32
10/2/2019 1 Advanced Electromagnetics: 21 st Century Electromagnetics Diffraction Gratings Lecture Outline Fourier series Diffraction from gratings The plane wave spectrum Plane wave spectrum for crossed gratings The grating spectrometer Littrow gratings Patterned fanout gratings Diffractive optical elements Slide 2 1 2

Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

  • Upload
    others

  • View
    26

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

1

Advanced Electromagnetics:

21st Century Electromagnetics

Diffraction Gratings

Lecture Outline

• Fourier series• Diffraction from gratings

• The plane wave spectrum• Plane wave spectrum for crossed gratings

• The grating spectrometer

• Littrow gratings

• Patterned fanout gratings• Diffractive optical elements

Slide 2

1

2

Page 2: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

2

Fourier Series

Jean Baptiste Joseph Fourier

Born:

Died:

March 21, 1768in Yonne, France.

May 16, 1830in Paris, France.

Slide 3

1D Complex Fourier Series

Slide 4

If a function f(x) is periodic with period x, it can be expanded into a complex Fourier series.

2

2 2

2

1

mxj

m

mxj

f x a m e

a m f x e dx

Typically, only a finite number of terms are retained in the expansion.

2 mxM j

m M

f x a m e

3

4

Page 3: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

3

2D Complex Fourier Series

Slide 5

For 2D periodic functions, the complex Fourier series generalizes to

2 2 2 2

1, , , ,x y x y

px qy px qyj j

p q A

f x y a p q e a p q f x y e dAA

Diffraction from Gratings

Slide 6

5

6

Page 4: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

4

Fields are Perturbed by Objects

Slide 7

A portion of the wave front is delayed after travelling through the dielectric object.

inck

Fields in Periodic Structures

Slide 8

Waves in periodic structures take on the same periodicity as their host.

k

1,trnk

2,trnk

3,trnk

4,trnk 5,trnk

x

7

8

Page 5: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

5

Diffraction Orders

Slide 9

The field must be continuous so only discrete directions are allowed.  The allowed directions are called the diffraction orders.The allowed angles are calculated using the famous grating equation.

Allowed Not Allowed Allowed

Diffraction from Gratings

Slide 10

The field is no longer a pure plane wave.  The grating “chops” the wave front and sends the power into multiple discrete directions that are called diffraction orders. 

9

10

Page 6: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

6

Grating Lobes

Slide 11

If we were to plot the power exiting a periodic structure as a function of angle, we would get the following.  The power peaks are called grating lobes or sometimes side lobes.  The power minimums are called nulls.

Grating Lobe Level

Main Beam (Zero‐order mode)

inc incincr,avg

wave 1wave 2 wave 3

2 2

j k K r j k K rjk r A AA e e e

Field in a Periodic Structure

12

r r,avg cosr K r

The dielectric function of a sinusoidal grating can be written as

A wave propagating through this grating takes on the same symmetry.

incjk rAE r er

incr,avg cos jk rA K r e

11

12

Page 7: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

7

Grating Produces New Waves

13

The applied wave splits into three waves.

inc

incinc

inc

jk r

j k K rjk r

j k K r

e

e e

e

Each of those splits into three waves as well.

inc

incinc

inc

jk r

j k K rjk r

j k K r

e

e e

e

inc

inc inc

inc

2

j k K r

j k K r j k K r

jk r

e

e e

e

inc

inc inc

inc 2

j k K r

j k K r jk r

j k K r

e

e e

e

And each of these split, and so on.

inc ,..., 2, 1,0,1,2,...,k m k mK m This equation describes the total 

set of allowed diffraction orders.

Wave Incident on a Grating

14

inc

K

Boundary conditions required the tangential component of the wave vector be continuous.

?

,trn ,incx xk kThe wave is entering a grating, so the phase matching condition is

,incx x xk m k mK

The longitudinal vector component is calculated from the dispersion relation.

22 20 avgz xk m k n k m

For large m, kz,m can actually become imaginary.  This indicates that the highest diffraction‐orders are evanescent.

13

14

Page 8: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

8

The Grating Equation

15

The Grating Equation

0avg inc incsin sin sinn m n m

Note, this really is just

,incx x xk m k mK

Proof:

,inc

0 avg 0 inc inc

avg inc inc0 0

0avg inc inc

0avg inc inc

2sin sin

2 2 2sin sin

sin sin

sin sin sin

x x x

x

x

x

k m k mK

k n m k n m

n m n m

n m n m

n m n m

inc

K

inck

0

‐1

+1

+2

+10

‐1+2

x

z

incn

avgn

trnn

Diffraction in Two Dimensions

Slide 16

• Everything is known about the direction of diffracted waves just from the grating period, wavelength, and refractive index.

• The grating equation says nothing about how much power is in the diffracted modes.• That information must come from solving Maxwell’s equations.

Diffraction tends to occur primarily along the lattice planes.

15

16

Page 9: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

9

Diffraction Configurations

Slide 17

Planar Diffraction from a Ruled Grating

• Diffraction is confined within a plane• Numerically much simpler than other cases

• E and H modes are independent

transmitted

Conical Diffraction from a Ruled Grating

• Diffraction is no longer confined to a plane

• Almost same analytical complexity as crossed grating case, but simpler numerically

• E and H modes are coupled

transmitted

reflected

Conical Diffraction from a Crossed Grating with Planar Incidence

• Diffraction occurs in all directions

• Almost same numerical complexity as next case

• E and H modes are coupled transmitted

reflected

Conical Diffraction from a Crossed Grating

• Diffraction occurs in all directions• Most complicated case numerically

• E and H modes are coupled• Essentially the same as previous case

transmitted

incidentreflected

Grating Equation in Different Regions

Slide 18

The angles of the diffracted modes are related to the wavelength 0, refractive index, and grating period x through the grating equation.

The grating equation only predicts the directions of the modes, not how much power is in them.

Reflection Region

0trn inc incsin sin

x

n m n m

0ref inc incsin sin

x

n m n m

Transmission Region

ref incn n

trnn

x

17

18

Page 10: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

10

Grating Equation for Planar Diffraction

Slide 19

The angles of the diffracted modes are related to the wavelength and grating period through the grating equation.

The grating equation only predicts the directionsof the modes, not how much power is in them.

Reflection Region

0trn inc incsin sinm

x

n n m

0ref inc incsin sinm

x

n n m

Transmission Region

ref incn n

trnn

x

Effect of Grating Periodicity

Slide 20

0

avgx n

0 0

avg incxn n

0

incx n

0

incx n

SubwavelengthGrating

“Subwavelength”Grating

Low Order Grating High Order Grating

navg navg navg navg

ninc ninc ninc ninc

19

20

Page 11: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

11

Animation of Grating Diffraction (1 of 3)

Slide 21

Animation of Grating Diffraction (2 of 3)

Slide 22

21

22

Page 12: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

12

Animation of Grating Diffraction (3 of 3)

Slide 23

Wood’s Anomalies

24

Type 1 – Rayleigh Singularities Type 2 – Resonance Effects

Robert W. Wood observed rapid variations in the spectrum of light diffracted by gratings which he could not explain.  Later, Hessel explained them an identified two different types.

Rapid variation in the amplitudes of the diffracted modes that correspond to the onset or disappearance of other diffracted modes.

A resonance condition arising from leaky waves supported by the grating.  Today, we call this guided‐mode resonance.

R. W. Wood, Phil. Mag. 4, 396 (1902)A. Hessel, A. A. Oliner, “A New Theory of Wood’s Anomalies on Optical Gratings,” Appl. Opt., Vol. 4, No. 10, 1275 (1965).

Robert Williams Wood1868 ‐ 1955

23

24

Page 13: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

13

Grating Cutoff Wavelength

Slide 25

0sinx

n m m

When m becomes imaginary, the mth mode is evanescent and cut off.

Assuming normal incidence (i.e. inc = 0°), the grating equation reduces to

The first diffracted modes to appear are m = 1.

The cutoff for the first‐order modes happens when (±1) = 90°.

0

0

1 90

sin 90 1x

x

n

n

To prevent the first‐order modes, we need

0x n

To ensure we have first‐order modes, we need

0x n

Total Number of Diffracted Modes

Slide 26

Given the grating period x and the wavelength 0, we can determine how many diffracted modes exist.

Again, assuming normal incidence, the grating equation becomes

0 0

avg avg

sin sin 1x x

m mm m

n n

avgmax

0

xnm

Therefore, a maximum value for m is 

The total number of possible diffracted modes M is then 2mmax+1

avg

0

21xn

M

25

26

Page 14: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

14

Determining Grating Cutoff Conditions

Slide 27

Condition Requirements0‐order mode Always exists unless there is total‐internal reflection

No 1st‐order modes Grating period must be shorter than what causes 1) = 90°Ensure 1st‐order modes Grating period must be larger than what causes 1) = 90°No 2nd‐order modes Grating period must be shorter than what causes 2) = 90°Ensure 2nd‐order modes Grating period must be larger than what causes 2) = 90°No mth‐order modes Grating period must be shorter than what causes m) = 90°

Ensure mth‐order modes Grating period must be larger than what causes m) = 90°

Three Modes of Operation for 1D Gratings

Slide 28

Bragg GratingCouples energy between counter‐propagating waves.

Diffraction GratingCouples energy between waves at different angles.

Long Period GratingCouples energy between co‐propagating waves.

Applications• Thin film optical filters• Fiber optic gratings• Wavelength division multiplexing

• Dielectric mirrors• Photonic crystal waveguides

Applications• Beam splitters• Patterned fanout gratings• Laser locking• Spectrometry• Sensing• Anti‐reflection• Frequency selective surfaces• Grating couplers

Applications• Sensing• Directional coupling

27

28

Page 15: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

15

Analysis of Diffraction Gratings

Slide 29

Direction of the Diffracted Modes Diffraction Efficiency and Polarizationof the Diffracted Modes

0inc incsin sin sinn m n m

0

0

E j H

H j E

E

H

We must obtain a rigorous solution to Maxwell’s equations to determine amplitude and polarization of the diffracted modes.

Applications of Gratings

Slide 30

Subwavelength GratingsOnly the zero‐order modes may exist.

Applications• Polarizers• Artificial birefringence• Form birefringence• Anti‐reflection• Effective index media

Littrow GratingsGratings in the littrowconfiguration are a spectrally selective retroreflector.

Applications• Sensors• Lasers

Patterned Fanout GratingsGratings diffract laser light to form images.

HologramsHolograms are stored as gratings.

SpectrometryGratings separate broadband light into its component colors.

29

30

Page 16: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

16

The Plane Wave Spectrum

Slide 31

Periodic Functions Can Be Expanded into a Fourier Series

Slide 32

2

2

x

x

mxj

m

mxj

A x S m e

S m A x e dx

The envelop A(x) is periodic along x with period x

so it can be expanded into a Fourier series.

Waves in periodic structures obey Bloch’s equation

, j rE x y A x e

x A x

31

32

Page 17: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

17

Rearrange the Fourier Series (1 of 2)

Slide 33

x A x

A periodic field can be expanded into a Fourier series.

, j rE x y A x e

2

2

2

x

x

yx xz

mxj

j r

m

mxj

j r

m

mxj

j yj x j z

m

S m e e

S m e e

S m e e e e

Here the plane wave term 𝑒 · ⃗ is brought inside of the summation.

Rearrange the Fourier Series (2 of 2)

Slide 34

x A x

x can be combined with the last complex exponential.

2

, yx xz

mxj

j yj x j z

m

E x y S m e e e e

2

xy xz

mj x

j y j z

m

S m e e e

Now let                                and , ,, y m y z m zk k

,

2x m x

x

mk

, jk m r

m

E x y S m e

2ˆ ˆ ˆx x y y z z

x

mk m a a a

33

34

Page 18: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

18

The Plane Wave Spectrum

Slide 35

, jk m r

m

E x y S m e

Terms were rearranged to show that a periodic field can also be thought of as an infinite sum of plane waves at different angles.  This is the “plane wave spectrum” of a periodic field.

FieldPlane Wave Spectrum

Longitudinal Wave Vector Components of the Plane Wave Spectrum

The wave incident on a grating can be written as

,inc ,inc

,inc 0 inc inc

,incinc 0

,inc 0 inc inc

sin

0,

cos

x z

xj k x k z

y

z

k k n

kE x y E e

k k n

Phase matching into the grating leads to

,inc

2x x

x

k m k m

, 2, 1,0,1, 2,m

Each wave must satisfy the dispersion relation.

22 20 grat

2 20 grat

x z

z x

k m k m k n

k m k n k m

There are two possible solutions here.1. Purely real kz

2. Purely imaginary kz.

Note: kx is always real.

incx

z

35

36

Page 19: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

19

Visualizing Phase Matching into the Grating

Slide 37

The wave vector expansion for the first 11 modes can be visualized as…

inck

0xk 1xk 2xk 3xk 4xk 5xk 1xk 2xk 3xk 4xk 5xk

2n

1n

kz is real.  A wave propagates into material 2.

kz is imaginary.  The field in material 2 is evanescent.

kz is imaginary.  The field in material 2 is evanescent.

Each of these is phase matched into material 2.  The longitudinal component of the wave vector is calculated using the dispersion relation in material 2.

Note:  The “evanescent” fields in material 2 are not completely evanescent.  They have a purely real kx so power flows in the transverse direction.

x

z

Conclusions About the Plane Wave Spectrum

• Fields in periodic media take on the same periodicity as the media they are in.• Periodic fields can be expanded into a Fourier series.• Each term of the Fourier series represents a spatial harmonic (plane wave).• Since there are in infinite number of terms in the Fourier series, there are an infinite number of spatial harmonics.  •Only a few of the spatial harmonics are actually propagating waves.  Only these can carry power away from a device.  Tunneling is an exception.

Slide 38

37

38

Page 20: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

20

Plane Wave Spectrum from

Crossed Gratings

Slide 39

Grating Terminology

Slide 40

1D gratingRuled grating

Requires a 2D simulation

2D gratingCrossed grating

Requires a 3D simulation

39

40

Page 21: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

21

Diffraction from Crossed Gratings

Slide 41

Doubly‐periodic gratings, also called crossed gratings, can diffract waves into many directions.

They are described by two grating vectors, Kx and Ky.

Two boundary conditions are necessary here.

,inc

,inc

..., 2, 1,0,1, 2,...

..., 2, 1,0,1,2,...

x x x

y y y

k m k mK m

k n k nK n

inck

xK

yK

xx

yy

K x

K y

Transverse Wave Vector Expansion (1 of 2)

Slide 42

Crossed gratings diffraction in two dimensions, x and y.

To quantify diffraction for crossed gratings, we must calculate an expansion for both kx and ky.

% TRANSVERSE WAVE VECTOR EXPANSIONM = [-floor(Nx/2):floor(Nx/2)]';N = [-floor(Ny/2):floor(Ny/2)]';kx = kxinc - 2*pi*M/Lx;ky = kyinc - 2*pi*N/Ly;[ky,kx] = meshgrid(ky,kx);

,inc

,inc

2 , , 2, 1,0,1, 2,

2 , , 2, 1,0,1, 2,

ˆ ˆ,

x xx

y yy

t x y

mk m k m

nk n k n

k m n k m x k n y

We will use this code for 2D PWEM, 3D RCWA, 3D FDTD, 3D FDFD, 3D MoL, and more.

41

42

Page 22: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

22

Transverse Wave Vector Expansion (2 of 2)

Slide 43

The vector expansions can be visualized this way…

xk m yk n

ˆ ˆ,t x yk m n k m x k n y

Longitudinal Wave Vector Expansion (1 of 2)

Slide 44

The longitudinal components of the wave vectors are computed as

2 2 2,ref 0 ref

2 2 2,trn 0 trn

,

,

z x y

z x y

k m n k n k m k m

k m n k n k m k m

The center few modes will have real kz’s.  These correspond to propagating waves.  The others will have imaginary kz’s and correspond to evanescent waves that do not transport power.

,ref ,zk m n ,tk m n

% Compute Longitudinal Wave Vector Componentsk0 = 2*pi/lam;kzinc = k0*nref;kzref = -sqrt((k0*nref)^2 - kx.^2 - ky.^2);kztrn = +sqrt((k0*ntrn)^2 - kx.^2 - ky.^2);

43

44

Page 23: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

23

Longitudinal Wave Vector Expansion (2 of 2)

Slide 45

The overall wave vector expansion can be visualized this way…

,ref ,zk m n ,tk m n

,ref ,zk m n ,trn ,zk m n

The Grating Spectrometer

Slide 46

45

46

Page 24: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

24

What is a Grating Spectrometer

47

Input Light

Separated Colors

Diffraction Grating

Spectral Sensitivity

48

0avg inc incsin sin

x

n m n m

Start with the grating equation.

Define spectral sensitivity as how much the diffracted angle 𝜃 𝑚 changes with respect to wavelength 𝜆 .

0 avg cosx m

m m

n

This equation shows how to maximize sensitivity.

1. Diffract into higher order modes ( m).2. Use shorter period gratings ( x).3. Diffract into larger angles ( m)).4. Diffract into lower refractive index materials ( navg).

0avg cosx

mm

n m

47

48

Page 25: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

25

Ocean Optics HR4000 Grating Spectrometer

49

http://www.oceanoptics.com/Products/benchoptions_hr.asp

1 SMA Connector

2 Entrance Slit

3 Optional Filter

4 Collimating Mirror

5 Diffraction Grating

6 Focusing Mirror

7 Collection Lenses

8 Detector Array

9 Optional Filter

10 Optional UV Detector

Fiber Optic Input

Littrow Gratings

Slide 50

49

50

Page 26: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

26

Littrow Configuration

51

Incident

0+1

In the littrow configuration, the +1 order reflected mode is parallel to the incident wave vector.  This forms a spectrally selective mirror.

Conditions for the Littrow Configuration

52

0incsin sin

x

n m n m

The grating equation is

The littrow configuration occurs when

inc1

0inc2 sin

x

n

The condition for the littrow configuration is found by substituting this into the grating equation.

51

52

Page 27: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

27

Spectral Selectivity

53

Typically only a cone of angles  reflected from a grating is detected.

It is desired to find 𝑑𝜆/𝑑𝜃 by differentiating the previous equation.

0 2 cosx

dn

d

Typically this is used to calculate the bandwidth of the reflected light.

0 2 cosxn

2

0

2 cosxn ff

c

Linewidth (optics and photonics)

Bandwidth (RF and microwave)

0inc2 sin

x

n

Example (1 of 2)

54

SolutionRight away, we know that

0

inc

3.00 cm2.12 cm

2 sin 2 1.0 sin 45x n

inc

80

0

1.0

45

3 10 3.00 cm

10 GHz

ms

n

c

f

The grating period is then found to be

Design a metallic grating in air that is to be operated in the littrow configuration at 10 GHz at an angle of 45.

53

54

Page 28: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

28

Example (2 of 2)

55

Solution continuedAssuming a 5 cone of angles is detected upon reflection, the bandwidth is

2

8

2 1.0 2.12 cm 10 GHz cos 455 0.87 GHz

3 10 180ms

f

PatternedFanout Gratings

Slide 56

55

56

Page 29: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

29

Near‐Field to Far‐Field

57

, ,0E x y

, ,E x y L

L

FFT

After propagating a long distance, the field within a plane tends toward the Fourier transform of the initial field.

What is a Patterned Fanout Grating?

58

A patterned fanout is formed whenever a diffraction grating forces the field to take on the profile of the inverse Fourier transform of an image.  After propagating very far, the field takes on the profile of the image.

57

58

Page 30: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

30

Gerchberg‐Saxton Algorithm:Initialization

59

Far‐Field

amplitude phase

Step 1 – Start with desired far‐field image.

Near‐Field

amplitude phase

FFT-1

Step 2 – Calculate near‐field

amplitude phase

Step 3 – Replace amplitude

amplitude phase

FFTStep 4 – Calculate far‐field

Gerchberg‐Saxton Algorithm:Iteration

60

Far‐FieldNear‐Field

amplitude phase

FFT-1

amplitude phase

FFT

amplitude phase

Step 6 – Calculate near‐field

Step 8 – Calculate far‐field

Step 5 – Replace amplitude with desired image.

Step 7 – Replace amplitude

59

60

Page 31: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

31

Gerchberg‐Saxton Algorithm:End

61

Far‐FieldNear‐Field

amplitude phase amplitude phase

FFT

This is what the final image will look like.

This is the phase function of the diffractive optical element.

After several dozen iterations…

The Final Fanout Grating

62

A surface relief pattern is etched into glass to induce the phase function onto the beam of light.

This can also be accomplished with an amplitude mask fabricated in a high‐resolution laser printer.

Phase Fu

nctio

n (rad

)

Phase function as calculated by the Gerchbert‐Saxton algorithm.

61

62

Page 32: Lecture -- Diffraction gratings · Conical Diffraction from a Ruled Grating •Diffraction is no longer confined to a plane •Almost same analytical complexity as crossed grating

10/2/2019

32

Diffractive Optical Elements

Slide 63

What is a Diffractive Optical Element

64

Conventional Lens Diffractive Optical Lens (Fresnel Zone Plate)

If the device is only required to operate over a narrow band, devices can be “flattened.”

The flattened device is called a diffractive optical element (DOE).

Lukas Chrostowski, “Optical gratings: Nano-engineered lenses,” Nature Photonics 4, 413-415 (2010).

63

64