13
6/3/2020 1 Advanced Electromagnetics: 21 st Century Electromagnetics Lorentz Oscillator Model Lecture Outline High level picture of dielectric response Qualitative description of resonance Derivation of Lorentz oscillator model 2

Lecture -- Lorentz Oscillator Model · Lorentz Oscillator Model 17 Mass on a Spring Atomic Model nucleus E damper spring mass electron cloud F Electric field 𝐸 Equation of Motion

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture -- Lorentz Oscillator Model · Lorentz Oscillator Model 17 Mass on a Spring Atomic Model nucleus E damper spring mass electron cloud F Electric field 𝐸 Equation of Motion

6/3/2020

1

Advanced Electromagnetics:

21st Century Electromagnetics

Lorentz Oscillator Model

Lecture Outline

•High level picture of dielectric response•Qualitative description of resonance•Derivation of Lorentz oscillator model

2

Page 2: Lecture -- Lorentz Oscillator Model · Lorentz Oscillator Model 17 Mass on a Spring Atomic Model nucleus E damper spring mass electron cloud F Electric field 𝐸 Equation of Motion

6/3/2020

2

High Level Picture of Dielectric

Response

Slide 3

Moving Charges Radiate Waves (1 of 2)

4

outward travelling wave

This is called the single‐charge radiation model (Heaviside, 1894).

Page 3: Lecture -- Lorentz Oscillator Model · Lorentz Oscillator Model 17 Mass on a Spring Atomic Model nucleus E damper spring mass electron cloud F Electric field 𝐸 Equation of Motion

6/3/2020

3

Moving Charges Radiate Waves (2 of 2)

5

Dielectric Slab

6

It is desired to understand why a dielectric exhibits an electromagnetic response.

Page 4: Lecture -- Lorentz Oscillator Model · Lorentz Oscillator Model 17 Mass on a Spring Atomic Model nucleus E damper spring mass electron cloud F Electric field 𝐸 Equation of Motion

6/3/2020

4

Atoms at Rest

7

Without an applied electric field 𝐸, the electron “clouds” around the nuclei are symmetric and at rest.

Applied Wave

8

The electric field 𝐸 of a electromagnetic wave pushes the electrons away from the nuclei producing “clouds” that are offset.

Page 5: Lecture -- Lorentz Oscillator Model · Lorentz Oscillator Model 17 Mass on a Spring Atomic Model nucleus E damper spring mass electron cloud F Electric field 𝐸 Equation of Motion

6/3/2020

5

Secondary Waves

9

The motion of the charges emits secondary waves that interfere with the applied wave to produce an overall slowing effect on the wave.

Qualitative Description of

Resonance

Slide 10

Page 6: Lecture -- Lorentz Oscillator Model · Lorentz Oscillator Model 17 Mass on a Spring Atomic Model nucleus E damper spring mass electron cloud F Electric field 𝐸 Equation of Motion

6/3/2020

6

Visualizing Resonance – Low Frequency

11

• Driving force is able to modulate amplitude

• Displacement is in phase with driving force

• There exists a DC offset

Visualizing Resonance – on Resonance

12

• Driving force can cause large displacements

• Displacement is 90° out of phase with the driving force (i.e. peaks of push correspond to nulls of displacement)

Page 7: Lecture -- Lorentz Oscillator Model · Lorentz Oscillator Model 17 Mass on a Spring Atomic Model nucleus E damper spring mass electron cloud F Electric field 𝐸 Equation of Motion

6/3/2020

7

Visualizing Resonance – High Frequency

13

• Displacement has vanishing amplitude

• Displacement is 180° out of phase with driving force in order to perfectly oppose it.

Response of A Harmonic Oscillator

14

Amplitude P

hase Lag

180°

0° 0

> 0

>> 0

res

90°

Page 8: Lecture -- Lorentz Oscillator Model · Lorentz Oscillator Model 17 Mass on a Spring Atomic Model nucleus E damper spring mass electron cloud F Electric field 𝐸 Equation of Motion

6/3/2020

8

Impulse Response of a Harmonic Oscillator

15

Amplitude

Time, t

Excitation Ball Displacement

Damping loss

Derivation of Lorentz Oscillator

Model

Slide 16

Page 9: Lecture -- Lorentz Oscillator Model · Lorentz Oscillator Model 17 Mass on a Spring Atomic Model nucleus E damper spring mass electron cloud F Electric field 𝐸 Equation of Motion

6/3/2020

9

Lorentz Oscillator Model

17

Mass on a Spring

Atomic Model

nucleus 

damper spring

mass

electron cloud 

Electric

field 𝐸

Equation of Motion

18

2202

r rm m m r qEt t

electric force

restoring force

0

K

m

naturalfrequency

acceleration force

em m mass of an electron

frictional force

damping rate (loss/sec)

Page 10: Lecture -- Lorentz Oscillator Model · Lorentz Oscillator Model 17 Mass on a Spring Atomic Model nucleus E damper spring mass electron cloud F Electric field 𝐸 Equation of Motion

6/3/2020

10

Fourier Transform the Equation of Motion

19

2202

r rm m m r qEt t

2 20m j r m j r m r qE

2 20m j m m r qE

Fourier transform

Simplify

Charge Displacement 𝑟 𝜔

20

2 2

e 0

Eqr

m j

r

2 20m j m m r qE

Solve for r

The displacement 𝑟 𝜔 describes how far charge is displaced from its equilibrium position.

Page 11: Lecture -- Lorentz Oscillator Model · Lorentz Oscillator Model 17 Mass on a Spring Atomic Model nucleus E damper spring mass electron cloud F Electric field 𝐸 Equation of Motion

6/3/2020

11

Electric Dipole Moment �⃗� 𝜔

21

qr

r

Definition of Electric Dipole Moment:

** Sorry for the confusing notation, but μ here is NOT permeability.

2

2 2e 0

Eq

m j

charge

distance from center

The electric dipole moment �⃗� 𝜔 is a measure of the strength and separation of positive and negative charges.

Lorentz Polarizability 𝛼 𝜔

22

E

Definition of Lorentz Polarizability:

** Sorry for the confusing notation, but  here is NOT absorption.

2

2 2e 0

1q

m j

𝛼 𝜔 is a tensor quantity for anisotropic materials.  For simplicity, the scalar form will be adopted here.This is the Lorentz polarizability for a single atom.

The Lorentz polarizability  𝛼 𝜔 is a measure of how easily electrical charges are displaced.  Charge may be more easily displaced in some directions that others.

Page 12: Lecture -- Lorentz Oscillator Model · Lorentz Oscillator Model 17 Mass on a Spring Atomic Model nucleus E damper spring mass electron cloud F Electric field 𝐸 Equation of Motion

6/3/2020

12

Polarization Per Unit Volume 𝑃 𝜔

23

1i

V

PV

Definition:Average dipole moment over all atoms in a material.All billions and trillions of them!!!

2

2 2e 0

ENqP N

m j

There is some randomness to the polarized atoms so a statistical approach is taken to compute the average.

Number of atoms per unit volume Statistical volume averageN

Unpolarized Polarized with some randomness Equivalent uniform polarization

AppliedE‐Field

AppliedE‐Field

Electric Susceptibility 𝜒 𝜔 (1 of 2)

24

0 eP E

A material becomes polarized 𝑃 in the presence of an electric field 𝐸 according to

This leads to an expression for the electric susceptibility:

2

e 2 20 0 e 0

1N Nq

m j

e() is called the electric susceptibility and is a measure of how easily an electric field 𝐸 can polarize a material.

Page 13: Lecture -- Lorentz Oscillator Model · Lorentz Oscillator Model 17 Mass on a Spring Atomic Model nucleus E damper spring mass electron cloud F Electric field 𝐸 Equation of Motion

6/3/2020

13

Electric Susceptibility 𝜒 𝜔 (2 of 2)

25

The electric susceptibility of a dielectric material is:

2p

e 2 20 j

22p

0 e

Nq

m

•Note this is the susceptibility of a dielectric which has only one resonance.•The location of atoms is important because they can influence each other.  This was ignored.•Real materials have many sources of resonance and all of these must be added together.•Electric susceptibility is the transfer function of the oscillator system.

plasma frequency

19

120

31e

1.60217646 10 C

8.8541878176 10 F m

9.10938188 10 kg

q

m

Plot of Electric Susceptibility 𝜒 𝜔

Slide 26

0

2p

e 2 20 j

2

pe

0

0

e 0 0 e 0

e 180

e 0 90

2p

e 00

Γ is FWHM for  𝜒 𝜔 .