Lecture1 Intro Overview

Embed Size (px)

Citation preview

  • 7/29/2019 Lecture1 Intro Overview

    1/66

    EE402

    EE 402Introduction to VLSI Design

    Prof. Youngmin Kim

    ECE, UNIST2013, 1st

  • 7/29/2019 Lecture1 Intro Overview

    2/66

    EE402

    OutlineLogisticsWhat I expect you to learn in this classCMOS processing sequence

    2

  • 7/29/2019 Lecture1 Intro Overview

    3/66

    EE402

    Logistics Instructor: Prof. Youngmin Kim

    l Email: [email protected] Office: EB2, 401-1l Phone: +2115l Office hour: Tue. & Thu. 10:00 ~ 12:00 AM (Other time available by appointment)

    Textbookl Digital Integrated Circuits: A Design Perspective, 2nd edition by Rabaey, Chandrakasan, and

    Nikolic References

    l N. Weste and D. Harris, "CMOS VLSI Design: A Circuits and Systems Perspective, 3rd edition",Addison-Wesley, 2005.

    l "Design of High-Performance Microprocessor Circuits", edited by A. Chandrakasan, W. Bowhill,and F. Fox, IEEE Press, 2001.

    l D.A. Hodges, H.G. Jackson, and R.A. Saleh, "Analysis and Design of Digital Integrated Circuits inDeep Submicron Technology", 3rd edition, McGraw Hill, 2004.

    Lecture note will be posted online shortly before class sessions Supplement handouts

    3

  • 7/29/2019 Lecture1 Intro Overview

    4/66

    EE402

    Text Book

    4

    Digital Integrated CircuitsA Design Perspective

    Jan M. Rabaey

    Anantha ChandrakasanBorivoje Nikolic

  • 7/29/2019 Lecture1 Intro Overview

    5/66

    EE402

    Course SetupTwo 125 min lectures (Tue. & Thu. 1:00~3:05) @ EB2 T-206Prerequisite: Logic design, circuit theory, electronic

    devices, computer architecture, and etc

    No fixed discussion sessionl TA: Yesung Kang (), @ EB2 402 for CAD supports

    HWs & CAD assignmentsl Roughly bi-weekly, 4~5 CAD assignmentsl Custom IC design methodologies

    - Circuit design, layout, simulations, and logic design (Verilog HDL)- LVS and DRC- Etc.

    5

  • 7/29/2019 Lecture1 Intro Overview

    6/66

    EE402

    Grading BreakdownHW + CAD assignments: 30% (5+)Midterm Exam: 20%Final Exam: 30%Final Project and Report: 20%

    CAD late policy: 25% penalty within 24 hours, 50% 24~48hours, no point after 48 hours (2 days)

    6

  • 7/29/2019 Lecture1 Intro Overview

    7/66EE402

    What you will learn in this class The entire process of very large-scale digital design (ASIC)

    l Custom integrated circuit layoutl Sub-system design such as adders, register files, program counters, etc.l Synthesis + automated place/route design flow (?)

    Advanced circuit design topics such as:l Multipliers, pulsed latches, memory decoder and sense amplifiers, etc.l Current technology issuesl Process variationsl Robust designl SRAMl Power and performance optimizationl Timingl Your interests and etc

    7

  • 7/29/2019 Lecture1 Intro Overview

    8/66EE402

    Research Area (NanoDA: Nano-System Design & Automation) Very Large Scale Integration (VLSI)

    l Ex., >1 billion transistors in Intels 32nm Computer Aided Design (CAD)

    l Efficient and inevitable way of design in VLSIl Still require human (custom) design in certain area

    45nm = 45*10-9m = 0.000000045m

    Human hair: 50um ~ 100um (x1000)4.5cm

    12~30cm

    270mm2

    8

  • 7/29/2019 Lecture1 Intro Overview

    9/66EE402

    The latest IC news

    9

    8 cores Beckton die

    45nm Intel Xeon~ 2.26GHz, 130W$3,692

    Phoenix

    mm-scale all-in-one computer5nW !! powerEye pressure sensor

  • 7/29/2019 Lecture1 Intro Overview

    10/66EE402

    Transistors

    10

  • 7/29/2019 Lecture1 Intro Overview

    11/66EE402

    Recent Devices

    11

  • 7/29/2019 Lecture1 Intro Overview

    12/66

    EE402

    More Recent Devices

    12

  • 7/29/2019 Lecture1 Intro Overview

    13/66

    EE402

    More Recent Devices

    13

    SOI (Silicon On Insulator)

    High speed, low power

  • 7/29/2019 Lecture1 Intro Overview

    14/66

    EE402

    Sub-5nm FinFET

    14

  • 7/29/2019 Lecture1 Intro Overview

    15/66

    EE402

    FinFET Conducting channel is wrapped by a thin silicon "fin", which forms the

    gate of the device.

  • 7/29/2019 Lecture1 Intro Overview

    16/66

    EE402

    Leakage Reduced

    Why FinFET?Reduced Short Channel Effect Increase driving current high performanceBetter leakage current control low powerGood for low voltage (power) applicationsCompatible with current CMOS manufacturing and many more

  • 7/29/2019 Lecture1 Intro Overview

    17/66

    EE402

    Carbon-based Transistors

    17

  • 7/29/2019 Lecture1 Intro Overview

    18/66

    EE402

    Major Bottlenecks Researches Managing complexity

    l How to design a 10 billion transistor chip?l And what to use all these transistors for?l Mask complexity (e.g., OPC, double exposure, etc)

    Cost of integrated circuits is increasingl It takes >$10M to design a chip, >$100M in 1~2 years (e.g., Snapdragon ~ $60M)l Mask costs are more than $3M in 45nm technology

    The end of frequency scaling - Power as a limiting factorl Multi-core in a chip (e.g., dual, quad, 6, 8 cores, etc)l Beyond CMOS (?) after

  • 7/29/2019 Lecture1 Intro Overview

    19/66

    EE402

    CMOS Process

    19

    N-well LOCOS isolated CMOS process

  • 7/29/2019 Lecture1 Intro Overview

    20/66

    EE402

    Circuit Under Design and Layout View

    20

    Vin Vout Vout2

    VDD

    VSS

  • 7/29/2019 Lecture1 Intro Overview

    21/66

    EE402

    The First Computer

    21

    Use decimal

    The BabbageDifference Engine

    (1832)25,000 parts17,470 (in1834!)

  • 7/29/2019 Lecture1 Intro Overview

    22/66

    EE402

    ENIAC - The first electronic computer (1946)

    22

    Still decimal, ~18,000 vacuum tubes, 63m2, 150kW

  • 7/29/2019 Lecture1 Intro Overview

    23/66

    EE402

    The Transistor Revolution

    23

    First transistor

    Bell Labs, 1948

  • 7/29/2019 Lecture1 Intro Overview

    24/66

    EE402

    The First Integrated Circuits (IC)

    24

    Bipolar logic

    1960s

    ECL 3-input Gate

    Motorola 1966

    1stIC by J. Kilby@TI, 1958

  • 7/29/2019 Lecture1 Intro Overview

    25/66

    EE402

    Intel 4004 Micro-Processor

    25

    1971~1981

    4bit CPU10um pMOS only2300 transistors

  • 7/29/2019 Lecture1 Intro Overview

    26/66

    EE402

    Modern microprocessors

    26

    Pentium 4

    180nm~65nm tech.~ 3.8GHz, ~125 mil. Trs.112mm2, 115W TDP (Thermal Design Power)LGA (Land Grid Array) 775

    Core i7

    45nm & 32nm tech.~ 3.47GHz, 731 mil. Trs.263mm2 , 18 ~ 130W TDPLGA 1366

  • 7/29/2019 Lecture1 Intro Overview

    27/66

    EE402

    Moores Law

    27

    In 1965, Gordon Moore noted that thenumber of transistors on a chip (or die)doubled every 18 to 24 months. (2 yrs 18 mon.)

    He made a prediction thatsemiconductor technology will double itseffectiveness (e.g., tr #) every 18 months

  • 7/29/2019 Lecture1 Intro Overview

    28/66

    EE402

    Moores Law

    28

    Electronics, April 19, 1965.

  • 7/29/2019 Lecture1 Intro Overview

    29/66

    EE402

    Evolution in Complexity

    29

  • 7/29/2019 Lecture1 Intro Overview

    30/66

    EE402 30

    Courtesy, Intel

  • 7/29/2019 Lecture1 Intro Overview

    31/66

    EE402

    Moores law in Microprocessors

    31

    40048008

    80808085 8086

    286386

    486Pentium proc

    P6

    0.001

    0.01

    0.1

    1

    10

    100

    1000

    1970 1980 1990 2000 2010Year

    Transisto

    rs(MT)

    2X growth in 1.96 years!

    Transistors on Lead Microprocessors double every 2 years

    Courtesy, Intel

  • 7/29/2019 Lecture1 Intro Overview

    32/66

    EE402

    Die Size Growth

    32

    40048008

    80808085

    8086286386

    486Pentium procP6

    1

    10

    100

    1970 1980 1990 2000 2010Year

    Dies

    ize(mm)

    ~7% growth per year

    ~2X growth in 10 years

    Die size grows by 14% to satisfy Moores Law

    Courtesy, Intel

  • 7/29/2019 Lecture1 Intro Overview

    33/66

    EE402

    Frequency

    33

    Lead Microprocessors frequency doubles every 2 years

    But, not true anymore !

    P6

    Pentium proc486

    386286

    8086

    8085

    8080

    80084004

    0.1

    1

    10

    100

    1000

    10000

    1970 1980 1990 2000 2010

    Year

    Frequency(Mhz)

    Doubles every2 years

    Courtesy, Intel

  • 7/29/2019 Lecture1 Intro Overview

    34/66

    EE402

    Power Dissipation

    34

    P6Pentium proc

    486

    3862868086

    808580808008

    4004

    0.1

    1

    10

    100

    1971 1974 1978 1985 1992 2000Year

    Pow

    er(Watts)

    Lead Microprocessors power continues to increase

    Courtesy, Intel

  • 7/29/2019 Lecture1 Intro Overview

    35/66

    EE402

    Power density

    35

    400480088080

    8085

    8086

    286386

    486Pentium proc

    P6

    1

    10

    100

    1000

    10000

    1970 1980 1990 2000 2010Year

    PowerDensity(W/cm2)

    Hot Plate

    Nuclear

    Reactor

    RocketNozzle

    Power density too high to keep junctions at low temp

    Courtesy, Intel

  • 7/29/2019 Lecture1 Intro Overview

    36/66

    EE402

    Not Only Microprocessors

    36

    Digital Cellular Market

    (Phones Shipped)

    1996 1997 1998 1999 2000

    Units 48M 86M 162M 260M 435MAnalog

    Baseband

    Digital Baseband

    (DSP + MCU)

    Power

    Management

    SmallSignal RF

    PowerRF

    (data from Texas Instruments)

    CellPhone

  • 7/29/2019 Lecture1 Intro Overview

    37/66

    EE402

    Challenges in Digital Design

    37

    Microscopic Problems

    Ultra-high speed designInterconnect Noise, Crosstalk Reliability, Manufacturability

    Power Dissipation

    Clock distribution.

    Everything Looks a Little Different

    Macroscopic Issues Time-to-Market Millions of Gates

    High-Level Abstractions Reuse & IP: Portability

    Predictability

    etc.

    and Theres a Lot of Them!

    DSM 1/DSM

    ?

  • 7/29/2019 Lecture1 Intro Overview

    38/66

    EE402

    Why Scaling?

    Technology shrinks by 0.7/generation (49% smaller area)With every generation can integrate 2x more functions

    per chip; chip cost does not increase significantly

    Cost of a function decreases by 2xBut

    l How to design chips with more and more functions?l Design engineering population does not double every two

    years

    Hence, a need for more efficient design methodsl Exploit different levels ofabstractionl Divide-and-conquerl CAD

    38

  • 7/29/2019 Lecture1 Intro Overview

    39/66

    EE402

    Design Abstraction Levels

    39

    n+n+S

    GD

    +

    DEVICE

    CIRCUIT

    GATE

    MODULE

    SYSTEM

  • 7/29/2019 Lecture1 Intro Overview

    40/66

    EE402

    Design Metrics

    How to evaluate performance (quality) of a digitalcircuit (gate, block, )?

    lCost: Mass productionl

    Reliability: Military or MedicallScalabilitylSpeed (delay, operating frequency): serverlPower dissipation: handheld deviceslEnergy to perform a function

    40

    Cost of Integrated Circuits

  • 7/29/2019 Lecture1 Intro Overview

    41/66

    EE402

    Cost of Integrated Circuits

    NRE (non-recurrent engineering) costs: fixedl design time and effort, mask generation T/Ol one-time cost factorl Depends on the complexity of the design, the spec. and designersl + R&D costs

    Recurrent costs: variablel Silicon manufacturing processing, packaging, testl proportional to volumel proportional to chip area

    = / + /41

  • 7/29/2019 Lecture1 Intro Overview

    42/66

    EE402

    NRE Cost is Increasing

    42

    IC design costs for many devices are projected to hit the dreaded $100million level within the next three years. Not long ago (and even today), ICdesign costs ranged between $20-to-$50 millionMentor CEO, EETimes, 3/2/2010

    Di C t

  • 7/29/2019 Lecture1 Intro Overview

    43/66

    EE402

    Die Cost

    Single die

    43

    Wafer

    From http://www.amd.com

    Going up to 12 (30cm)775um thickness

    Cost per Transistor

  • 7/29/2019 Lecture1 Intro Overview

    44/66

    EE402

    Cost per Transistor

    44

    0.0000001

    0.000001

    0.00001

    0.0001

    0.001

    0.01

    0.1

    1

    1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012

    cost:-per-transistor

    Fabrication capital cost per transistor (Moores law)

  • 7/29/2019 Lecture1 Intro Overview

    45/66

    EE402

    Yield

    45

    %100

    per waferchipsofnumberTotal

    per waferchipsgoodofNo.=Y

    yieldDieper waferDies

    costWafercostDie

    =

    ( )

    areadie2

    diameterwafer

    areadie

    diameter/2wafer

    per waferDies

    2

    =

  • 7/29/2019 Lecture1 Intro Overview

    46/66

    EE402

    Defects

    46

    processingmanufacturofcomplexityiswhere,

    areadieareaunitperdefects1yielddie

    +=

    is approximately 3 ( ~ # of masks)Defects: 0.5 ~ 1 defects/cm2

    4

    area)(diecostdie f=

  • 7/29/2019 Lecture1 Intro Overview

    47/66

    EE402

    Some Examples (1994)

    47

    Chip Metal

    layers

    Line

    width

    Wafer

    cost

    Def./

    cm2Area

    mm2Dies/

    wafer

    Yield Die

    cost

    386DX 2 0.90 $900 1.0 43 360 71% $4

    486 DX2 3 0.80 $1200 1.0 81 181 54% $12

    Power PC601

    4 0.80 $1700 1.3 121 115 28% $53

    HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73

    DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149

    Super Sparc 3 0.70 $1700 1.6 256 48 13% $272

    Pentium 3 0.80 $1500 1.5 296 40 9% $417

    Reliability

  • 7/29/2019 Lecture1 Intro Overview

    48/66

    EE402

    Reliability

    Noise in Digital Integrated Circuits

    48

    i(t)

    Inductive coupling Capacitive coupling Power and groundnoise

    v(t) VDD

    Noise: unwanted variations of (V) and (I) at the logic nodes

  • 7/29/2019 Lecture1 Intro Overview

    49/66

    EE402

    DC OperationVoltage Transfer Characteristic (VTC)

    49

    V(x)

    V(y)

    V

    OH

    VOL

    VM

    VOHVOL

    fV(y)=V(x)

    Switching Threshold

    Nominal Voltage Levels (VDD=1, GND=0)

    Vout = f(Vin)VOH = f(VOL)VOL = f(VOH)

    VM = f(VM)

  • 7/29/2019 Lecture1 Intro Overview

    50/66

    EE402

    Mapping between analog and digital signals

    50

    VIL

    VIH

    Vin

    Slope = -1 =

    Slope = -1

    VOL

    VOH

    Vout

    0 VOL

    VIL

    VIH

    VOH

    Undefined

    Region

    1 dVout

    dVin

    Definition of Noise Margins

  • 7/29/2019 Lecture1 Intro Overview

    51/66

    EE402

    Definition of Noise Margins

    51

    Noise margin high

    Noise margin low

    VIH

    VIL

    UndefinedRegion

    "1"

    "0"

    VOH

    VOL

    NMH

    NML

    Gate OutputStage M

    Gate InputStage M+1

    Noise Budget

  • 7/29/2019 Lecture1 Intro Overview

    52/66

    EE402

    Noise Budget

    Allocates gross noise margin to expected sources of noiseSources: supply noise, cross talk, interference, offsetDifferentiate between fixed and proportional noise sources

    52

  • 7/29/2019 Lecture1 Intro Overview

    53/66

    EE402

    Key Reliability Properties

    Absolute noise margin values are deceptivel a floating node is more easily disturbed than a node driven by a

    low impedance (in terms of voltage)

    Noise immunity is the more important metric thecapability to suppress noise sources

    Key metrics: Noise transfer functions, Output impedance of thedriver and input impedance of the receiver;

    53

  • 7/29/2019 Lecture1 Intro Overview

    54/66

    EE402

    Regenerative Property

    54

    A chain of invertersv0 v1 v2 v3 v4 v5 v6

    Simulated response

  • 7/29/2019 Lecture1 Intro Overview

    55/66

    EE402

    Regenerative Property

    55

    Regenerative Non-Regenerative

  • 7/29/2019 Lecture1 Intro Overview

    56/66

    EE402

    Fan-in and Fan-out

    56

    N

    Fan-out N Fan-in M

    M

    Th Id l G t

  • 7/29/2019 Lecture1 Intro Overview

    57/66

    EE402

    The Ideal Gate

    57

    Ri =R

    o = 0Fanout =NMH = NML = VDD/2

    g=

    Vin

    Vout

    A Old ti I t

  • 7/29/2019 Lecture1 Intro Overview

    58/66

    EE402

    An Old-time Inverter

    58

    NMH

    Vin(V)

    Vout(V)

    NML

    VM

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    1.0 2.0 3.0 4.0 5.0

    D l D fi iti

  • 7/29/2019 Lecture1 Intro Overview

    59/66

    EE402

    Delay Definitions

    59

    Vin

    Vout

    Ri O ill t

  • 7/29/2019 Lecture1 Intro Overview

    60/66

    EE402

    Ring Oscillator

    60

    T = 2tpN

    A First-Order RC Network

  • 7/29/2019 Lecture1 Intro Overview

    61/66

    EE402 61

    vout

    v

    in

    C

    R

    tp = ln (2) = 0.69 RC

    Important model matches delay of inverter

    Power Dissipation

  • 7/29/2019 Lecture1 Intro Overview

    62/66

    EE402

    p

    62

    Instantaneous power:

    p(t) = v(t)i(t) = Vsupplyi(t)

    Peak power:Ppeak= Vsupplyipeak

    Average power:

    ( ) + +

    ==Tt

    t

    Tt

    t supplysupply

    ave dttiT

    Vdttp

    TP )(

    1

    Energy and Energy-Delay

  • 7/29/2019 Lecture1 Intro Overview

    63/66

    EE402

    gy gy y

    63

    Power-Delay Product (PDP) =

    E = Energy per operation = Pav tp

    Energy-Delay Product (EDP) =

    quality metric of gate = E tp

    A First-Order RC Network

  • 7/29/2019 Lecture1 Intro Overview

    64/66

    EE402 64

    E0 1

    P t( ) dt

    0

    T

    Vdd isupply t( ) dt

    0

    T

    Vdd CLdV ou t0

    Vd d

    CL Vdd2= = = =

    Eca p

    Pca p

    t( ) dt

    0

    T

    Vou tica p t( )dt

    0

    T

    CLVou t dVou t0

    Vd d

    1

    2--- C

    LV

    dd2

    = = = =

    vout

    vin CL!

    R

    Summary

  • 7/29/2019 Lecture1 Intro Overview

    65/66

    EE402

    Summary

    Digital integrated circuits have come a long way and stillhave quite some potential left for the coming decades

    Some interesting challenges aheadlGetting a clear perspective on the challenges and potential

    solutions is the purpose of this book

    Understanding the design metrics that govern digitaldesign is crucial

    lCost, reliability, speed, power and energy dissipation

    65

    Looking Ahead

  • 7/29/2019 Lecture1 Intro Overview

    66/66

    g Read ch1, ch2Lecture 2: ch2, insert A

    l Manufacturing processl Design rulesl Layoutl Etc