48
Schöning/Rodejohann 1 Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics (MVHE3) Heidelberg SS 2013 W.Rodejohann (theorist) + A. Schöning (experimentalist)

Lecture: Standard Model of Particle Physics€¦ · Schöning/Rodejohann 1 Standard Model of Particle Physics SS 2013 ... Tutorials offer the possibility to discuss open questions

Embed Size (px)

Citation preview

Schöning/Rodejohann 1 Standard Model of Particle Physics SS 2013

Lecture: Standard Model of Particle Physics

(MVHE3)

Heidelberg SS 2013

W.Rodejohann (theorist)

+

A. Schöning (experimentalist)

Schöning/Rodejohann 2 Standard Model of Particle Physics SS 2013

Dr. Werner Rodejohann(Max-Planck Institut - Kernphysik)

Schöning/Rodejohann 3 Standard Model of Particle Physics SS 2013

Goal of this Lecture

● Theoretical and experimental introduction into the Standard Model of Particle Physics.

● Tutorials offer the possibility to discuss open questions and the

exercises.

● Content of Lecture:QED (Quantum Electrodynamics)

Electroweak Interactions and Unification

Electroweak Symmetry Breaking and Higgs Mechanism

(Strong Interaction)

Flavour Physics

Schöning/Rodejohann 4 Standard Model of Particle Physics SS 2013

Prerequisites

Requirements: PEP5 (Introduction to Particle Physics, bachelor) Particle Physics (Module MKEP1, master)

this course addresses master and graduate students

Other useful or related lectures: Theoretical Statistical Physics Quantum Field Theory Detector Physics Accelerator Physics

Schöning/Rodejohann 5 Standard Model of Particle Physics SS 2013

Credit Points

According to the Master Handbook the workload is 240 hourscorresponding to 8 credit points (ECTS)

Requirements Participation at Lectures and Tutorials Solve exercises (minimum score 50%)

Schöning/Rodejohann 6 Standard Model of Particle Physics SS 2013

Organisation

Lectures: Monday 16h15, Kleiner Hörsaal, Philosophenweg 12 Wednesday 11h15, Kleiner Hörsaal, Philosophenweg 12

Accompanying Tutorials: Tuesday (engl./germ.) : 9h15 INF227 SR2.402 (Julian Heeck) → first tutorial 30.4.

Thursday (engl.): 14h15 INF227 SR2.402 (He Zhang) → first tutorial 2.5.

Handout and return of exercises always Mondays after lecturefirst exercises handout 22.4.

More Information (e.g. literature) on the Web: http://www.mpi-hd.mpg.de/manitop/StandardModel/

Schöning/Rodejohann 7 Standard Model of Particle Physics SS 2013

Lecture Dates

Schöning/Rodejohann 8 Standard Model of Particle Physics SS 2013

Schöning/Rodejohann 9 Standard Model of Particle Physics SS 2013

give FEEDBACK!

Schöning/Rodejohann 10 Standard Model of Particle Physics SS 2013

Introduction:

“The Interplay betweenTheory and Experiment

in Particle Physics”

Schöning/Rodejohann 11 Standard Model of Particle Physics SS 2013

~50-60 years electron

proton

(neutron)

~1930

Schöning/Rodejohann 12 Standard Model of Particle Physics SS 2013

SM Lagrangian

~50-60 years electron

proton

(neutron)

~1930

Schöning/Rodejohann 13 Standard Model of Particle Physics SS 2013

Main Achievements in Theory

Relativistic Quantum Mechanics (QED, Dirac Equation)

Relativistic Quantum Field Theory (vacuum polarisation)

Gauge Theories (renormalisable field theory)

Electroweak Unification (electromagnetic+weak force)

Mass Generation and Spontaneous Symmetry Breaking

Quantum Chromodynamics and understanding of confinement

Standard Model of Particle Physics

Schöning/Rodejohann 14 Standard Model of Particle Physics SS 2013

Important Experimental Discoveries

Discovery of the muon (particle families)

Discovery of the pion (strong interaction)

Discovery of Parity Violation in Weak Interactions

Discovery of Strangeness and Fermion-Mixing

Discovery of the Neutrino

Observation of neutral currents (weak interaction)

Discovery of massive gauge bosons (W,Z)

Discovery of the Higgs boson at LHC in 2012

This all goes along with the development of modern particle detectors and accelerators

Schöning/Rodejohann 15 Standard Model of Particle Physics SS 2013

Interplay Theory-ExperimentPrediction of the Anti-electron (Dirac, 1928)Discovery of the Positron (Anderson, 1932)

Prediction of mesons (1935)Discovery of the muon (1936)Discovery of the pion (1947)

Prediction of the neutrino (Pauli 1930)Discovery of the electron neutrino (Cowan Reines, 1957)

Prediction of the muon neutrino (1950th)Discovery of the muon neutrino (Ledermann, Schwartz, Steinberger 1962)

Discovering the particle zoo (1960th )Development of Quantum Chromodynamics (1968)

Theory of Quark Mixing (1970th) …...

Schöning/Rodejohann 16 Standard Model of Particle Physics SS 2013

Anti-Particle Hypothesis

Paul Dirac (1928):

Field equation for a relativistic Quantum Mechanicsbased on Einsteins special relativity relation:

E2=m2

+ p2

Dirac equation has solutions for positively and negatively polarised particles and for positive and negative energies:

Later Feynman-Stückelberg interpretation:antiparticles are particles traveling in reverse time direction

negative energy: antiparticles!

Schöning/Rodejohann 17 Standard Model of Particle Physics SS 2013

Discovery of the Positron

Carl D. Anderson

Nobel Prize (1936)

Schöning/Rodejohann 18 Standard Model of Particle Physics SS 2013

Muon Discovery

Muon discovery incosmic rays by

Carl Anderson+

Seth Nedermeyer

Victor Hessdiscovery ofcosmic showers

Nobel Prize (1936)

1912

Schöning/Rodejohann 19 Standard Model of Particle Physics SS 2013

Theoretical Interpretation of themuon decay

μ- → e- ν ν Two neutrino hypothesis:

Energy spectrum of electrons from muon decay: μ- → e- ??

2-body decay3-bodydecay

Michel spectrum:m

μ =105.6 MeV

energy ofdecay electron

Schöning/Rodejohann 20 Standard Model of Particle Physics SS 2013

Theoretical Interpretation IIFurther studies of muon decays showed that e.g. μ→ e γ is forbidden

the muon is not an excited state of the electron

introduction of Lepton Family Numberμ- → e- ν

e ν

μ-

is allowed!

Schöning/Rodejohann 21 Standard Model of Particle Physics SS 2013

Discovery of the Electron-Neutrino

Discovery of the electron neutrino (Cowan, Reines, 1957)

Nobel Prize (1995)

Discovery of the muon neutrino (Ledermann,Schwartz,Steinberger 1962)

Nobel Prize (1988)

Anti-Electron-Neutrino

Schöning/Rodejohann 22 Standard Model of Particle Physics SS 2013

Prediction of the PionH.Yukawa predicted 1935 mesons as carriers of the strong force

Nobel Prize (1949)

meson mass ~ ħc / (range of force)

range ~ 1 fm → mmeson

= 200 MeV

Schöning/Rodejohann 23 Standard Model of Particle Physics SS 2013

Discovery of the Pion1947 discovered by Perkins, Ochialini and Powell

Nobel Prize (Powell 1950)

emulsions

Schöning/Rodejohann 24 Standard Model of Particle Physics SS 2013

Parity Violation in Weak Interactions

vector current:

jV =

axial-vector current:

j A =

5

∂ jV = 0 (conservation of currents)In Quantum Electrodynamics (QED)

Lorentz Structure of Weak Interactions?

scalar coupling:

S = ψψ

pseudoscalar coupling

P = ψ γ5ψ

j Lμ = 1/2 ( jV

μ− jAμ ) ≠

jRμ = 1/2 ( jV

μ + j Aμ )

Left-Right Symmetry broken if

Schöning/Rodejohann 25 Standard Model of Particle Physics SS 2013

Discovery of Parity Violation in Weak Decays

Nobel Prize

Co60 → Ni* e- ν-polarised

proposed by Lee + Yang

(also seen in muon decayLederman et al.)

Schöning/Rodejohann 26 Standard Model of Particle Physics SS 2013

Discovery of the StrangenessSurprise!

Production of Kaons and Lambda-Baryons in pp Collisions

“V-particles”

Long Lifetime! neither electromagnetic nor strong force

Schöning/Rodejohann 27 Standard Model of Particle Physics SS 2013

Prediction of the Charm Quark

ud ' = ud cosCs sinC cs ' = c

scosC−d sinC Neutral Current:

JNC = uΓu+ cΓc+ (dΓ d+ sΓ s)cos2ΘC+ (dΓd+ sΓ s)sin2

ΘC⏟Δ S=0

+ (dΓ s+ sΓ d−dΓ s− sΓd)sinΘC cosΘC⏟∣Δ S∣=1

flavor changing terms cancel out!

How explain non-observation of Flavor Changing Neutral Currents?

K →π γ

Add hypothetical c-quark

GIM suppression (Glashow, Iliopoulos, Maiani)

Schöning/Rodejohann 28 Standard Model of Particle Physics SS 2013

Observation of the Charm Quark

p Be → X J/Psi → X e+ e-

BNL: S.Ting et al. (1974)

e+ e- → J/Psi → e+ e- (μ+,μ-),(π+ π-)SLAC: B.Richter et al. (1974)

Nobel Prizes

Schöning/Rodejohann 29 Standard Model of Particle Physics SS 2013

Prediction of the Third Family

Mixing Matrix with three families (Kobayashi-Maskawa Matrix):

contains CP violation phase

C = charge conjugationP = parity operator

Sakharov: CP-Violation might explain observed matter-antimatterasymmetry in universe

third family needed! Nobel Prize (2008)

particle ↔ anti-particle

Schöning/Rodejohann 30 Standard Model of Particle Physics SS 2013

Discovery of the Third Family Tau Lepton discovered by MARK1 at SPEAR (1974-1976)

electron-muon problem: e + e−→ e +

μ− e + e−

→ e−μ+

explanation (M.Perl):

e + e−→ τ

+τ−

τ→ e ν ντ→μ ν ν

discovery of tau-lepton

(Reines et al.)

Nobel Prize (1995)

Discovery of the Bottom-Quark (1977) by M.Ledermann et al. at Fermilab

Schöning/Rodejohann 31 Standard Model of Particle Physics SS 2013

Prediction of Neutral Currents

Weak Neutral Currents, i.e. exchange of Z particles were predicted by Abdus Salam, Sheldon Glashow and Steven Weinberg 1973 (Standard Model)

Weak interaction described by SU(2) local gauge symmetry, which contains three fields W

1 , W

2 ,W

3 presented by the

physically observable fields W+ and W- and Z (neutral gauge boson)

Use neutrinos to test existence of the Z boson

Nobel Prize (1979)

Schöning/Rodejohann 32 Standard Model of Particle Physics SS 2013

Observation of Neutral Currents

Bubble ChamberGargamelle (1974)

νe e→νe eνe

e

Z

νe

e

Schöning/Rodejohann 33 Standard Model of Particle Physics SS 2013

Discovery of Z Gauge Boson

Rubia et al. (1983)

Nobel Prize (1984)

p p → (Z → e+ e-) X

Schöning/Rodejohann 34 Standard Model of Particle Physics SS 2013

Discovery of Z Gauge Boson

Rubia et al. (1983)

Nobel Prize (1984)

p p → (Z → e+ e-) X

Schöning/Rodejohann 35 Standard Model of Particle Physics SS 2013

Prediction of the Top MassRadiative Corrections:

e

e e

et

t

e+ e- collider LEP, Geneva

Schöning/Rodejohann 36 Standard Model of Particle Physics SS 2013

Discovery of the Top-Quark (1995)

Proton-Antiproton Collider1 x 1 TeV

Fermilab, USA

CDF + D0 Detectors

Top-Quark Mass ~172 GeV

CDF

Schöning/Rodejohann 37 Standard Model of Particle Physics SS 2013

Prediction of the Higgs Particle

Φ=ϕ0+ χ+ i ξ

minimum breaks symmetry: spontaneous symmetry breaking

χ

ξ

Introduce new (Higgs-) field to generate mass of fermions and bosons

Φ≠0

Schöning/Rodejohann 38 Standard Model of Particle Physics SS 2013

Prediction of the Higgs Mass

yellow region excluded by LEP blue chi2 curve from radiative corrections

Status after LEPand before

Tevatron + LHC

Schöning/Rodejohann 39 Standard Model of Particle Physics SS 2013

Search for the Higgs BosonMain Problem:

SM Higgs Mass is not predicted by theory only weakly constrained by precision measurements

Have to look in a large mass range:

Higgs decays:

Schöning/Rodejohann 40 Standard Model of Particle Physics SS 2013

Large Hadron Collider (CERN)

26.7 km circumference!

LHC (pp) 7-8 (14) TeV in 2011/12

Schöning/Rodejohann 41 Standard Model of Particle Physics SS 2013

The Discovery of the Higgs-Boson

Schöning/Rodejohann 42 Standard Model of Particle Physics SS 2013

Compatibility of ATLAS data to No-Higgs Hypothesis

Schöning/Rodejohann 43 Standard Model of Particle Physics SS 2013

Higgs Exclusion Plot

there is only one SM-Higgs

Schöning/Rodejohann 44 Standard Model of Particle Physics SS 2013

Compilation of Signal Strenghts in Various Decays

July 2012

Really THE SM-Higgs?

Schöning/Rodejohann 45 Standard Model of Particle Physics SS 2013

The Unknown Mass Hierarchy of Neutrinos

from neutrino oscillation only squared mass differences known!

Schöning/Rodejohann 46 Standard Model of Particle Physics SS 2013

from Y. Nakajima

Last Neutrino-Mixing Angle Measured in 2012

Missing: CP-Phase δ in lepton matrix (25th parameter of νSM)

from T. Schwetz-Mangolt

Mixing angle Theta13

CP-Phase δ

Schöning/Rodejohann 47 Standard Model of Particle Physics SS 2013

Summary

Standard Model seems to be fully established Big triumph of particle physics theory and experiment

But many fundamental questions not addressed by SM!(fermion generations, matter-antimatter asymmetry, dark matter, gravitation, ...)

Schöning/Rodejohann 48 Standard Model of Particle Physics SS 2013