Lecture2.BulkMicromachining

  • Upload
    m3us

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

  • 8/11/2019 Lecture2.BulkMicromachining

    1/23

    U. Srinivasan

    EE

    C245

    Dr. Thara Srinivasan

    Lecture 2

    MEMS Fabrication I

    Process Flows and Bulk

    Micromachining

    Picture credit: Alien Technology

    U. Srinivasan

    EE

    C245

    Lecture Outline

    Reading Reader is in! (at South side Copy Central) Kovacs, Bulk Micromachining of Silicon, pp. 1536-43. Williams, Etch Rates for Micromachining Processing, pp.

    256-60. Senturia, Chapter 3, Microfabrication.

    Todays Lecture Tools Needed for MEMS Fabrication Photolithography Review Crystal Structure of Silicon Bulk Silicon Etching Techniques

  • 8/11/2019 Lecture2.BulkMicromachining

    2/23

    U. Srinivasan

    EE

    C245

    IC Processing

    Cross-section

    Jaeger

    Masks Cross-section Masks

    N-type Metal Oxide Semiconductor

    (NMOS) process flow

    U. Srinivasan

    EE

    C245

    CMOS Processing

    Processing steps Oxidation

    Photolithography

    Etching

    Chemical VaporDeposition

    Diffusion

    Ion Implantation

    Evaporation andSputtering

    Epitaxy

    Complementary Metal-Oxide-SemiconductorJaeger

    deposit

    patternetch

  • 8/11/2019 Lecture2.BulkMicromachining

    3/23

    U. Srinivasan

    EE

    C245

    MEMS Devices

    Staple

    Polysilicon level 2

    Polysilicon level 1

    Silicon substrate

    Polysilicon level 1

    Polysilicon level 2

    Hinge staple

    Plate

    Silicon substrate

    Support arm

    Prof. Kris Pister

    U. Srinivasan

    EE

    C245

    MEMS Devices

    Microoptomechanicalswitches, Lucent

    Analog Devices

    Integratedaccelerometer Microturbine, Schmidt group MIT

    Thermally isolated RMSconverter Reay et al.

    Caliper

  • 8/11/2019 Lecture2.BulkMicromachining

    4/23

    U. Srinivasan

    EE

    C245

    MEMS Processing Unique to MEMS fabrication

    Sacrificial etching Mechanical properties critical Thicker films and deep etching Etching into substrate Double-sided lithography 3-D assembly Wafer-bonding Molding Integration with electronics, fluidics

    Unique to MEMS packaging and testing

    Delicate mechanical structures Packaging: before or after dicing? Sealing in gas environments

    Interconnect - electrical, mechanical, fluidic Testing electrical, mechanical, fluidic

    Package

    Dice

    Release

    sacrificial layerstructural layer

    U. Srinivasan

    EE

    C245

    Photolithography:

    Masks and Photoresist

    dark-fieldlight-field

    Photolithography steps Photoresist spinnning, 1-10 m spin coating

    Optical exposure through a photomask

    Developing to dissolve exposed resist

    Bake to drive off solvents

    Remove using solvents (acetone) or O2 plasma

    Photomasks Layout generated from CAD file Mask reticle: chrome or emulsion on fused silica 1-3 $k

  • 8/11/2019 Lecture2.BulkMicromachining

    5/23

    U. Srinivasan

    EE

    C245

    Photoresist Application

    Spin-casting photoresist Polymer resin, sensitizer, carriersolvent

    Positive and negative photoresist

    Thickness depends on Concentration Viscosity Spin speed Spin time

    www.brewerscience.com

    U. Srinivasan

    EE

    C245

    Photolithography Tools

    Contact or proximity Resolution: Contact - 1-2 m,

    Proximity - 5 m

    Depth of focus poor

    Projection Reduce 5-10, stepper mode Resolution - 0.5 (/NA) ~ 1 m

    Depth of focus ~ Few ms

    Double-sided lithography Make alignment marks on both sides of wafer Use IR imaging to see through to back side Store image of front side marks; align to back

  • 8/11/2019 Lecture2.BulkMicromachining

    6/23

    U. Srinivasan

    EE

    C245

    Materials for MEMS

    Substrates Silicon

    Glass

    Quartz

    Thin Films Polysilicon

    Silicon Dioxide,Silicon Nitride

    Metals Polymers

    Wolf and Tauber

    Silicon crystal structure = 5.43

    U. Srinivasan

    EE

    C245

    Silicon Crystallography

    Miller Indices (h k l) Planes

    Reciprocal of plane intercepts with axes Intercepts of normal to plane with plane (unique), {family}

    Directions Move one endpoint to origin [unique],

    x x x

    yy y

    z z z

    (100) (110) (111)

    {111}

    [001]

    [100]

    [010]

    (110)

  • 8/11/2019 Lecture2.BulkMicromachining

    7/23

    U. Srinivasan

    EE

    C245

    Silicon Crystallography

    Angles between planes, between [abc] and [xyz] given by:

    ax+by+cz = |(a,b,c)|*|(x,y,z)|*cos()

    {100} and {110} 45 {100} and {111} 54.74 {110} and {111} 35.26, 90 and 144.74

    0 1/2 0

    0 1/2 0

    3/41/4

    1/43/4

    01/2 1/2

    ))3)(1/()001((1

    )111(),100( ++=

    Cos

    U. Srinivasan

    EE

    C245

    Silicon Crystal Origami

    Silicon fold-up cube Adapted from Profs. KrisPister and Jack Judy

    Print onto transparency

    Assemble inside out

    Visualize crystal planeorientations, intersections,and directions

    {111}(111)

    {111}(111)

    {111}(111)

    {111}(111)

    {111}(111)

    {111}(111)

    {111}(111)

    {111}(111)

    {100}(100)

    {110}

    (110)

    {100}(010)

    {110}(011)

    {110}(011)

    {110}

    (110)

    {110}

    (110)

    {100}(010)

    {110}(011)

    {110}(011)

    {110}

    (110)

    {110}(101)

    {100}(001)

    {100}(100)

    {110}(101)

    {110}(101)

    {100}(001)

    {110}(101)

    [ 01 0] [ 01 0]

    [001]

    [001]

    [100][100]

    [101][101]

    [011][011]

    [110][110]

    Judy, UCLA

    Judy

  • 8/11/2019 Lecture2.BulkMicromachining

    8/23

    U. Srinivasan

    EE

    C245

    Silicon Wafers

    Location of primaryand secondary flatsshows Crystal orientation Doping, n- or p-type

    Maluf

    U. Srinivasan

    EE

    C245

    Mechanical Properties of Silicon

    Crystalline silicon is a hard and brittle material thatdeforms elastically until it reaches its yield strength,at which point it breaks. Tensile yield strength = 7 GPa (~1500 lb suspended from 1

    mm)

    Youngs Modulus near that of stainless steel {100} = 130 GPa; {110} = 169 GPa; {111} = 188 GPa

    Mechanical properties uniform, no intrinsic stress

    Mechanical integrity up to 500C

    Good thermal conductor, low thermal expansion coefficient

    High piezoresistivity

  • 8/11/2019 Lecture2.BulkMicromachining

    9/23

    U. Srinivasan

    EE

    C245

    What is Bulk

    Micromachining?

    U. Srinivasan

    EE

    C245

    Bulk Etching of Silicon

    Etching modes Isotropic vs. anisotropic Reaction-limited

    Etch rate dependent on temperature

    Diffusion-limited Etch rate dependent on mixing

    Also dependent on layout and

    geometry, loading

    Choosing a method Desired shapes Etch depth and uniformity Surface roughness Process compatibility Safety, cost, availability,

    environmental impact

    adsorption desorptionsurfacereaction

    slowest step controls

    rate of reaction

    Maluf

  • 8/11/2019 Lecture2.BulkMicromachining

    10/23

    U. Srinivasan

    EE

    C245

    Wet Etch Variations, Crystalline Si

    Etch rate variation due to wet etch set-up Loss of reactive species through consumption Evaporation of liquids Poor mixing (etch product blocks diffusion of reactants) Contamination Applied potential Illumination

    Etch rate variation due to material being etched Impurities/dopants

    Etch rate variation due to layout

    Distribution of exposed area ~ loading Structure geometry

    U. Srinivasan

    EE

    C245

    Anisotropic Etching of Silicon

    Etching of Si with KOHSi + 2OH- Si(OH)2

    2+ + 4e-

    4H2O + 4e- 4(OH) - + 2H2

    Maluf

    Crystal orientation relative etchrates {110}:{100}:{111} = 600:400:1

    {111} plane has three of its bondsbelow the surface

    {111} may form protective oxidequickly

    {111} smoother than other crystalplanes

  • 8/11/2019 Lecture2.BulkMicromachining

    11/23

    U. Srinivasan

    EE

    C245

    KOH Etch Conditions

    1 KOH : 2 H2O (wt.), stirred bath @ 80C

    Si (100) 1.4 m/min Etch masks Si3N4 0 SiO2 1-10 nm/min Photoresist, Al ~ fast

    Micromasking by H2 bubbles leads to roughness Stirring displaces bubbles Oxidizer, surfactant additives

    Maluf

    U. Srinivasan

    EE

    C245

    Undercutting

    Convexcornersbounded by{111} planesare attacked

    Maluf

    Ristic

  • 8/11/2019 Lecture2.BulkMicromachining

    12/23

    U. Srinivasan

    EE

    C245

    Undercutting

    Convexcornersbounded by{111} planesare attacked

    U. Srinivasan

    EE

    C245

    Corner Compensation

    Protect corners with compensationareas in layout

    Mesa array for self-assembly teststructures, Smith and coworkers (1995)

    Alien TechnologyHadley

    Chang

  • 8/11/2019 Lecture2.BulkMicromachining

    13/23

    U. Srinivasan

    EE

    C245

    Corner Compensation

    Self-assembly microparts,Alien Technology

    U. Srinivasan

    EE

    C245

    Other Anisotropic Etchants

    TMAH, Tetramethyl ammonium hydroxide, 10-40 wt.% (90C) Etch rate (100) = 0.5-1.5 m/min Al safe, IC compatible Etch ratio (100)/(111) = 10-35 Etch masks: SiO2 , Si3N4 ~ 0.05-0.25 nm/min Boron doped etch stop, up to 40 slower

    EDP (115C) Carcinogenic, corrosive Etch rate (100) = 0.75 m/min Al may be etched R(100) > R(110) > R(111) Etch ratio (100)/(111) = 35 Etch masks: SiO2 ~ 0.2 nm/min, Si3N4 ~ 0.1 nm/min Boron doped etch stop, 50 slower

  • 8/11/2019 Lecture2.BulkMicromachining

    14/23

    U. Srinivasan

    EE

    C245

    Boron-Doped Etch Stop

    Control etch depth precisely withboron doping (p++) [B] > 1020 cm-3 reduces KOH etch

    rate by 20-100 Gaseous or solid boron diffusion At high dopant level, injected

    electrons recombine with holes invalence band and are unavailable forreactions to give OH-

    Results Beams, suspended films

    1-20 m layers possible p++ not compatible with CMOS Buried p++ compatible

    U. Srinivasan

    EE

    C245

    Micronozzle

    Maluf

  • 8/11/2019 Lecture2.BulkMicromachining

    15/23

    U. Srinivasan

    EE

    C245

    Microneedles

    Ken Wise group,

    University of Michigan

    U. Srinivasan

    EE

    C245

    Microneedles

    Wise group,

    University of Michigan

  • 8/11/2019 Lecture2.BulkMicromachining

    16/23

    U. Srinivasan

    EE

    C245

    Microneedles

    Wise group,

    University of Michigan

    U. Srinivasan

    EE

    C245

    Electrochemical Etch Stop

    Electrochemical etch stop n-type epitaxial layer grown on p-type wafer forms p-n diode

    p > n electrical conduction

    p < n reverse bias current

    Passivation potential potential at which thin SiO2 layerforms, different for p- and n-Si

    Set-up p-n diode in reverse bias

    p-substrate floating etched

    n-layer above passivationpotential not etched

    Maluf

  • 8/11/2019 Lecture2.BulkMicromachining

    17/23

    U. Srinivasan

    EE

    C245

    Electrochemical etching on preprocessed CMOS wafers N-type Si well with circuits suspended from SiO2 support beam

    Thermally and electrically isolated

    TMAH etchant, Al bond pads safe

    Electrochemical Etch Stop

    Reay et al. (1994)

    Kovacs group, Stanford U.

    U. Srinivasan

    EE

    C245

    Pressure Sensors Bulk micromachined pressure

    sensors Piezoresistivity change in

    electrical resistance due tomechanical stress

    In response to pressure load onthin Si film, piezoresistiveelements change resistance

    Membrane deflection < 1 m

    Maluf

    n-typeepilayer,p-typesubstrate

    (111)

    R1R3

    Bondpad(100) Sidiaphragm

    P-type diffusedpiezoresistor

    n-typeepitaxiallayer

    Metalconductors

    AnodicallybondedPyrexsubstrate

    Etchedcavity

    Backsideport

    (111)

    R2 R1

    R3

    Depositinsulator

    Diffusepiezoresistors

    Deposit &pattern metal

    Electrochemicaletch of backsidecavity

    Anodicbondingof glass

  • 8/11/2019 Lecture2.BulkMicromachining

    18/23

    U. Srinivasan

    EE

    C245

    Only 150 400 900 m3

    Pressure Sensors

    Catheter-tippressure sensor,Lucas NovaSensor

    U. Srinivasan

    EE

    C245

    Isotropic Etching of Silicon

    HNA: hydrofluoric acid (HF),nitric acid (HNO3) and acetic(CH3COOH) or water HNO3 oxidizes Si to SiO2 HF converts SiO2 to soluble

    H2SiF6 Acetic prevents dissociation of

    HNO3

    Etch masks SiO2 etched at 30-80 nm/min

    Nonetching Au or Si3N4

    Robbins

    pure HNO3diffusion-limited

    pure HFreaction-limited

  • 8/11/2019 Lecture2.BulkMicromachining

    19/23

    U. Srinivasan

    EE

    C245

    5% (49%) HF : 80% (69%) HNO3 : 15% H2O (by volume) Half-circular channels for chromatography

    Etch rate 0.8-1 m/min

    Surface roughness 3 nm

    Isotropic Etching Examples

    Pro and Con Easy to mold from rounded channels

    Etch rate and profile are highly agitation sensitive

    Tjerkstra, 1997

    U. Srinivasan

    EE

    C245

    Dry Etching of Silicon

    e - + CF4 CF3+ + F + 2e-

    Dry etching Plasma phase

    Vapor phase

    Parameters Gas and species generated ~

    ions, radicals, photons

    RF frequency, 13.56 MHz

    RF power, 10s to 1000s W Pressure, mTorr >100 Torr

    sheath

  • 8/11/2019 Lecture2.BulkMicromachining

    20/23

    U. Srinivasan

    EE

    C245

    Plasma Etching of Silicon

    Crystalline silicon Etch gases ~ fluorine, chlorine-

    based Reactive species ~ F, Cl, Cl2 Products ~ SiF4, SiCl4

    Plasma phase etching processes Sputtering

    Physical, nonselective, faceted

    Plasma etching Chemical, selective, isotropic

    Reactive ion etching (RIE) Physical and chemical, fairly selective,

    directional

    Inductively-coupled RIE Physical and chemical, fairly selective,

    directional

    (physical)

    U. Srinivasan

    EE

    C245

    Deep reactive ion etching (DRIE) withinhibitor film Inductively-coupled plasma

    Bosch method for anisotropic etching,1.5 - 4 m/min

    Etch cycle (5-15 s)

    SF6 (SFx+) etches Si

    Deposition cycle (5-15 s)

    C4F8 deposits fluorocarbon protectivepolymer (-CF2-)n

    Etch mask selectivity: SiO2 ~ 200:1,photoresist ~ 100:1

    Sidewall roughness: scalloping < 50 nm

    Sidewall angle: 90 2

    High-Aspect-Ratio Plasma Etching

    Maluf

  • 8/11/2019 Lecture2.BulkMicromachining

    21/23

  • 8/11/2019 Lecture2.BulkMicromachining

    22/23

  • 8/11/2019 Lecture2.BulkMicromachining

    23/23

    U. Srinivasan

    EE

    C245

    Etching with Xenon Difluoride

    Post processed CMOS inductor

    Pister group

    U. Srinivasan

    EE

    C245

    Laser-Driven Etching

    Laser-Assisted Chemical Etching Laser creates Cl radicals from Cl2; Si

    converts to SiCl4.

    Etch rate: 100,000 m3/s; 3 min toetch 500500125 m3 trench

    Surface roughness: 30 nm RMS

    Serial process: patterned directlyfrom CAD file

    Revise, Inc.

    Laser-assisted etchingof a 500500 m2

    terraced silicon well.Each step is 6 mdeep.