36
Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth Edition Audesirk Audesirk Byers 8 Harvesting Energy: Glycolysis and Cellular Respiration

Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

Embed Size (px)

Citation preview

Page 1: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

Lecture Presentations by Carol R. AndersonWestwood College, River Oaks Campus

© 2014 Pearson Education, Inc.

BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth Edition

Audesirk Audesirk Byers

8Harvesting Energy:Glycolysis and Cellular Respiration

Page 2: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.1 How Do Cells Obtain Energy?

Most cellular energy is stored in the chemical bonds of energy-carrier molecules such as adenosine triphosphate (ATP)

Cells break down glucose in two stages: glycolysis, which liberates a small quantity of ATP, followed by cellular respiration, which produces far more ATP

Page 3: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.1 How Do Cells Obtain Energy?

Photosynthesis is the ultimate source of cellular energy

– Photosynthetic organisms capture the energy of sunlight and store it in the form of glucose

– Nearly all organisms use glycolysis and cellular respiration to break down sugar molecules to capture energy as ATP

Page 4: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.1 How Do Cells Obtain Energy?

Photosynthesis is the ultimate source of cellular energy (continued)

– Photosynthesis

6 CO2 6 H2O light energy C6H12O6 6 O2

– Complete glucose breakdown

– C6H12O6 6 O2 6 CO2 6 H2O ATP energy heat energy

Page 5: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

Figure 8-1 Photosynthesis provides the energy released during glycolysis and cellular respiration

photosynthesis

energy from sunlight

cellularrespiration

CO2

glycolysis

6 H2O6 O2C6H12O66

ATP

Page 6: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.1 How Do Cells Obtain Energy?

Glucose is a key energy-storage molecule

– All cells metabolize glucose for energy

– Plants convert glucose to sucrose or starch for storage

– In humans, energy is stored as long chains of glucose, called glycogen, or as fat

– These storage molecules are converted to glucose to produce ATP for energy harvesting

Page 7: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.1 How Do Cells Obtain Energy?

Glucose is a key energy-storage molecule (continued)

– The breakdown of glucose occurs in phases

– Glycolysis

– Fermentation

– Cellular respiration

– During glycolysis and cellular respiration, energy is captured in ATP

Page 8: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

Figure 8-2 A summary of glucose breakdown

(cytosol)

glycolysis

2 CO2

cellularrespiration

ATP

ATP

1 glucose

2 pyruvate

2 lactate

fermentation

2 ethanolIf no O2 is available If O2 is available

CO26 H2O6

O2

mitochondrion

6

Page 9: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.2 What Happens During Glycolysis?

– Glycolysis has an etymological root from the Greek, “glyco,” meaning “sweet,” and “lysis,” meaning to “split apart”

– Glycolysis begins by splitting glucose (a six-carbon sugar) into two molecules of pyruvate (a three-carbon sugar)

– Glycolysis has energy investment and energy harvesting stages

Page 10: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.2 What Happens During Glycolysis?

Summary of glycolysis

– During the energy investment stage, phosphate groups and energy from each of the two ATP are added to glucose to produce fructose bisphosphate

– Fructose bisphosphate is broken down into two G3P molecules

– During the energy harvesting stage, the two G3P molecules are converted into two pyruvate molecules, resulting in four ATP and two NADH molecules

– A net of two ATP molecules and two NADH (high-energy electron carriers) are formed

Page 11: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc. Animation: Glycolysis

Page 12: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

The essentials of glycolysis

Fig. 8-3

Page 13: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.3 What Happens During Cellular Respiration?

Cellular respiration breaks down the two pyruvate molecules into six carbon dioxide molecules and six water molecules

– The chemical energy from the two pyruvate molecules aids in the production of 32 ATP

– Cellular respiration occurs in mitochondria (powerhouses of the cell), organelles specialized for the aerobic breakdown of pyruvate

– Mitochondrion has two membranes

– The inner membrane encloses a central compartment containing the fluid matrix

– The outer membrane forms the outer surface of the organelle, and an intermembrane space lies between the two membranes

Page 14: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

Figure 8-4 A mitochondrion

matrix

inner membrane

outer membrane

intermembrane space

Page 15: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.3 What Happens During Cellular Respiration?

Cellular respiration occurs in three stages

1. Pyruvate breakdown

2. Transfer of electrons along the electron transport chain

3. Generation of ATP by chemiosmosis

Page 16: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

Figure 8-5 Reactions in the mitochondrial matrix

Formation ofacetyl CoA

coenzyme Acoenzyme A

pyruvateacetyl CoA

NADHNAD

Krebscycle

NADH

NAD

3

3

FADH2

FAD

ADP

ATP

CO2

Page 17: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.3 What Happens During Cellular Respiration?

During the first stage of cellular respiration, pyruvate is broken down (continued)

– The Krebs cycle

– Discovered by Hans Krebs

– Hans Krebs won the Nobel Prize in 1953 for his discovery of the Krebs cycle

– The Krebs cycle is also known as the citric acid cycle because citrate is produced first in the cycle

Page 18: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.3 What Happens During Cellular Respiration?

During the first stage of cellular respiration, pyruvate is broken down (continued)

– The Krebs cycle (continued)

– The Krebs cycle begins by combining acetyl CoA with a four-carbon molecule to form six-carbon citrate, and coenzyme A is released

– As the Krebs cycle proceeds, enzymes in the matrix break down the acetyl group, releasing two CO2 molecules and regenerating the four-carbon molecule for use in future cycles

Page 19: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.3 What Happens During Cellular Respiration?

During the first stage of cellular respiration, pyruvate is broken down (continued)

– During the mitochondrial reactions, CO2 is generated as a waste product

– CO2 diffuses out of cells and into the blood, which carries it to the lungs, where it is exhaled

Page 20: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.3 What Happens During Cellular Respiration?

Summing up cellular respiration

– In the mitochondrial matrix, each pyruvate molecule is converted into acetyl CoA, producing one NADH per pyruvate molecule and releasing one CO2

– As each acetyl CoA passes through the Krebs cycle, its energy is captured in one ATP, three NADH, and one FADH2. The carbons of acetyl CoA are released in two CO2 molecules

Page 21: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.3 What Happens During Cellular Respiration?

Summing up cellular respiration (continued)

– During cellular respiration, the two pyruvate molecules enter the mitochondrion and are completely broken down, yielding two ATP and ten high-energy electron carriers: eight NADH and two FADH2. The carbon atoms from the pyruvates are released in six molecules of CO2

– High-energy electrons release energy that is harnessed to pump H into the intermembrane space as they pass through the ETC

Page 22: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.3 What Happens During Cellular Respiration?

Summing up cellular respiration (continued)

– The NADH and FADH2 molecules donate their energetic electrons to the ETC embedded in the inner mitochondrial membrane

– These electrons are passed to the ETC, where their energy is used during chemiosmosis to generate a gradient of H, yielding a net of 32 ATP

– Energy-depleted electrons exiting the ETC are picked up by H+ released from NADH and FADH2, and combine with oxygen to form water

Page 23: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc. BioFlix Animation: Summary of Cellular Respiration

Page 24: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

Figure 8-7 The energy sources and ATP harvest from glycolysis and cellular respiration

1 glucose

Krebscycle

CO2

(matrix)

NADH

FADH2

ATP

(cytosol)

22 glycolysis

2 pyruvate

NADH2

ATP2

ATP32

2

2 acetyl CoA

NADH6

CO24

mitochondrion

O2H2O

electron transport chain

Total: 36 ATP

CoA

2

Page 25: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.3 What Happens During Cellular Respiration?

Cellular respiration can extract energy from a variety of molecules

– Glucose often enters the human body as starch or table sugar, but energy can come from the consumption of fats and proteins in the diet

– Intermediate molecules of cellular respiration can be formed by other metabolic pathways

– Molecules enter at appropriate stages and then are broken down to produce ATP

– Amino acids of protein serve as energy sources

Page 26: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.3 What Happens During Cellular Respiration?

Cellular respiration can extract energy from a variety of molecules (continued)

– Fats are excellent sources of energy

– Serve as major energy-storage molecule in animals

– Fatty acids combine with CoA then are broken down to produce acetyl CoA molecules, which enter the first stage of the Krebs cycle

– A limited intake of fats will allow this process to happen

– Overindulgence of fats will cause the body to store excess fat

Page 27: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.4 What Happens During Fermentation?

– Glycolysis is used by virtually every organism on Earth

– Earlier forms of life appeared under the anaerobic (no oxygen) conditions existing before photosynthesis

– Some microbes lack enzymes for cellular respiration and rely solely on fermentation

– Various microorganisms still thrive in places where oxygen is limited or absent

– Stomach and intestines of animals

– Deep in soil

– Bogs and marshes

Page 28: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.4 What Happens During Fermentation?

Fermentation allows NAD to be recycled when oxygen is absent

– If oxygen is not available, the second stage of glucose breakdown is fermentation

– Fermentation does not produce any ATP

– In fermentation, pyruvate remains in the cytoplasm and is converted into lactate or ethanol CO2

Page 29: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.4 What Happens During Fermentation?

Fermentation allows NAD to be recycled when oxygen is absent (continued)

– Under anaerobic conditions, with no oxygen to allow the ETC to function, the cell must regenerate the NAD for glycolysis using fermentation

– Under aerobic (with oxygen) conditions, NADH donates its high-energy electrons and hydrogen produced in glycolysis to ATP-generating reactions in the mitochondria, ultimately being donated to oxygen during the creation of water and making NAD available to recycle during glycolysis

Page 30: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.4 What Happens During Fermentation?

Fermentation allows NAD to be recycled when oxygen is absent (continued)

– Fermentation does not produce more ATP, but is necessary to regenerate NAD, which must be available for glycolysis to continue

– If the supply of NAD were to be exhausted, glycolysis would stop, energy production would cease, and the organism would rapidly die

– Organisms use one of two types of fermentation to regenerate NAD

– Lactic acid fermentation

– Alcohol fermentation

Page 31: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.4 What Happens During Fermentation?

Some cells ferment pyruvate to form lactate

– Lactic acid fermentation produces lactic acid from pyruvate

– Muscles that are working hard enough to use up all the available oxygen ferment pyruvate to lactate

– To regenerate NAD, muscle cells ferment pyruvate to lactate, using electrons from NADH and hydrogen ions

– A variety of microorganisms use lactic acid fermentation, including the bacteria that convert milk into yogurt, sour cream, and cheese

Page 32: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

Figure 8-8 Glycolysis followed by lactic acid fermentation

2 pyruvate(glycolysis)

NADHNAD 22

ADP ATP

NADH NAD22

22

2 lactate1 glucose(fermentation)

Page 33: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

Figure 8-9a Fermentation in action

Page 34: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

8.4 What Happens During Fermentation?

Some cells ferment pyruvate to form alcohol and carbon dioxide

– Many microorganisms, such as yeast, engage in alcohol fermentation under anaerobic conditions

– Generates alcohol and CO2 from pyruvate

– As in lactic acid fermentation, the NAD must be regenerated to allow glycolysis to continue

– During alcohol fermentation, H and electrons from NADH are used to convert pyruvate into ethanol and CO2; this releases NAD, which can accept more high-energy electrons during glycolysis

Page 35: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc. Animation: Fermentation

Page 36: Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus © 2014 Pearson Education, Inc. BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth

© 2014 Pearson Education, Inc.

Figure 8-10 Glycolysis followed by alcoholic fermentation

2 pyruvate(glycolysis)

NADHNAD 22

ADP ATP

NADH NAD22

22

2 ethanol1 glucose(fermentation)

2 CO2