due to the transformer, it will probably be time to look further into the costly switching regulators. 

 

Page 17: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 17 Detail Design Review

 

 

8 LIGHTING MODULE

 Figure 7.  Complete Lighting Module 

8.1 Power Conditioning (Mike)

After the battery has been charged in the Power Module Stage, the charge stored in them will need to be conditioned somehow as to have it be usable by the Lighting Module. The battery will be in a 4S1P configuration and each cell is rated at 1.2V and 2.3Ah, therefore making the entire pack 4.8V with 2.3Ah of storage capactity. In order to make this 4.8V usable to the LED the circuit in Figure 8 will be used.  

R1

R2Var

V14.8Vdc

0 00

M1

MbreakN

DbreakD1

 

Figure 8. Initial Power Conditioning Circuit

Page 18: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 18 Detail Design Review

 

 

Figure 8 shows a circuit that is designed with an N‐Type MOSFET that will control the voltage driving the LED (D1), and also a knob style potentiometer (R2) that will enable the user to set the brightness of the LED by controlling the current going through the LED. At the gate of the MOSFET there is a voltage divider with a fixed resistor (R1) and the variable potentiometer, as the resistance is increased on R2 so is the node voltage at the gate of the FET. This will in turn allow more current to flow through the drain and source of the FET thus illuminating the LED further.  

 

8.2 Light Distribution

Research and benchmarking have provided a target light level of around 100 Lux (light intensity on the surface) for an approximate range of one squ an next to nothing without actually 

raph  

 are meter. Unfortunately these units me

perceiving their impacts on vision. A Cree LED light was tested alongside a candle and a kerosene lantern to compare the performance of LED’s with the common lighting methods of the intentioned users. From the gbelow, it is apparent that LED’s provide can provide significant improvements to the lighting systems currently inplace in developing nations. 

 Figure 9.  Light Intensity v. Distance from a Given Source 

It was previously determined that for the light system to be successful some degree of light diffusion would be necessary to achieve a comfortable, readable light for the end user. Samples of differently designed lenses were 

Page 19: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 19 Detail Design Review

 

 

tested for their quality and intensity of light produced. The graph below shows the Lux measured on a flat plane at varying distances away from the lights center. 

 Figure 10.  Effect of lens on Light Intensity 

It is obvious that the Clear Lens provides the most intense light, however it is more intense than is necessary and has a very narrow range. It also creates “hot rings” of light as opposed to a uniform luminance. It was agreed that the Prismatic Lens creates the most appealing light, with a soft homogenous dispersion and a wider range of radiance. 

8.3 Thermal Analysis

Basic thermal analysis was conducted on the heat sink plate of the lighting module.  The system was modeled as a circular fin (with the fin area corrected for the fact that the plate is in fact not a complete disk.  To find the efficiency of the fin, the following equation was used: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )cc

ccf mrImrKmrKmrI

mrKmrImrImrKC

211012110

211121112 +

−=η  

Where r1 and r2c are the inner (LED) and corrected outer radii, K and I represent modified Bessel Function of the first and second kind, and C2 and m may be defined as follows: 

Page 20: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 20 Detail Design Review

 

 

21

22

1

2

2

rrmr

Cc −

=  

kthm 2

=  

Where h is the convective coefficient of the environment surrounding the fin, k is the conductive coefficient of the steel plate, and t is the thickness of the plate.  After obtaining the efficiency, the resistance and δT were found using the following simple equations: 

hAR

fη1

=  

qRT =δ  

Calculations employed conservative values for the necessary variables so as to not understate any potential problem with the heat buildup. With a full heat flux of 3W going into the plate, the following data was obtained. 

h 4 W/(m^2*K) m 6.4535019 I0(m*r1) 1.000042t 0.125 in 0.003175 m k 60.5 W/(m*K) c2 0.394513 I1(m*r1) 0.006454r1 0.002 m q 3 W m*r1 0.012907 I1(m*r2c) 0.129115r2 1.5 in 0.0381 m Tamb 28 °C m*r2c 0.2561234 K0(m*r1) 4.466144r2c 1.5625 in 0.039688 m K1(m*r1) 77.44527At 0.006129 K1(m*r2c) 3.648185

To 159.37

Dimensions Environmental Variables Calculated Values Bessel FunctionsImperial Metric

eta 0.9315005w 0.060325 R 43.789084l 0.0508 dT 131.37

 Table 9.  Heat Transfer Calculations for 3W 

 As can be seen, the temperature of the LED would be over the prescribed temperature of 150°C.  After some consideration, it was determined that the calculations should be repeated for 2.5W which could be set as thenew maximum LED input. 

Page 21: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 21 Detail Design Review

 

 

h 4 W/(m^2*K) m 6.4535019 I0(m*r1) 1.000042t 0.125 in 0.003175 m k 60.5 W/(m*K) c2 0.6842953 I1(m*r1) 0.006454r1 0.002 m q 2.5 W m*r1 0.012907 I1(m*r2c) 0.097789r2 1.5 in 0.0381 m Tamb 28 °C m*r2c 0.1946538 K0(m*r1) 4.466144r2c 1.1875 in 0.030163 m K1(m*r1) 77.44527At 0.006129 K1(m*r2c) 4.916715

eta 0.9639454

To 133.79

Dimensions Environmental Variables Calculated Values Bessel FunctionsImperial Metric

w 0.060325 R 42.315212l 0.0508 dT 105.79

 Table 10.  Heat Transfer Calculations for 2.5W 

From this calculation a more comforting result was obtained (LED temperature is 134°C).  Granted the values used in these calculations would tend to yield higher LED temperatures, but actual testing should be performed on the assembly to ensure the feasibility of the design.  To that end, the following test plan is proposed. 

LED Temperature Verification Test Plan 

directly under the LED connection.  Barring this attachment, the thermocouple may be attached to the opposite of the plate directly “under” the LED. 

2. Power up the LED to full power (3W ‐or‐ 2.5W).  Alternately, conduct the test with two separate assemblies with one at each temperature to determine if 3W is doable. 

3. Determine when the system(s) reach steady state by observing when the thermocouple readings cease changing. 

4. Measure the temperature of the thermocouple 

5. Compare measured and predicted data 

From the collected data it should be easy to determine if the as designed component will be sufficient to meet  

 

9 MATERIALS & ENVIRONMENTAL IMPACT

The materials selected for this project are crucial in that they drive the price of the end product and also affect the sustainability of the system, therefore impacting not only the end user but also the environmental impact of the product.  With the understanding that the LED system as a whole is better for the environment and the people using them, some more eco‐friendly materials were substituted to bring the cost down and to increase usefulness and durability. 

1. Attach a thermocouple to the assembled LED/Heat sink component.  The thermocouple should be 

the needed heat dissipation.  Should the tests come up negative, the component will have to be redesigned insuch a way as to increase the available heat sink area. 

Page 22: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 22 Detail Design Review

 

 

  All but two components of the currently designed lighting system are capable of being recycled; and perhaps just as important, are profitable to recycle. The structure of the LED system, as it is currently designed is composed of low grade steels, aluminum and HDPE (high density polyethylene). The light module housing and the bike themselves would be in their second stage of useful life. The two components in question are the LED light and the circuitry required to run the operation, two quintessential parts to providing light. However, more sustainable practices will continuously be investigated along with an extensive Life Cycle Assessment. 

  Based on a very basic, preliminary Life Cycle Assessment (LCA) the environmental damage caused by the production and use of Kerosene Lanterns greatly exceeds that of the proposed LED lighting system. The fundamental and often most significant assumptions made in any LCA are the functional units being compared. For this example, a functional unit  being that each power station 

ur. Based on this range and customer feedback detailing the average nightly use of lighting systems, a conservative estimat  used. Based on these and other assumptions the structure of a complete LCA was performed. Below are some graphical representations of the eco‐points associated with 

of 20 lighting systems was used; the reason should, at its very least, be capable of charging 20 light modules on a regular basis. Therefore one power statioand 20 LED lamps could be compared to 20 Kerosene Lanterns. Another important conjecture is the rate at which Kerosene is burned. Research showed that Lanterns burn Kerosene at a rate of 1 oz. to 6 oz. per ho

e of 5 oz. of Kerosene burned each night was

the current and proposed lighting systems. 

 Figure 11. Combined LCA for Complete System vs. Kerosene Lamp

 

Page 23: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) 23 Detail Design Review

 

 

he Uni

 

T ts used in this analysis are Eco‐points.  An Eco‐point score is a measure of the overall environmental impact of a particular product or process. The annual environmental impact caused by a typical UK citizen creates 100 Eco‐points; therefore more Eco‐points indicate higher environmental impact. Some of the environmental impacts considered are: Climate change, Fossil fuel depletion, Eco‐toxicity, carcinogens producedand Minerals extraction. Though the proposed LED lighting system would entail more mineral extraction, the impact from the amount of fossil fuels burned with Kerosene lamps is comparatively enormous. 

 

10 ACTION PLAN

Task Expected Date 

Responsible Team 

Member Comments 

Discuss Design Feedback  06 Feb 2009  All   

Test motor drive  13 Feb 2009  All  Measure power output 

Test different configurations 

Test LED heat sink  13 Feb 2009  All  Attach thermocouples  

Measure temp at different power 

All Ordering Complete  23 Feb 2009  All  Order most parts BEFORE this date 

All Parts in House  09 Mar 2009  All  Shipped over break 

Initial Prototype Assembled  13 Mar 2009  All  Will be iterated over the next month  

Final Prototype Completed  10 Apr 2009  All   

P3 EXPO  18 Apr 2009  All  GET PHASE 2 GRANT!! 

 

Page 24: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)Detail Design Review

24 

 

 

11 BILL OF MATERIALS Item # Vendor P/N Vendor Item Description Quanity Unit Price Extended Price Status

1 546‐186F48

Owner

Mouser Hammond 2.4:1 Transformer, 96VA   1 25.52 25.52 green Jesse2 512‐FAN1587AMC15X Mouser Fairchild FAN1587 Adjustable Voltage Regulator TO‐263 4 1.18 4.72 green Jesse3 863‐MC33340DG Mouser On Semi MC33340 NiMH Charger SOIC8 4 1.56 6.24 green Jesse4 645‐598‐8260‐107F Mouser Green LED ‐ 1206 4 0.10 0.40 green Jesse5 625‐SS3P3‐E3 Mouser Diode ‐ Vishay 3A Schottky D)‐220AA 20 0.17 3.406 262‐1.5‐RC

POWER MODULEElectrical Components

green JesseMouser Resistor ‐ 1.5Ohm, 2W, Through‐hole 8 0.19 1.52 green Jesse

7 263‐6.8k‐RC Mouser Resistor ‐ 6.8k, 1206 4 0.05 0.20 green Jesse8 263‐91‐RC Mouser Resistor ‐ 91 ohms, 1206 4 0.05 0.20 green Jesse9 290‐1.0K‐RC Mouser Resistor ‐ 1k, 1206 4 0.05 0.20 green Jesse10 290‐4.0K‐RC Mouser Resistor ‐ 4k, 1206 4 0.05 0.20 green Jesse11 290‐250‐RC Mouser12 140‐XRL10V3300‐RC

Resistor ‐ 250 ohms, 1206 4 0.05 0.20 green JesseMouser

647Capacitor ‐ 3300uF 4 0.42 1.68 green Jesse

13 ‐UHM1C102MPD3TD Mouser Capacitor 4 0.11 0.44 green Jesse14 647‐UVR1E330MDD1TD

 ‐ 1000uFMouser pacito 4 0.03 0.12 green Jesse

15 NA ExpressPCB Charger PCB 1 60. yellow Jesse16 NA Local Networking Cab 6 feet 0. green Jesse

17 NA Campus Saftey Bike 1 free free yellow Jesse18 1 330 SETGL7  pricepoint.com Sette Power Glyde Trainer  1 68.89 68.89 green Matt19 ers.com  Watt tor 1 18.99 18.99 yellow Matt20 r Sup acket 1 NA NA red Matt5 8637K56  McMaster 1.25" OD, 0.5" ID, 6" Long Neoprene Tube  1 3.99 3.99 yellow Matt22 7798K41 McMaster Screw Connector 2 1.03 2.06 green Matt23 McMaster 2 Ro re green Matt24 Newark minum x Enclosure green Matt25 15275A53 McMaster Nickel Plated L Bracket 3 0.57 1.71 green Matt26 91770A148 McMaster 1/2"  6‐32 Truss Machine Screws green Matt27 91240A007 McMaster 6‐32 7/64" heigth SS Hex Nut green Matt28 TC258B Action Electronics 2.5 mm Male Straight DC Jack 4 1.75 7.00 green  Jesse

29 Recycling Ti ee green Nick30 91309A552 McMaster 2.5", (1/4"‐20), Hex Cap Screw 25 0.1864 4.66 green Nick31 9049A029 McMaster 5/32", (1/4"‐20), Hex Jam Nut Nick32 91090A105 McMaster .266" ID, .5" OD, Washer, (.05" Thick) Nick33 163‐4024 Mouser DC Power Jacks PANEL MOUNT 2.5MM 1 2.0900 2.09 green Nick36 W Nick37 aster de n / 50%lead Nick38 7369A34 McMaster Loctite #US1152 Urethane Thermal Paste 1 13.12 green Nick39 McMaster is locker #24010 12.94 green Nick40 Lowes  2‐ pe Strap 4 Pack 1.43 green Nick41  wire connectors yellow Nick42 ick43 " A eet ick44 shrink wrap yellow Nick45 h  Rechargeable batteries 4 1.79 7.16 green Mike46  Po eter 1 9.62 9.62 green Mike47 nne SFET 1 0.40 0.40 green Mike48 NA ExpressPCB Lighting Module PCB 1 yellow Mike49 green Mike50 Mouser ale P ount DC Jack .09 green Mike

Item # Vendor P/N Vendor Item Description Quanity Unit Price Extended Price Status Owner

Ca r ‐ 33uF

le00 60.0000 0.00

Motor‐E100 Motor partsforscootNA NA

100Moto

 DC Moport Br

69935K6105M4060

14‐4"x5"x6" Alu

mex Wi Minibo

10 0.38 3.801 12.74 12.74

100 NA 6.1225 NA 10.92

N/A n can 1 Free Fr

100 0.0108 1.08 green100 0.0446 4.46 green

ire r, 50%ti

green1 16.02 green7667A12 McM 0.125" Dia. Sol

7445A12301805

Permatex Gel‐Tw1 1/4" Galvanized

t ThreadHole Pi

14

thin thin1/16

 sheet steelcrilic Sh

yellow N1 2.38 2.38 yellow NOnlinemetals.com

10304 All‐battery.com72‐P16NP‐50K Mouser72‐P16NP‐50K Mouser

Fast Charging AA 2300mAKnobN‐Cha

NiMH tentioml MO

LEDanel M

11 2.09 2163‐4024 2.5 mm Fem

Mechanical

Lig dule

 Components

hting Mo

 

 

Page 25: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) Detail  e Review 

25 D sign 

 

 

12 RISK ASSESSMENT Risk Description Consequence Preventative Controls Corrective Controls

No. Risk DescriptionDescription of the impact in the worst case scenario Likelihood Outcome # Preventative Control Description

Corrective Control Description (How should we mitigate the impact?) Likelihood Outcome #

1 Powerful Hot spots Temporary Blind Spots likely Minor 8More effective Lens, LED set lower, direct vision guards

Include a warning on the product Rare Minor 2

2 Inadequate lighting Ineffective product Possible Major 12Informative benchmarking, 

subsystem testingInclude more reflectors, slight power 

or design modificationsRare Minor 2

3Low Availability of Recycled 

Materials (cans)Will not be able to produce units

Possible Moderate 9Further research into availability 

of materialsPut a program in place for collection 

and distribution of materialsUnlikely Insignificant 2

4 Components do not fit into unitWill not be able to fully produce the product

Possible Major 12 Prototype TestingDesign Unit to that all components fit 

with room to spareRare Minor 2

5 Unit is Dropped Potential Damage Likely Major 16Benchmarking and design for 

robustnessMake sure the product can withstand 

some level of abuseLikely Insignificant 4

6 Unit is exposed to water Electrical Failure Possible Major 12 Water Resistant DesignSeal unit from potential water 

damageUnlikely Minor 4

7 Corrosion of Metallic Parts Unit Failure Possible Major 12 Corrosion Resistant

Design should take into account increased corrosive environment in developing nations and take steps to 

prevent this  failure

Rare Moderate 3

8Internal Temperature exceeds 

150°CLED Failure Possible Major 12 Heat Dissipative Design

Design will need to appropriately remove heat from the vicinity of the 

LEDRare Major 4

9 Indicator cable gets cutCharge indicators no 

longer workPossible Insignificant 3 Use strong indicator cable Unlikely Insignificant 2

10 Battery charger cable damagedwires short, battery does 

not chargePossible Insignificant 3 Use strong battery cable Unlikely Insignificant 2

11 Generator cable damagedwires short, heat up 

when pedaledPossible Minor 6 Use strong generator cable Unlikely Minor 4

12 Water enters housingunintentional short, charger stops working

Unlikely Minor 4Use soldermask on PCB, 

protection diodesRare Minor 2

13 PCBs do not arrive in timeStopped Production in 

MSD IIPossible Major 12 Order Early

Finish Design and Order Before 23 February 2009

Unlikely Major 8

14All Parts not Available at Beginning 

MSD IISlowed/Stopped 

Production in MSD IIPossible Major 12

Finalize Design and Order Parts Early

Finish Design and Order Before 23 February 2009

Unlikely Major 8

15 Biker over pedals

increasing current causing overheating and 

generator failure, possibly battery failure and release of chemicals

Possible Major 12

LED stop light indicating when biker is at desireable RPM and indicator for when charge is 

complete

Replace unit Rare Major 4

16Mechanical components deteriorate in weather

Likely Minor 8 Oil, Maintience, Keep Indoors Replace part/ scheduled cleaning and 

disassembleUnlikely Minor 4

17 Chain breaks over time Likely Minor 8 Oil and maintience  Replace part Rare Minor 2

18 Bike falls over Unlikely Moderate 6Robust and stable bike stand. Engineer for low center of 

gravityReplace any broken parts Rare Moderate 3

19Direct friction drive wears down 

tire or rollerLikely Minor 8  Use durable materials Replace part Unlikely Minor 4

20Unit does not create power or produces insufficient power

Possible Major 12Test at different RPMs and gear 

ratios. 

Adjust gear ratios, find new generator, used belt drive or limit 

number of charging unitsRare Major 4

Inherent Exposure Residual Exposure

 

Page 26: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  26 Detail Design Review 

 

 

E (LIGHTING MODULE) 13 DRAWING PACKAG

 

Page 27: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  27 Detail Design Review 

 

 

 

Page 28: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  28 Detail Design Review 

 

  

Page 29: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  29 Detail Design Review 

 

  

Page 30: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  30 Detail Design Review 

 

  

Page 31: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  31 Detail Design Review 

 

  

Page 32: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  32 Detail Design Review 

 

  

Page 33: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  33 Detail Design Review 

 

  

Page 34: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  34 Detail Design Review 

 

 

14 DRAWING PACKAGE (POWER MODULE)

 

Page 35: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  35 Detail Design Review 

 

 

 

Page 36: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  36 Detail Design Review 

 

 

 

Page 37: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  37 Detail Design Review 

 

  

Page 38: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  38 Detail Design Review 

 

 

15 LIFE CYCLE ANALYSIS

 

Page 39: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  39 Detail Design Review 

 

 

 

 

Page 40: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  40 Detail Design Review 

 

 

 

 

Page 41: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  41 Detail Design Review 

 

 

 

Page 42: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427)  42 Detail Design Review 

 

 

 

Page 43: LED Lighting Technologies for a Sustainable Lighting

LED Lighting Technologies for a Sustainable Lighting Solution in Developing Nations (P08427) Detail Design Review 

43 

 

 

16 ELECTRICAL SCHEMATICS

 

Power Module Electrical Schematic 

Page 44: LED Lighting Technologies for a Sustainable Lighting

1Subject to change without notice.www.cree.com/xlamp

Data

Sh

eet:

CLD

-DS

05

.01

1

Cree® XLamp® XR-E LEDData Sheet

The XLamp XR-E LED is leading the LED lighting revolution with its unprecedented lighting-class brightness, efficacy, lifetime and quality of light. These lighting-class features enable the XLamp XR-E LED to replace many traditional light sources and save money with energy-efficient light and long lifetimes.

Cree XLamp LEDs bring high performance and quality of light to a wide range of lighting applications, including color-changing lighting, portable and personal lighting, outdoor lighting, indoor directional lighting, commercial lighting and emergency-vehicle lighting.

Table of Contents

Flux Characteristics (TJ = 25°C) - White .....................................................................................................2Flux Characteristics (TJ = 25°C) - Color ......................................................................................................3Characteristics ........................................................................................................................................4Relative Spectral Power Distribution ...........................................................................................................5Relative Flux vs. Junction Temperature (IF = 350 mA) ...................................................................................6Electrical Characteristics (TJ = 25˚C) ..........................................................................................................7Thermal Design .......................................................................................................................................7Relative Flux vs. Current (TJ = 25˚C) .........................................................................................................8Typical Spatial Distribution ........................................................................................................................8Reflow Soldering Characteristics ................................................................................................................9Notes ................................................................................................................................................... 10Mechanical Dimensions (TA = 25°C) ......................................................................................................... 11Tape and Reel ....................................................................................................................................... 12Dry Packaging and Packaging .................................................................................................................. 13

FEATURES

• Guaranteed minimum flux order codes up to

107 lm in white, 30.6 lm in blue and 67.2 lm in

green at 350 mA

• Available in white (2,600 K to 10,000 K CCT),

blue, royal blue and green

• Maximum drive current: up to 1000 mA

• Industry’s lowest thermal resistance: 8°C/W

• Max junction temperature: 150°C

• Industry-leading JEDEC standard pre-

qualification testing

• Reflow solderable – JEDEC J-STD-020C

compatible

• Electrically neutral thermal path

• RoHS-compliant

• Lumen maintenance of greater than 70% after

50,000 hours

Page 45: LED Lighting Technologies for a Sustainable Lighting

Copyright © 2006-2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc.

2 CLD-DS05.011

Cree, Inc.4600 Silicon Drive

Durham, NC 27703USA Tel: +1.919.313.5300

www.cree.com/xlamp

Flux Characteristics (TJ = 25°C) - White

The following tables describe the available colors and flux for XR-E LEDs by listing the correlated color temperature or dominant wavelength range for the entire family and by providing several base order codes. It is important to note that the base order codes listed here are a subset of the total available order codes for the product family. For more order codes, as well as a complete description of the order-code nomenclature, please consult the XR-E & XR-C Binning and Labeling document.

ColorCCT Range

Base Order Codes Min Luminous Flux

(lm) Order Code

Min. Max. Group Flux (lm)

Cool White 5,000 K 10,000 K

P4 80.6 XREWHT-L1-0000-00901

Q2 87.4 XREWHT-L1-0000-00A01

Q3 93.9 XREWHT-L1-0000-00B01

Q4 100 XREWHT-L1-0000-00C01

Q5 107 XREWHT-L1-0000-00D01

Neutral White 3,700 K 5,000 K

N4 62.0 XREWHT-L1-0000-006E4

P2 67.2 XREWHT-L1-0000-007E4

P3 73.9 XREWHT-L1-0000-008E4

P4 80.6 XREWHT-L1-0000-009E4

Q2 87.4 XREWHT-L1-0000-00AE4

Q3 93.9 XREWHT-L1-0000-00BE4

Warm White 2,600 K 3,700 K

N3 56.8 XREWHT-L1-0000-005E7

N4 62.0 XREWHT-L1-0000-006E7

P2 67.2 XREWHT-L1-0000-007E7

P3 73.9 XREWHT-L1-0000-008E7

P4 80.6 XREWHT-L1-0000-009E7

Notes:• Cree maintains a tolerance of +/- 7% on flux and power measurements.• Typical CRI for Cool White & Neutral White (3,700 K – 10,000 K CCT) is 75.• Typical CRI for Warm White (2,600 K – 3,700 K CCT) is 80.

Page 46: LED Lighting Technologies for a Sustainable Lighting

Copyright © 2006-2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc.

3 CLD-DS05.011

Cree, Inc.4600 Silicon Drive

Durham, NC 27703USA Tel: +1.919.313.5300

www.cree.com/xlamp

Flux Characteristics (TJ = 25°C) - Color

The following tables describe the available colors and flux for XR-E LEDs by listing the correlated color temperature or dominant wavelength range for the entire family and by providing several base order codes. It is important to note that the base order codes listed here are a subset of the total available order codes for the product family. For more order codes, as well as a complete description of the order-code nomenclature, please consult the XR-E & XR-C Binning and Labeling document.

Color

Dominant Wavelength Range Base Order Codes Min Radiant Flux

(mW) Order CodeMin. Max.

Group DWL (nm) Group DWL

(nm) Group Flux (mW)

Royal Blue D3 450 D5 465

13 300 XREROY-L1-0000-00801

14 350 XREROY-L1-0000-00901

15 425 XREROY-L1-0000-00A01

Color

Dominant Wavelength Range Base Order Codes Min

Luminous Flux (lm) Order CodeMin. Max.

Group DWL (nm) Group DWL

(nm) Group Flux (lm)

Blue B3 465 B6 485J 23.5 XREBLU-L1-0000-00J01

K 30.6 XREBLU-L1-0000-00K01

Color

Dominant Wavelength Range Base Order Codes Min Luminous

Flux (lm) Order CodeMin. Max.

Group DWL (nm) Group DWL

(nm) Group Flux (lm)

Green G2 520 G4 535 P 67.2 XREGRN-L1-0000-00P01

Note: Cree maintains a tolerance of +/- 7% on flux and power measurements.

Page 47: LED Lighting Technologies for a Sustainable Lighting

Copyright © 2006-2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc.

4 CLD-DS05.011

Cree, Inc.4600 Silicon Drive

Durham, NC 27703USA Tel: +1.919.313.5300

www.cree.com/xlamp

Characteristics

Characteristics Unit Minimum Typical Maximum

Thermal Resistance, junction to solder point °C/W 8

Viewing Angle (FWHM) - white degrees 90

Viewing Angle (FWHM) - royal blue, blue, green degrees 100

Temperature coefficient of voltage - white, royal blue, blue, green mV/°C -4.0

ESD Classification (HBM per Mil-Std-883D) Class 2

DC Forward Current - white ≥ 5000 K, royal blue, blue mA 1000

DC Forward Current - white < 5000 K, green mA 700

DC Pulse Current (@ 1 kHz, 10% duty cycle) A 1.8

Reverse Voltage V 5

Forward Voltage (@ 350 mA) V 3.3 3.9

Forward Voltage (@ 700 mA) V 3.5

Forward Voltage (@ 1000 mA) - white ≥ 5000 K, royal blue, blue V 3.7

LED Junction Temperature* °C 150

* Note: For lumen maintenance data, see the Cree XLamp LED Reliability document.

Page 48: LED Lighting Technologies for a Sustainable Lighting

Copyright © 2006-2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc.

5 CLD-DS05.011

Cree, Inc.4600 Silicon Drive

Durham, NC 27703USA Tel: +1.919.313.5300

www.cree.com/xlamp

Relative Spectral Power DistributionRelative Spectral Power

Relative Flux Output vs. Junction Temperature (If = 3

0

20

40

60

80

100

400 450 500 550 600 650 700 750

Wavelength (nm)

Rela

tive R

ad

ian

t P

ow

er

(%)

5000K - 10000K CCT

3700K - 5000K CCT

2600K - 3700K CCT

0

20

40

60

80

100

400 450 500 550 600 650

Wavelength (nm)

Rela

tive R

ad

ian

t P

ow

er

(%)

Royal BlueBlueGreen

White

Color

Page 49: LED Lighting Technologies for a Sustainable Lighting

Copyright © 2006-2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc.

6 CLD-DS05.011

Cree, Inc.4600 Silicon Drive

Durham, NC 27703USA Tel: +1.919.313.5300

www.cree.com/xlamp

Relative Flux vs. Junction Temperature (IF = 350 mA)

Electrical Characteristics (Tj = 25ºC)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

25 50 75 100 125 150

Junction Temperature (°C)

Rela

tive L

um

ino

us

Flu

x

White

Blue

Green

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

25 50 75 100 125 150

Junction Temperature (ºC)

Rela

tive R

ad

ian

t Flu

x

Royal

Page 50: LED Lighting Technologies for a Sustainable Lighting

Copyright © 2006-2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc.

7 CLD-DS05.011

Cree, Inc.4600 Silicon Drive

Durham, NC 27703USA Tel: +1.919.313.5300

www.cree.com/xlamp

Electrical Characteristics (TJ = 25˚C)

Thermal Design

The maximum forward current is determined by the thermal resistance between the LED junction and ambient. Given an existing thermal resistance of 8°C/W between the junction and the solder point, it is crucial for the end product to be designed in a manner that minimizes the thermal resistance from the solder point to ambient in order to optimize lamp life and optical characteristics.

White ≥ 5,000 K, Royal Blue, Blue White < 5,000 K, Green

Thermal Design

Cool White

0

100

200

300

400

500

600

700

800

900

1000

0.0 1.0 2.0 3.0 4.0 5.0

Forward Voltage (V)

Forw

ard

Cu

rren

t (m

A)

0

200

400

600

800

1000

1200

0 25 50 75 100 125 150

Ambient Temperature (°C)

Maxim

um

Cu

rren

t (m

A)

Rj-a = 10°C/WRj-a = 15°C/WRj-a = 25°C/WRj-a = 35°C/W

Thermal DesignCool White, Royal Blue & Blue

Cool White

0

200

400

600

800

1000

1200

0 25 50 75 100 125 150

Ambient Temperature (°C)

Maxim

um

Cu

rren

t (m

A)

Rj-a = 10°C/WRj-a = 15°C/WRj-a = 20°C/WRj-a = 25°C/W

Neutral White, Warm White & Green

Neutral White, Warm White, Blue, Royal Blue and Green

Relative Intensity vs. Current (Tj = 25ºC)0

100

200

300

400

500

600

700

800

0 25 50 75 100 125 150

Ambient Temperature (°C)

Maxim

um

Cu

rren

t (m

A)

Rj-a = 10°C/WRj-a = 15°C/WRj-a = 25°C/WRj-a = 35°C/W

Page 51: LED Lighting Technologies for a Sustainable Lighting

Copyright © 2006-2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc.

8 CLD-DS05.011

Cree, Inc.4600 Silicon Drive

Durham, NC 27703USA Tel: +1.919.313.5300

www.cree.com/xlamp

Relative Flux vs. Current (TJ = 25˚C)

Typical Spatial Distribution

Neutral White, Warm White, Blue, Royal Blue and Green

Relative Intensity vs. Current (Tj = 25ºC)

Typical Spatial Radiation Pattern

0

100

200

300

400

500

600

700

800

0 25 50 75 100 125 150

Ambient Temperature (°C)

Maxim

um

Cu

rren

t (m

A)

Rj-a = 10°C/WRj-a = 15°C/WRj-a = 25°C/WRj-a = 35°C/W

0

50

100

150

200

250

0 200 400 600 800 1000

Forward Current (mA)

Rela

tive L

um

ino

us

Flu

x (

%)

Green

White & Blue

0

20

40

60

80

100

120

-100 -80 -60 -40 -20 0 20 40 60 80 100

Angle (°)

Rela

tive L

um

ino

us

Inte

nsi

ty (

%)

White

Color

Page 52: LED Lighting Technologies for a Sustainable Lighting

Copyright © 2006-2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc.

9 CLD-DS05.011

Cree, Inc.4600 Silicon Drive

Durham, NC 27703USA Tel: +1.919.313.5300

www.cree.com/xlamp

Reflow Soldering Characteristics

In testing, Cree has found XLamp XR-E LEDs to be compatible with JEDEC J-STD-020C, using the parameters listed below. As a general guideline, Cree recommends that users follow the recommended soldering profile provided by the manufacturer of solder paste used.

Note that this general guideline may not apply to all PCB designs and configurations of reflow soldering equipment.

Profile Feature Lead-Based Solder Lead-Free Solder

Average Ramp-Up Rate (Tsmax to Tp) 3°C/second max. 3°C/second max.

Preheat: Temperature Min (Tsmin) 100°C 150°C

Preheat: Temperature Max (Tsmax) 150°C 200°C

Preheat: Time (tsmin to tsmax) 60-120 seconds 60-180 seconds

Time Maintained Above: Temperature (TL) 183°C 217°C

Time Maintained Above: Time (tL) 60-150 seconds 60-150 seconds

Peak/Classification Temperature (Tp) 215°C 260°C

Time Within 5°C of Actual Peak Temperature (tp) 10-30 seconds 20-40 seconds

Ramp-Down Rate 6°C/second max. 6°C/second max

Time 25°C to Peak Temperature 6 minutes max. 8 minutes max.

Note: All temperatures refer to topside of the package, measured on the package body surface.

Page 53: LED Lighting Technologies for a Sustainable Lighting

Copyright © 2006-2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc.

10 CLD-DS05.011

Cree, Inc.4600 Silicon Drive

Durham, NC 27703USA Tel: +1.919.313.5300

www.cree.com/xlamp

Temp.Maximum Percent Relative Humidity

30% 40% 50% 60% 70% 80% 90%

30ºC 9 5 4 3 1 1 1

25ºC 12 7 5 4 2 1 1

20ºC 17 9 7 6 2 2 1

Notes

Lumen Maintenance Projections

Based on internal long-term reliability testing, Cree projects that white XLamp XR-E LEDs will deliver median 70% lu-men maintenance after 50,000 hours of operation at a forward current of 700 mA. This projection is based on constant current operation with junction temperature maintained at or below 135°C and ambient air temperature maintained at or below 25°C.

Cree projects royal blue, blue, green and white XLamp XR-E LEDs to maintain a mean 70% lumen maintenance after 50,000 hours, provided the LED junction temperature is maintained at or below 90°C and ambient air temperature is maintained at or below 85°C.

Please read the XLamp Reliability application note for more details on Cree’s lumen maintenance testing and forecasting. Please read the XLamp Thermal Management application note for details on how thermal design, ambient temperature, and drive current affect the LED junction temperature.

Moisture Sensitivity

XLamp LEDs are shipped in sealed, moisture-barrier bags (MBB) designed for long shelf life. If XLamp LEDs are exposed to moist environments after opening the MBB packaging but before soldering, damage to the LED may occur during the soldering operation. The following derating table defines the maximum exposure time (in days) for an XLamp LED in the listed humidity and temperature conditions. LEDs with exposure time longer than the time specified below must be baked according to the baking conditions listed at right.

Baking Conditions

It is not necessary to bake all XLamp LEDs. Only the LEDs that meet all of the following criteria must be baked:1. LEDs that have been removed from the original MBB packaging 2. LEDs that have been exposed to a humid environment longer than listed in the Moisture Sensitivity section above3. LEDs that have not been soldered

LEDs should be baked at 80ºC for 24 hours. LEDs may be baked on the original reels. Remove LEDs from MBB packaging before baking. Do not bake parts at temperatures higher than 80ºC. This baking operation resets the exposure time as defined in the Moisture Sensitivity section above.

Storage Conditions

XLamp LEDs that have been removed from original MBB packaging but not soldered yet should be stored in a room or cabinet that will maintain an atmosphere of 25 ± 5ºC and no greater than 10% RH (relative humidity). For LEDs stored in these conditions, storage time does not add to exposure time as defined in the Moisture Sensitivity section above.

RoHS Compliance

The levels of environmentally sensitive, persistent biologically toxic (PBT), persistent organic pollutants (POP), or other-wise restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), as amended through April 21, 2006.

Vision Advisory Claim

Users should be cautioned not to stare at the light of this LED product. The bright light can damage the eye.

Page 54: LED Lighting Technologies for a Sustainable Lighting

Copyright © 2006-2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc.

11 CLD-DS05.011

Cree, Inc.4600 Silicon Drive

Durham, NC 27703USA Tel: +1.919.313.5300

www.cree.com/xlamp

Mechanical Dimensions (TA = 25°C)All measurements are ±.1mm unless otherwise indicated.

Lens

Reflector

SubstrateLens

Reflector

Substrate

8.4 mm

5.6 mm 0.7 mm

9.0 mm

7.0 mm6.46 mm

6.8 mm

4.4 ± .2 mm

7.0 mm

5.6 mm 1.2 mm

9.4 mm

7.4 mm

Side View

Top View Bottom View

Recommended PC Board Solder Pad

7.0 mm

5.6 mm 0.70 mm

8.4 mm

6.46 mm

Recommended PC Board Solder Pad

Page 55: LED Lighting Technologies for a Sustainable Lighting

Copyright © 2006-2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc.

12 CLD-DS05.011

Cree, Inc.4600 Silicon Drive

Durham, NC 27703USA Tel: +1.919.313.5300

www.cree.com/xlamp

Tape and ReelAll dimensions in mm.

330.2 mm

+

(1,000 Lamps)

Page 56: LED Lighting Technologies for a Sustainable Lighting

Copyright © 2006-2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc.

13 CLD-DS05.011

Cree, Inc.4600 Silicon Drive

Durham, NC 27703USA Tel: +1.919.313.5300

www.cree.com/xlamp

Dry Packaging and Packaging

Label with Cree Bin Code, Qty, Lot #

Label with Cree Bin Code, Qty, Lot #

Vacuum-Sealed Moisture Barrier Bag

Dessicant (inside bag)

Humidity Indicator Card (inside bag)

Patent Label

Label with Customer Order Code, Qty, Reel ID, PO #

Label with Cree Bin Code, Qty, Lot #

Label with Cree Bin Code, Qty, Lot #

Vacuum-Sealed Moisture Barrier Bag

Dessicant (inside bag)

Humidity Indicator Card (inside bag)

Patent Label

Label with Customer Order Code, Qty, Reel ID, PO #

Label with Customer Order Code, Qty, Reel ID, P.O. #

Label with Cree Bin Code, Qty, Lot #

Patent Label

Page 57: LED Lighting Technologies for a Sustainable Lighting

Semiconductor Components Industries, LLC, 2004

August, 2004 − Rev. 61 Publication Order Number:

MC33340/D

MC33340, MC33342

Battery Fast ChargeControllers

The MC33340 and MC33342 are monolithic control IC’s that arespecifically designed as fast charge controllers for Nickel Cadmium(NiCd) and Nickel Metal Hydride (NiMH) batteries. These devicesfeature negative slope voltage detection as the primary means for fastcharge termination. Accurate detection is ensured by an output thatmomentarily interrupts the charge current for precise voltagesampling. An additional secondary backup termination method can beselected that consists of either a programmable time or temperaturelimit. Protective features include battery over and undervoltagedetection, latched over temperature detection, and power supply inputundervoltage lockout with hysteresis. Fast charge holdoff time is theonly difference between the MC33340 and the MC33342. TheMC33340 has a typical holdoff time of 177 seconds and the MC33342has a typical holdoff time of 708 seconds.• Negative Slope Voltage Detection with 4.0 mV Sensitivity• Accurate Zero Current Battery Voltage Sensing• High Noise Immunity with Synchronous VFC/Logic• Programmable 1 to 4 Hour Fast Charge Time Limit• Programmable Over/Undertemperature Detection• Battery Over and Undervoltage Fast Charge Protection• Power Supply Input Undervoltage Lockout with Hysteresis• Operating Voltage Range of 3.25 V to 18 V• 177 seconds Fast Change Holdoff Time (MC33340)• 708 seconds Fast Change Holdoff Time (MC33342)• Pb−Free Packages are Available

Figure 1. Simplified Block DiagramThis device contains 2,512 active transistors.

DCInput

VCC

UndervoltageLockout

OverTempLatch

BatteryDetect

TempDetect

Time/Temp Select

Vsen

VsenGate

Fast/Trickle

Voltage toFrequencyConverter

−�V DetectCounterTimer

BatteryPack

Internal BiasVCC

VCC

GND

QR

S

t1/Tref High

t2/Tsen

t3/Tref Low

7

6

5

8

4

3

2

1

High

Low

VsenGate

F/T

Over

Under

t1

t2

t3

t/T

Ck F/V R

Reg

ulat

or

PDIP−8P SUFFIXCASE 626

1

8

SO−8D SUFFIXCASE 751

1

8

MARKINGDIAGRAMS

x = 0 or 2A = Assembly LocationWL, L = Wafer LotYY, Y = YearWW, W= Work Week

1

8

MC3334xP AWL YYWW

ALYW3334x

1

8

(Top View)

PIN CONNECTIONS

VCC8Vsen Input

Vsen Gate Output

Fast/Trickle Output

Gnd

t1/Tref High

t2/Tsen

t3/Tref Low

7

6

5

1

2

3

4

See detailed ordering and shipping information in the packagedimensions section on page 12 of this data sheet.

ORDERING INFORMATION

http://onsemi.com

Page 58: LED Lighting Technologies for a Sustainable Lighting

MC33340, MC33342

http://onsemi.com2

MAXIMUM RATINGS (Note 1)

Rating Symbol Value Unit

Power Supply Voltage (Pin 8) VCC 18 V

Input Voltage Range V

Time/Temperature Select (Pins 5, 6, 7) VIR(t/T) −1.0 to VCC

Battery Sense, (Note 2) (Pin 1) VIR(sen) −1.0 to VCC + 0.6 or −1.0 to 10

Vsen Gate Output (Pin 2)VoltageCurrent

VO(gate)IO(gate)

2050

VmA

Fast/Trickle Output (Pin 3)VoltageCurrent

VO(F/T)IO(F/T)

2050

VmA

Thermal Resistance, Junction−to−Air R�JA °C/W

P Suffix, DIP Plastic Package, Case 626 100

D Suffix, SO−8 Plastic Package, Case 751 178

Operating Junction Temperature TJ +150 °C

Operating Ambient Temperature (Note 3) TA −25 to +85 °C

Storage Temperature Tstg −55 to +150 °C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limitvalues (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,damage may occur and reliability may be affected.1. This device series contains ESD protection and exceeds the following tests:

Human Body Model 2000 V per MIL−STD−883, Method 3015 Machine Model Method 400 V

Page 59: LED Lighting Technologies for a Sustainable Lighting

MC33340, MC33342

http://onsemi.com3

ELECTRICAL CHARACTERISTICS (VCC = 6.0 V, for typical values TA = 25°C, for min/max values TA is the operatingambient temperature range that applies (Note 3), unless otherwise noted.)

Characteristic Symbol Min Typ Max Unit

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BATTERY SENSE INPUT (Pin 1)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Input Sensitivity for −�V Detection ÁÁÁÁÁÁÁÁÁÁ

−�Vth ÁÁÁÁÁÁ

−ÁÁÁÁÁÁÁÁÁÁ

−4.0 ÁÁÁÁÁÁÁÁ

− ÁÁÁÁÁÁ

mV

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Overvoltage Threshold ÁÁÁÁÁÁÁÁÁÁ

Vth(OV) ÁÁÁÁÁÁ

1.9ÁÁÁÁÁÁÁÁÁÁ

2.0 ÁÁÁÁÁÁÁÁ

2.1 ÁÁÁÁÁÁ

V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Undervoltage Threshold ÁÁÁÁÁÁÁÁÁÁ

Vth(UV) ÁÁÁÁÁÁ

0.95ÁÁÁÁÁÁÁÁÁÁ

1.0 ÁÁÁÁÁÁÁÁ

1.05 ÁÁÁÁÁÁ

mV

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Input Bias Current ÁÁÁÁÁÁÁÁÁÁ

IIB ÁÁÁÁÁÁ

−ÁÁÁÁÁÁÁÁÁÁ

10 ÁÁÁÁÁÁÁÁ

− ÁÁÁÁÁÁ

nA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Input Resistance ÁÁÁÁÁÁÁÁÁÁ

Rin ÁÁÁÁÁÁ

−ÁÁÁÁÁÁÁÁÁÁ

6.0 ÁÁÁÁÁÁÁÁ

− ÁÁÁÁÁÁ

M�

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TIME/TEMPERATURE INPUTS (Pins 5, 6, 7)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Programing Inputs (Vin = 1.5 V)Input CurrentInput Current Matching

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Iin�Iin

ÁÁÁÁÁÁÁÁÁ

−24−

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

−301.0

ÁÁÁÁÁÁÁÁÁÁÁÁ

−362.0

ÁÁÁÁÁÁÁÁÁ

�A%

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Input Offset Voltage, Over and Under Temperature ComparatorsÁÁÁÁÁÁÁÁÁÁ

VIOÁÁÁÁÁÁ

−ÁÁÁÁÁÁÁÁÁÁ

5.0ÁÁÁÁÁÁÁÁ

−ÁÁÁÁÁÁ

mVÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Under Temperature Comparator Hysteresis (Pin 5)ÁÁÁÁÁÁÁÁÁÁ

VH(T)ÁÁÁÁÁÁ

−ÁÁÁÁÁÁÁÁÁÁ

44ÁÁÁÁÁÁÁÁ

−ÁÁÁÁÁÁ

mVÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Temperature Select ThresholdÁÁÁÁÁÁÁÁÁÁ

Vth(t/T)ÁÁÁÁÁÁ

−ÁÁÁÁÁÁÁÁÁÁ

VCC −0.7ÁÁÁÁÁÁÁÁ

−ÁÁÁÁÁÁ

VÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

INTERNAL TIMINGÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁInternal Clock Oscillator Frequency

ÁÁÁÁÁÁÁÁÁÁ

fOSCÁÁÁÁÁÁ

−ÁÁÁÁÁÁÁÁÁÁ

760ÁÁÁÁÁÁÁÁ

−ÁÁÁÁÁÁ

kHzÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Vsen Gate Output (Pin 2)Gate TimeGate Repetition Rate

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

tgateÁÁÁÁÁÁÁÁÁÁÁÁ

−−

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

331.38

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

−−

ÁÁÁÁÁÁÁÁÁÁÁÁ

mss

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Fast Charge Holdoff from −�V DetectionMC33340MC33342

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

thold ÁÁÁÁÁÁÁÁÁ

−−

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

177708

ÁÁÁÁÁÁÁÁÁÁÁÁ

−−

ÁÁÁÁÁÁÁÁÁ

s

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Vsen GATE OUTPUT (Pin 2)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Off−State Leakage Current (VO = 20 V) ÁÁÁÁÁÁÁÁÁÁ

IoffÁÁÁÁÁÁ

−ÁÁÁÁÁÁÁÁÁÁ

10 ÁÁÁÁÁÁÁÁ

− ÁÁÁÁÁÁ

nA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Low State Saturation Voltage (Isink = 10 mA) ÁÁÁÁÁÁÁÁÁÁ

VOLÁÁÁÁÁÁ

−ÁÁÁÁÁÁÁÁÁÁ

1.2 ÁÁÁÁÁÁÁÁ

− ÁÁÁÁÁÁ

V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

FAST/TRICKLE OUTPUT (Pin 3)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Off−State Leakage Current (VO = 20 V) ÁÁÁÁÁÁÁÁÁÁ

IoffÁÁÁÁÁÁ

−ÁÁÁÁÁÁÁÁÁÁ

10 ÁÁÁÁÁÁÁÁ

− ÁÁÁÁÁÁ

nA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Low State Saturation Voltage (Isink = 10 mA) ÁÁÁÁÁÁÁÁÁÁ

VOLÁÁÁÁÁÁ

−ÁÁÁÁÁÁÁÁÁÁ

1.0 ÁÁÁÁÁÁÁÁ

− ÁÁÁÁÁÁ

V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

UNDERVOLTAGE LOCKOUT (Pin 8)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Startup Threshold (VCC Increasing, TA = 25°C) ÁÁÁÁÁÁÁÁÁÁ

Vth(on)ÁÁÁÁÁÁ

−ÁÁÁÁÁÁÁÁÁÁ

3.0 ÁÁÁÁÁÁÁÁ

3.25 ÁÁÁÁÁÁ

V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Turn−Off Threshold (VCC Decreasing, TA = 25°C) ÁÁÁÁÁÁÁÁÁÁ

Vth(off)ÁÁÁÁÁÁ

2.75ÁÁÁÁÁÁÁÁÁÁ

2.85 ÁÁÁÁÁÁÁÁ

− ÁÁÁÁÁÁ

V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TOTAL DEVICE (Pin 8)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Power Supply Current (Pins 5, 6, 7 Open)Startup (VCC = 2.9 V)Operating (VCC = 6.0 V)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ICCÁÁÁÁÁÁÁÁÁ

−−

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0.650.61

ÁÁÁÁÁÁÁÁÁÁÁÁ

2.02.0

ÁÁÁÁÁÁÁÁÁ

mA

2. Whichever voltage is lower.3. Tested junction temperature range for the MC33340/342: Tlow = −25°C Thigh = +85°C

Page 60: LED Lighting Technologies for a Sustainable Lighting

MC33340, MC33342

http://onsemi.com4

Figure 2. Battery Sense Input Thresholdsversus Temperature

TA, AMBIENT TEMPERATURE (°C)

Figure 3. Oscillator Frequencyversus Temperature

TA, AMBIENT TEMPERATURE (°C)

Vth

, OV

ER

/UN

DE

RV

OLT

AG

E T

HR

ES

HO

LDS

(V

)

f OS

C, O

SC

ILLA

TO

R F

RE

QU

EN

CY

CH

AN

GE

(%

)∆

2.10

2.00

1.90

1.02

1.00

0.98− 50 − 25 0 25 50 75 100 125

VCC = 6.0 V

16

8.0

0

−8.0

−16

− 50 − 25 0 25 50 75 100 125

VCC = 6.0 V

Isink, SINK SATURATION (mA)

Figure 4. Temperature Select Threshold Voltageversus Temperature

Figure 5. Saturation Voltage versus Sink CurrentVsen Gate and Fast/Trickle Outputs

TA, AMBIENT TEMPERATURE (°C)

Vth

(t/T

), T

EM

PE

RA

TU

RE

SE

LEC

T T

HR

ES

HO

LD V

OLT

AG

E (

V)

V OL

, SIN

K S

ATU

RA

TIO

N V

OLT

AG

E (

V)0

−50 −25 0 25 50 75 100 125

−0.2

−0.4

−0.6

−0.8

−1.0

VCC = 6.0 VVCC

Time mode is selected if any ofthe three inputs are above thethreshold.

Temperature mode is selectedwhen all three inputs are belowthe threshold.

Threshold voltage is measured with respect to VCC.

3.2

0 8.0 16 24 32 40

2.4

1.6

0.8

0

VCC = 6.0 VTA = 25°C

Vsen GatePin 2

Fast/TricklePin 3

− 50

VCC, SUPPLY VOLTAGE (V)

Figure 6. Undervoltage Lockout Thresholdsversus Temperature

Figure 7. Supply Currentversus Supply Voltage

TA, AMBIENT TEMPERATURE (°C)

V CC

, SU

PP

LY V

OLT

AG

E (

V)

I CC

, SU

PP

LY C

UR

RE

NT

(mA

)

3.1

− 25 0 25 50 75 100 125

3.0

2.9

2.8

2.7

Startup Threshold(VCC Increasing)

Minimum Operating Threshold(VCC Decreasing)

1.0

0 4.0 8.0 12 16

0.8

0.6

0.4

0.2

0

TA = 25°C

Page 61: LED Lighting Technologies for a Sustainable Lighting

MC33340, MC33342

http://onsemi.com5

INTRODUCTION

Nickel Cadmium and Nickel Metal Hydride batteriesrequire precise charge termination control to maximize cellcapacity and operating time while preventing overcharging.Overcharging can result in a reduction of battery life as wellas physical harm to the end user. Since most portableapplications require the batteries to be charged rapidly, aprimary and usually a secondary or redundant charge sensingtechnique is employed into the charging system. It is alsodesirable to disable rapid charging if the battery voltage ortemperature is either too high or too low. In order to addressthese issues, an economical and flexible fast charge controllerwas developed.

The MC33340/342 contains many of the building blocksand protection features that are employed in modern highperformance battery charger controllers that are specificallydesigned for Nickel Cadmium and Nickel Metal Hydridebatteries. The device is designed to interface with eitherprimary or secondary side regulators for easy implementationof a complete charging system. A representative block diagramin a typical charging application is shown in Figure 8.

The battery voltage is monitored by the Vsen input thatinternally connects to a voltage to frequency converter and

counter for detection of a negative slope in battery voltage. Atimer with three programming inputs is available to providebackup charge termination. Alternatively, these inputs can beused to monitor the battery pack temperature and to set theover and undertemperature limits also for backup chargetermination.

Two active low open collector outputs are provided tointerface this controller with the external charging circuit.The first output furnishes a gating pulse that momentarilyinterrupts the charge current. This allows an accurate methodof sampling the battery voltage by eliminating voltage dropsthat are associated with high charge currents and wiringresistances. Also, any noise voltages generated by thecharging circuitry are eliminated. The second output isdesigned to switch the charging source between fast andtrickle modes based upon the results of voltage, time, ortemperature. These outputs normally connect directly to alinear or switching regulator control circuit in non−isolatedprimary or secondary side applications. Both outputs can beused to drive optoisolators in primary side applications thatrequire galvanic isolation. Figure 9 shows the typical chargecharacteristics for NiCd and NiMh batteries.

Figure 8. Typical Battery Charging Application

VCC

UndervoltageLockout

OverTempLatch

BatteryDetect

TempDetect

Time/TempSelect

Vsen

VsenGate

Fast/Trickle

Voltage toFrequencyConverter

−�V DetectCounterTimer

BatteryPack

Internal BiasVCC

VCC

Gnd

QR

S

t1/Tref High

t2/Tsen

t3/Tref Low

7

6

5

8

4

3

2

1

High

Low

VsenGate

F/T

Over

Under

t1

t2

t3

t/T

Ck F/V R

Regulator

Reg Control

DCInput

ChargeStatus

R2

R1

MC33340 or MC33342

2.0 V

1.0 V

RNTC

R3

R4

SW2

SW1

SW3

2.9 V

30 �A

30 �A

30 �A

0.7 V

R2 � R1��VBattVsen

� –�1�

T

Page 62: LED Lighting Technologies for a Sustainable Lighting

MC33340, MC33342

http://onsemi.com6

dV−�V

Figure 9. Typical Charge Characteristics for NiCd and NiMh Batteries

CHARGE INPUT PERCENT OF CAPACITY

1.6

1.5

1.4

1.3

1.2

1.0

0 40 80 120 160

Relative Pressure

1.1

70

60

50

40

30

20

10

CE

LL T

EM

PE

RA

TU

RE

(C

CE

LL V

OLT

AG

E (

V)

Temperature

Voltage

Tmax

Vmax

dt

OPERATING DESCRIPTION

The MC33340/342 starts up in the fast charge mode whenpower is applied to VCC. A change to the trickle mode canoccur as a result of three possible conditions. The first is ifthe Vsen input voltage is above 2.0 V or below 1.0 V. Above2.0 V indicates that the battery pack is open or disconnected,while below 1.0 V indicates the possibility of a shorted ordefective cell. The second condition is when theMC33340/342 detects a fully charged battery by measuringa negative slope in battery voltage. The MC33340/342recognize a negative voltage slope after the preset holdofftime (thold) has elapsed during a fast charge cycle. Thisindicates that the battery pack is fully charged. The thirdcondition is either due to the battery pack being out of aprogrammed temperature range, or that the preset timerperiod has been exceeded.

There are three conditions that will cause the controller toreturn from trickle to fast charge mode. The first is if the Vseninput voltage moved to within the 1.0 to 2.0 V range frominitially being either too high or too low. The second is if thebattery pack temperature moved to within the programmedtemperature range, but only from initially being too cold.Third is by cycling VCC off and then back on causing theinternal logic to reset. A concise description of the majorcircuit blocks is given below.

Negative Slope Voltage DetectionA representative block diagram of the negative slope

voltage detector is shown in Figure 10. It includes aSynchronous Voltage to Frequency Converter, a SampleTimer, and a Ratchet Counter. The Vsen pin is the input forthe Voltage to Frequency Converter (VFC), and it connectsto the rechargeable battery pack terminals through a

resistive voltage divider. The input has an impedance ofapproximately 6.0 M� and a maximum voltage range of−1.0 V to VCC + 0.6 V or 0 V to 10 V, whichever is lower.The 10 V upper limit is set by an internal zener clamp thatprovides protection in the event of an electrostatic discharge.The VFC is a charge−balanced synchronous type whichgenerates output pulses at a rate of FV = Vsen (24 kHz).

The Sample Timer circuit provides a 95 kHz system clocksignal (SCK) to the VFC. This signal synchronizes the FVoutput to the other Sample Timer outputs used within thedetector. At 1.38 second intervals the Vsen Gate output goeslow for a 33 ms period. This output is used to momentarilyinterrupt the external charging power source so that a precisevoltage measurement can be taken. As the Vsen Gate goeslow, the internal Preset control line is driven high for 11 ms.During this time, the battery voltage at the Vsen input isallowed to stabilize and the previous FV count is preloaded.At the Preset high−to−low transition, the Convert line goeshigh for 22 ms. This gates the FV pulses into the ratchetcounter for a comparison to the preloaded count. Since theConvert time is derived from the same clock that controls theVFC, the number of FV pulses is independent of the clockfrequency. If the new sample has more counts than werepreloaded, it becomes the new peak count and the cycle isrepeated 1.38 seconds later. If the new sample has two fewercounts, a less than peak voltage event has occurred, and aregister is initialized. If two successive less than peakvoltage events occur, the −�V ‘AND’ gate output goes highand the Fast/Trickle output is latched in a low state,signifying that the battery pack has reached full chargestatus.

Page 63: LED Lighting Technologies for a Sustainable Lighting

MC33340, MC33342

http://onsemi.com7

Negative slope voltage detection starts after 60 ms haveelapsed in the fast charge mode. This does not affect theFast/Trickle output until the holdoff time (thold) has elapsedduring the fast charge mode. Two scenarios then exist.Trickle mode holdoff is implemented to ignore any initialdrop in voltage that may occur when charging batteries thathave been stored for an extended time period. If the negativeslope voltage detector senses that initial drop during theholdoff time, and the input voltage rises as the batterycharges, the Fast/Trickle output will remain open. However,if the negative slope voltage detector senses a negative drop

in voltage during the holdoff time and the input voltagenever rises above that last detected level, the Fast/Trickleoutput will latch into a low state. The negative slope voltagedetector has a maximum resolution of 2.0 V divided by1023 mV, or 1.955 mV per count with an uncertainty of±1.0 count. This yields a detection range of 1.955 mV to5.865 mV. In order to obtain maximum sensing accuracy,the R2/R1 voltage divider must be adjusted so that the Vseninput voltage is slightly less than 2.0 V when the battery packis fully charged. Voltage variations due to temperature andcell manufacturing must be considered.

Figure 10. Negative Slope Voltage Detector

VsenInput

SynchronousVoltage toFrequencyConverter

FV = Vsen (24 kHz)

CkC

onve

rt

Pre

set Trickle Mode

Holdoff

Over �UnderTemperature

ChargeTimer

F/TUVLOHighLow

Battery Detect

Logic−�V

SCK

95 kHz

Vsen Gate

Vsen Gate

Preset

Convert

11 ms

1.38 s

22 msRachet Counter Convert

0 to 1023 FV Pulses

RachetCounter

SampleTimer

Fast Charge TimerA programmable backup charge timer is available for fast

charge termination. The timer is activated by the Time/TempSelect comparator, and is programmed from the t1/TrefHigh, t2/Tsen, and t3/Tref Low inputs. If one or more of theseinputs is allowed to go above VCC − 0.7 V or is left open, thecomparator output will switch high, indicating that the timerfeature is desired. The three inputs allow one of sevenpossible fast charge time limits to be selected. Theprogrammable time limits, rounded to the nearest wholeminute, are shown in Table 1.

Over/Under Temperature DetectionA backup over/under temperature detector is available

and can be used in place of the timer for fast chargetermination. The timer is disabled by the Time/Temp Selectcomparator when each of the three programming inputs areheld below VCC − 0.7 V.

Temperature sensing is accomplished by placing anegative temperature coefficient (NTC) thermistor inthermal contact with the battery pack. The thermistorconnects to the t2/Tsen input which has a 30 �A currentsource pull−up for developing a temperature dependentvoltage. The temperature limits are set by a resistor thatconnects from the t1/Tref High and the t3/Tref Low inputs toground. Since all three inputs contain matched 30 �Acurrent source pull−ups, the required programming resistorvalues are identical to that of the thermistor at the desiredover and under trip temperature. The temperature windowdetector is composed of two comparators with a commoninput that connects to the t2/Tsen input.

The lower comparator senses the presence of an undertemperature condition. When the lower temperature limit isexceeded, the charger is switched to the trickle mode. Thecomparator has 44 mV of hysteresis to prevent erratic

Page 64: LED Lighting Technologies for a Sustainable Lighting

MC33340, MC33342

http://onsemi.com8

switching between the fast and trickle modes as the lowertemperature limit is crossed. The amount of temperature riseto overcome the hysteresis is determined by the thermistor’srate of resistance change or sensitivity at the undertemperature trip point. The required resistance change is:

�R(TLow � THigh) �VH(T)

Iin� 44 mV

30 �A� 1.46 k

The resistance change approximates a thermal hysteresisof 2°C with a 10 k� thermistor operating at 0°C. The undertemperature fast charge inhibit feature can be disabled bybiasing the t3/Tref Low input to a voltage that is greater thanthat present at t2/Tsen, and less than VCC − 0.7 V. Underextremely cold conditions, it is possible that the thermistorresistance can become too high, allowing the t2/Tsen inputto go above VCC − 0.7 V, and activate the timer. Thiscondition can be prevented by placing a resistor in parallelwith the thermistor. Note that the time/temperaturethreshold of VCC − 0.7 V is a typical value at roomtemperature. Refer to the Electrical Characteristics tableand to Figure 4 for additional information.

The upper comparator senses the presence of an overtemperature condition. When the upper temperature limit isexceeded, the comparator output sets the OvertemperatureLatch and the charger is switched to trickle mode. Once thelatch is set, the charger cannot be returned to fast charge,even after the temperature falls below the limit. This featureprevents the battery pack from being continuouslytemperature cycled and overcharged. The latch can be reset

by removing and reconnecting the battery pack or by cyclingthe power supply voltage.

If the charger does not require either the time ortemperature backup features, they can both be easilydisabled. This is accomplished by biasing the t3/Tref Lowinput to a voltage greater than t2/Tsen, and by grounding thet1/Tref High input. Under these conditions, the Time/TempSelect comparator output is low, indicating that thetemperature mode is selected, and that the t2/Tsen input isbiased within the limits of an artificial temperature window.

Charging of battery packs that are used in portable powertool applications typically use temperature as the onlymeans for fast charge termination. The MC33340/342 canbe configured in this manner by constantly resetting the −�Vdetection logic. This is accomplished by biasing the Vseninput to≈1.5 V from a two resistor divider that is connectedbetween the positive battery pack terminal and ground. TheVsen Gate output is also connected to the Vsen input. Now,each time that the Sample Timer causes the Vsen output to golow, the Vsen input will be pulled below the undervoltagethreshold of 1.0 V. This causes a reset of the −�V logic every1.38 seconds, thus disabling detection.

Operating LogicThe order of events in the charging process is controlled

by the logic circuitry. Each event is dependent upon the inputconditions and the chosen method of charge termination. Atable summary containing all of the possible operatingmodes is shown in Table 2.

Table 1. FAST CHARGE BACKUP TERMINATION TIME/TEMPERATURE LIMIT

BackupProgramming Inputs

Time LimitBackupTermination

Modet3/Tref Low

(Pin 5)t2/Tsen(Pin 6)

t1/Tref High(Pin 7)

Time LimitFast Charge

(Minutes)

Time Open Open Open 283

Time Open Open GND 247

Time Open GND Open 212

Time Open GND GND 177

Time GND Open Open 141

Time GND Open GND 106

Time GND GND Open 71

Temperature 0 V to VCC − 0.7 V 0 V to VCC − 0.7 V 0 V to VCC − 0.7 V Timer Disabled

Page 65: LED Lighting Technologies for a Sustainable Lighting

MC33340, MC33342

http://onsemi.com9

Table 2. CONTROLLER OPERATING MODE TABLE

Input Condition Controller Operation

Vsen Input Voltage:>1.0 V and <2.0 V

The divided down battery pack voltage is within the fast charge voltage range. The charger switchesfrom trickle to fast charge mode as Vsen enters this voltage range, and a reset pulse is then applied tothe timer and the overtemperature latch.

>1.0 V and <2.0 V withtwo consecutive −�Vevents detected after 160 s

The battery pack has reached full charge and the charger switches from fast to a latched trickle mode.A reset pulse must be applied for the charger to switch back to the fast mode. The reset pulse occurswhen entering the 1.0 V to 2.0 V window for Vsen or when VCC rises above 3.0 V.

<1.0 V or >2.0 V The divided down battery pack voltage is outside of the fast charge voltage range. The chargerswitches from fast to trickle mode.

Timer Backup:Within time limit

The timer has not exceeded the programmed limit. The charger will be in fast charge mode if Vsen andVCC are within their respective operating limits.

Beyond time limit The timer has exceeded the programmed limit. The charger switches from fast to a latchedtrickle mode.

Temperature Backup:Within limits

The battery pack temperature is within the programmed limits. The charger will be in fast charge modeif Vsen and VCC are within their respective operating limits.

Below lower limit The battery pack temperature is below the programmed lower limit. The charger will stay in tricklemode until the lower temperature limit is exceeded. When exceeded, the charger will switch from trickleto fast charge mode.

Above upper limit The battery pack temperature has exceeded the programmed upper limit. The charger switches fromfast to a latched trickle mode. A reset signal must be applied and then released for the charger toswitch back to the fast charge mode. The reset pulse occurs when entering the 1.0 V to 2.0 V windowfor Vsen or when VCC rises above 3.0 V.

Power Supply Voltage:VCC >3.0 V and <18 V

This is the nominal power supply operating voltage range. The charger will be in fast charge mode ifVsen, and temperature backup or timer backup are within their respective operating limits.

VCC >0.6 V and <2.8 V The undervoltage lockout comparator will be activated and the charger will be in trickle mode. A resetsignal is applied to the timer and over temperature latch.

TestingUnder normal operating conditions, it would take

283 minutes to verify the operation of the 34 stage ripplecounter used in the timer. In order to significantly reduce thetest time, three digital switches were added to the circuitryand are used to bypass selected divider stages. Entering eachof the test modes without requiring additional package pinsor affecting normal device operation proved to bechallenging. Refer to the timer functional block diagram inFigure 11.

Switch 1 bypasses 19 divider stages to provide a 524,288times speedup of the clock. This switch is enabled when theVsen input falls below 1.0 V. Verification of the programmedfast charge time limit is accomplished by measuring thepropagation delay from when the Vsen input falls below1.0 V, to when the F/T output changes from a high−to−lowstate. The 71, 106, 141, 177, 212, 247 and 283 will nowcorrespond to 8.1, 12.1, 16.2, 20.2, 24.3, 28.3 and 32.3 msdelays. It is possible to enter this test mode during operationif the equivalent battery pack voltage was to fall below 1.0 V.This will not present a problem since the device wouldnormally switch from fast to trickle mode under these

conditions, and the relatively short variable time delaywould be transparent to the user.

Switch 2 bypasses 11 divider stages to provide a 2048times speedup of the clock. This switch is necessary fortesting the 19 stages that were bypassed when switch 1 wasenabled. Switch 2 is enabled when the Vsen input falls below1.0 V and the t1/Tref High input is biased at −100 mV.Verification of the 19 stages is accomplished by measuringa nominal propagation delay of 338.8 ms from when the Vseninput falls below 1.0 V, to when the F/T output changes froma high−to−low state.

Switch 3 is a dual switch consisting of sections “A” and“B”. Section “A” bypasses 5 divider stages to provide a 32times speedup of the Vsen gate signal that is used in samplingthe battery voltage. This speedup allows faster testverification of two successive −�V events. Section “B”bypasses 11 divider stages to provide a 2048 speedup of thetrickle mode holdoff timer. Switches 3A and 3B are bothactivated when the t1/Tref High input is biased at −100 mVwith respect to Pin 4.

Page 66: LED Lighting Technologies for a Sustainable Lighting

MC33340, MC33342

http://onsemi.com10

Figure 11. Timer Functional Block Diagram

Oscillator760 kHz ÷23 ÷26 ÷23 ÷21 ÷25 ÷28 ÷22 ÷2 ÷2 ÷2 ÷2

NormalTest

Switch 2

211

Switch 3A

25

95 kHzSCK to

Voltage toFrequencyConverter

Fast/Trickle Output

Time and Test Decoder

Each test mode bypass switch is shownin the proper position for normal charger operation.

÷22

t1/TrefHigh

t3/TrefLow

t2/Tsen

Switch 3B

211Switch 1

219

Q Q 22 ms Convert

11 ms Preset

Holdoff Time Signal

D

MC33340MC33342

Figure 12. Line Isolated Linear Regulator Charger

This application combines the MC33340/342 with an adjustable three terminal regulator to form an isolated secondary side battery charger. Regulator IC2operates as a constant current source with R7 setting the fast charge level. The trickle charge level is set by R5. The R2/R1 divider should be adjusted sothat the Vsen input is less than 2.0 V when the batteries are fully charged. The printed circuit board shown below will accept the several TO−220 style heat-sinks for IC2 and are all manufactured by AAVID Engineering Inc.

VCC

UndervoltageLockout

OverTempLatch

BatteryDetect

TempDetect

Time/TempSelect

Vsen

VsenGate

Fast/Trickle

Voltage toFrequencyConverter

−�V DetectCounterTimer

BatteryPack

Internal BiasVCC

VCC

Gnd

QR

S

t1/Tref High

t2/Tsen

t3/Tref Low

7

6

5

8

4

3

2

1

High

Low

VsenGate

F/T

Over

Under

t1

t2

t3

t/T

Ck F/V RDC

Input

D1ChargeStatus

R2

R1

IC1 MC33340 or MC33342

2.0 V

1.0 V

RNTC10 k

R3

R4

SW2

SW1

SW3

2.9 V

30 �A

30 �A

30 �A

0.6 V

C20.1

D3

R51.0 k

1N4002

D2

C10.01

R72.4

R8220

IAdj

R61.8 k

ACLineInput

R2 � R1��VBattVsen

� –�1�

Ichg(fast) �Vref � (IAdj�R8)

R7

Ichg(trickle) �Vin�–�Vf(D3)�–�VBatt

R5

LM317

IC2

D4

Page 67: LED Lighting Technologies for a Sustainable Lighting

MC33340, MC33342

http://onsemi.com11

AAVID # �SA °C/W

592502B03400 24.0

593002B03400 14.0

590302B03600 9.2

Figure 13. Printed Circuit Board and Component Layout(Circuit of Figure 12)

MC33340

2.25″

1.70″C2

(Top View) (Bottom View)

BatteryNegative

RNTC

RNTC

BatteryPositive

InputReturn

InputPositive

R5

R6

R1

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

IC2

IC1

3 2 1

Charge Mode

R3

R2

R8

D2

R7

R4

D3

D4

Input

C1

RNTC

Output

D1

Figure 14. Line Isolated Switch Mode Charger

The MC33340/342 can be combined with any of the devices in the UC3842 family of current mode controllers to form a switch mode battery charger. In thisexample, optocouplers OC1 and OC2 are used to provide isolated control signals to the UC3842. During battery voltage sensing, OC2 momentarily groundsthe Output/Compensation pin, effectively turning off the charger. When fast charge termination is reached, OC1 turns on, and grounds the lower side of R3.This reduces the peak switch current threshold of the Current Sense Comparator to a programmed trickle current level. For additional converter design infor-mation, refer to the UC3842 and UC3844 device family data sheets.

VBattery

Current SenseComparator

ErrorAmplifier

VsenGate

Fast/Trickle

VoltageFeedback

Input

VCC

Gnd 5

3

2

1

VsenGate

F/T

2RR2

R11.0 V

1.0 mA

UC3842 Series

Output/Compensation

R

Primary Circuitry

Secondary Circuitry

Isolation Boundary

MC33340 or MC33342

Gnd 4

2

OC2

OC1R3

Page 68: LED Lighting Technologies for a Sustainable Lighting

MC33340, MC33342

http://onsemi.com12

Figure 15. Switch Mode Fast Charger

The MC33340/342 can be used to control the MC34166 or MC34167 power switching regulators to produce an economical and efficient fast charger. Thesedevices are capable of operating continuously in current limit with an input voltage range of 7.5 to 40 V. The typical charging current for the MC34166 andMC34167 is 4.3 A and 6.5 A respectively. Resistors R2 and R1 are used to set the battery pack fast charge float voltage. If precise float voltage control is notrequired, components R1, R2, R3 and C1 can be deleted, and Pin 1 must be grounded. The trickle current level is set by resistor R4. It is recommended thata redundant charge termination method be employed for end user protection. This is especially true for fast charger systems. For additional converter designinformation, refer to the MC34166 and MC34167 data sheets.

Q

S

R

VsenGate

Fast/Trickle

3

VsenGate

F/T

MC33340/342

Gnd 4

2

ACLineInput

MC34166 or MC34167

OSC

PWM

Thermal

ILimitVCC

4

2

1

SwitchOutput

+

R4

R2VoltageFeedbackInput

BatteryPack

EA

Ref

UVLO

Gnd 3 Compensation 5

C1 R3R1

ORDERING INFORMATION

Device Package Shipping †

MC33340D SO−8 98 Units / Rail

MC33340DG SO−8(Pb−Free)

98 Units / Rail

MC33340DR2 SO−8 2500 / Tape & Reel

MC33340DR2G SO−8(Pb−Free)

2500 / Tape & Reel

MC33340P PDIP−8 1000 Units / Rail

MC33340PG PDIP−8(Pb−Free)

1000 Units / Rail

MC33342D SO−8 98 Units / Rail

MC33342DR2 SO−8 2500 / Tape & Reel

MC33342P PDIP−8 1000 Units / Rail

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel PackagingSpecifications Brochure, BRD8011/D.

Page 69: LED Lighting Technologies for a Sustainable Lighting

MC33340, MC33342

http://onsemi.com13

PACKAGE DIMENSIONS

PDIP−8P SUFFIX

CASE 626−05ISSUE L

NOTES:1. DIMENSION L TO CENTER OF LEAD WHEN

FORMED PARALLEL.2. PACKAGE CONTOUR OPTIONAL (ROUND OR

SQUARE CORNERS).3. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.

1 4

58

F

NOTE 2 −A−

−B−

−T−SEATINGPLANE

H

J

G

D K

N

C

L

M

MAM0.13 (0.005) B MT

DIM MIN MAX MIN MAX

INCHESMILLIMETERS

A 9.40 10.16 0.370 0.400

B 6.10 6.60 0.240 0.260

C 3.94 4.45 0.155 0.175

D 0.38 0.51 0.015 0.020

F 1.02 1.78 0.040 0.070

G 2.54 BSC 0.100 BSC

H 0.76 1.27 0.030 0.050

J 0.20 0.30 0.008 0.012

K 2.92 3.43 0.115 0.135

L 7.62 BSC 0.300 BSC

M −−− 10 −−− 10

N 0.76 1.01 0.030 0.040� �

Page 70: LED Lighting Technologies for a Sustainable Lighting

MC33340, MC33342

http://onsemi.com14

PACKAGE DIMENSIONS

SO−8CASE 751−07

ISSUE AB

RECOMMENDED FOOTPRINT

1.520.060

7.00.275

0.60.024

1.2700.050

4.00.155

� mminches

�SCALE 6:1

SEATINGPLANE

1

4

58

N

J

X 45�

K

NOTES:1. DIMENSIONING AND TOLERANCING PER

ANSI Y14.5M, 1982.2. CONTROLLING DIMENSION: MILLIMETER.3. DIMENSION A AND B DO NOT INCLUDE

MOLD PROTRUSION.4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)

PER SIDE.5. DIMENSION D DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.127 (0.005) TOTALIN EXCESS OF THE D DIMENSION ATMAXIMUM MATERIAL CONDITION.

6. 751−01 THRU 751−06 ARE OBSOLETE. NEWSTANDARD IS 751−07.

A

B S

DH

C

0.10 (0.004)

DIMA

MIN MAX MIN MAXINCHES

4.80 5.00 0.189 0.197

MILLIMETERS

B 3.80 4.00 0.150 0.157C 1.35 1.75 0.053 0.069D 0.33 0.51 0.013 0.020G 1.27 BSC 0.050 BSCH 0.10 0.25 0.004 0.010J 0.19 0.25 0.007 0.010K 0.40 1.27 0.016 0.050M 0 8 0 8 N 0.25 0.50 0.010 0.020S 5.80 6.20 0.228 0.244

−X−

−Y−

G

MYM0.25 (0.010)

−Z−

YM0.25 (0.010) Z S X S

M

� � � �

*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering andMounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further noticeto any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liabilityarising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. Alloperating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rightsnor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applicationsintended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. ShouldBuyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or deathassociated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an EqualOpportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATIONN. American Technical Support : 800−282−9855 Toll FreeUSA/Canada

Japan : ON Semiconductor, Japan Customer Focus Center2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051Phone : 81−3−5773−3850

MC33340/D

LITERATURE FULFILLMENT :Literature Distribution Center for ON SemiconductorP.O. Box 61312, Phoenix, Arizona 85082−1312 USAPhone : 480−829−7710 or 800−344−3860 Toll Free USA/CanadaFax: 480−829−7709 or 800−344−3867 Toll Free USA/CanadaEmail : [email protected]

ON Semiconductor Website : http://onsemi.com

Order Literature : http://www.onsemi.com/litorder

For additional information, please contact yourlocal Sales Representative.

Page 71: LED Lighting Technologies for a Sustainable Lighting

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.