13
NNSE 618 Lecture #21 1 Lecture contents Heterojunctions Types of heterostructures Electrostatics Current Isotype heterojunctions

Lecture contents - albany.edusoktyabr/NNSE618/NNSE618-L21-hetero... · NNSE 618 Lecture #21 ... Flat-band diagram of a p-n heterojunctions p cn n cp i Fn Fp c n N n N q E kT 0 I

  • Upload
    dohanh

  • View
    224

  • Download
    9

Embed Size (px)

Citation preview

Page 1: Lecture contents - albany.edusoktyabr/NNSE618/NNSE618-L21-hetero... · NNSE 618 Lecture #21 ... Flat-band diagram of a p-n heterojunctions p cn n cp i Fn Fp c n N n N q E kT 0 I

NNSE 618 Lecture #21

1

Lecture contents

• Heterojunctions

– Types of heterostructures

– Electrostatics

– Current

– Isotype heterojunctions

Page 2: Lecture contents - albany.edusoktyabr/NNSE618/NNSE618-L21-hetero... · NNSE 618 Lecture #21 ... Flat-band diagram of a p-n heterojunctions p cn n cp i Fn Fp c n N n N q E kT 0 I

NNSE 618 Lecture #21

2

• Determine band discontinuities DEc and DEv

from difference in electron affinities:

• Determine the built-in voltage from the

difference in work functions.

• Draw the bands at for the appropriate

doping

• Determine Vn and Vp and xn and xp from the

solution of Poisson’s Equation using Full

Depletion Approximation with fi as a

boundary condition.

Heterojunction: Band lineup

Formation of P-n heterojunction

21 mmFpFni qqEEq fff

Page 3: Lecture contents - albany.edusoktyabr/NNSE618/NNSE618-L21-hetero... · NNSE 618 Lecture #21 ... Flat-band diagram of a p-n heterojunctions p cn n cp i Fn Fp c n N n N q E kT 0 I

NNSE 618 Lecture #21

3

Type I (Straddling Alignment)

• AlGaAs/GaAs

• GaSb/AlSb

• GaAs/GaP

Type II (Staggered)

• InP/Al0.48In0.52P

• InxGa1-xAs/GaxSbxAs

• AlxIn1-xAs/InP

Type III (broken gap)

• InAs/GaSb

Types of heterojunctions

From Shur, 2003

Page 4: Lecture contents - albany.edusoktyabr/NNSE618/NNSE618-L21-hetero... · NNSE 618 Lecture #21 ... Flat-band diagram of a p-n heterojunctions p cn n cp i Fn Fp c n N n N q E kT 0 I

NNSE 618 Lecture #21

4

Type I: AlGaAs/GaAs

Types of heterojunctions

-6

-5.5

-5

-4.5

-4

-3.5

-3

0 0.2 0.4 0.6 0.8 1

Al content

Ban

d E

nerg

y, eV

Conduction band

Valence band (-0.46x)

Type III : InAs/GaSb

Page 5: Lecture contents - albany.edusoktyabr/NNSE618/NNSE618-L21-hetero... · NNSE 618 Lecture #21 ... Flat-band diagram of a p-n heterojunctions p cn n cp i Fn Fp c n N n N q E kT 0 I

NNSE 618 Lecture #21

5

Band edges alignment

(From Tiwari and Frank, APL 1992)

Page 6: Lecture contents - albany.edusoktyabr/NNSE618/NNSE618-L21-hetero... · NNSE 618 Lecture #21 ... Flat-band diagram of a p-n heterojunctions p cn n cp i Fn Fp c n N n N q E kT 0 I

NNSE 618 Lecture #21

6

Junction barrier:

The same using valence band parameters

• Or combining the two, independent of the free

carrier concentrations:

p-N heterojunction: electrostatics

Flat-band diagram of a p-n heterojunctions

cnp

cpn

cFpFniNn

NnkTEEEq

0

0lnDf

vpcn

cpvn

ipin

advci

NN

NNkT

nn

NNkT

EEq ln

2ln

2

DDf

vpn

vnp

viNp

NpkTEq

0

0lnDf

if

Page 7: Lecture contents - albany.edusoktyabr/NNSE618/NNSE618-L21-hetero... · NNSE 618 Lecture #21 ... Flat-band diagram of a p-n heterojunctions p cn n cp i Fn Fp c n N n N q E kT 0 I

NNSE 618 Lecture #21

7

Depletion widths and band bending are

calculated similar to a p-n homojunction

by solving the Poisson equation:

p-N heterojunction: electrostatics

Band diagram of a n-P heterojunctions

ai

d

nn V

Nqx

f

12

ai

a

p

p VNq

x f2

apdn

dn

NN

N

with

tain VVV f 211

taip VVV f 21

nx px

Page 8: Lecture contents - albany.edusoktyabr/NNSE618/NNSE618-L21-hetero... · NNSE 618 Lecture #21 ... Flat-band diagram of a p-n heterojunctions p cn n cp i Fn Fp c n N n N q E kT 0 I

NNSE 618 Lecture #21

8

• Band discontinuities result in the abrupt

changes in carrier densities at the

heterojunction

• In homojunction, the carrier densities are

continuous

• Carrier jump scales as (e.g. for holes):

• If Vp=Vn when nNd = pNa then majority

carrier densities will be equal at the

interface, but this is rather special case.

P-n heterojunction: free carrier profiles

Free carrier densities in p-N heterojunction

From Harris, 2002

Free carrier densities in p-n homojunction

Page 9: Lecture contents - albany.edusoktyabr/NNSE618/NNSE618-L21-hetero... · NNSE 618 Lecture #21 ... Flat-band diagram of a p-n heterojunctions p cn n cp i Fn Fp c n N n N q E kT 0 I

NNSE 618 Lecture #21

9

Graded

Forward

• Diffusion of majority

carriers

• Traps & recombination

in depletion region

Reverse

• Drift of Minority

Carriers

• Traps & recombination

in depletion region

Currents in heterojunctions

Forward

Abrupt

Forward

• Thermionic emission

over abrupt barrier

Reverse

• Thermionic emission

over abrupt barrier

• Drift of Minority

Carriers

Direct bias: injection

Carrier injection is controlled by the energy

barriers. Majority carrier injection from the

wide bandgap material is favored (electrons

in the Figs.) because of the reduction of

barrier for electrons by DEc and increase of

barrier for holes by DEv .

Currents: major mechanisms

Mechanisms can change with bias and doping asymmetry

From Harris, 2002

Page 10: Lecture contents - albany.edusoktyabr/NNSE618/NNSE618-L21-hetero... · NNSE 618 Lecture #21 ... Flat-band diagram of a p-n heterojunctions p cn n cp i Fn Fp c n N n N q E kT 0 I

NNSE 618 Lecture #21

10

Under forward bias at the edge of depletion region:

Low level injection,

• majority carrier density is constant:

• minority carrier density

High level injection,

• Minority & majority carrier density ~ equal

By having most of the depletion region in the

widegap material, G-R in the depletion region

is ~Ni ,and therefore, significantly reduced

Current in heterojunctions

ta VVipp enpn 2

ta VV

a

ip e

N

nn

2

ap Np

ta VVipp enpn

2

Page 11: Lecture contents - albany.edusoktyabr/NNSE618/NNSE618-L21-hetero... · NNSE 618 Lecture #21 ... Flat-band diagram of a p-n heterojunctions p cn n cp i Fn Fp c n N n N q E kT 0 I

NNSE 618 Lecture #21

11

• Isotype N-n+ heterojunction in thermal

Equilibrium

The properties of such junctions are very important

in VCSELs because there can be as many as 60-70

of them in series!

• Isotype N-n heterojunction under “Forward”

bias (negative bias to N-side)

Barrier VN decreases with applied bias, greatly

increasing J2 while J1 remains relatively constant

(compare with injection from wide-bandgap

material).

• Isotype N-n heterojunction under “Reverse”

bias (Positive bias to N-side)

Barrier VN increases with applied bias, reducing J2

to zero while J1 remains relatively constant, hence

the reverse current “saturates”

• Current is mainly thermionic as in M-S.

Isotype heterojunction

From Harris, 2002

Page 12: Lecture contents - albany.edusoktyabr/NNSE618/NNSE618-L21-hetero... · NNSE 618 Lecture #21 ... Flat-band diagram of a p-n heterojunctions p cn n cp i Fn Fp c n N n N q E kT 0 I

NNSE 618 Lecture #21

12 Simple edge-emitting semiconductor laser diode

• In principle, a simple p-n junction may operate as a laser. However, a

double-heterostructure (DHS) laser diode is much more effective.

Broad area DHS semiconductor laser

• Advantage: acts as a light guide in the lateral direction

• Would be disadvantage for an LED: re-absorption

• However, the absorption becomes the gain - is favorable for lasing !

• Favorable for lasing also are:

• Confinement of electrons and holes - efficient recombination

• Confinement of light can be further control in separate confinement

structures

From Ebeling, 1992

Page 13: Lecture contents - albany.edusoktyabr/NNSE618/NNSE618-L21-hetero... · NNSE 618 Lecture #21 ... Flat-band diagram of a p-n heterojunctions p cn n cp i Fn Fp c n N n N q E kT 0 I

NNSE 618 Lecture #21

13

Simple edge-emitting semiconductor laser diode

• In p-n homojunction concentration of carriers is determined by diffusion

length and injection current.

• Problem of carrier diffusion can be overcome by heterojunction barrier.

• for AlxGa0.7As barrier with x = 0.3 DEn & DEp >12kT,

• Carrier leakage is reduced

• Injection rate

inj

dn J

dt qd

d