199
Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department of Mathematical Science KAIST, Daejeon, South Korea Fall semester, 2012 S. Choi (KAIST) Logic and set theory October 7, 2012 1 / 26

Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Logic and the set theoryLecture 9: Predicate Calculus

S. Choi

Department of Mathematical ScienceKAIST, Daejeon, South Korea

Fall semester, 2012

S. Choi (KAIST) Logic and set theory October 7, 2012 1 / 26

Page 2: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Introduction

About this lecture

Reasoning in predicate calculus

Inference rules for the universal quantifiersInference rules for the existential quantifiersTheorems and quantifier equivalence rulesInference rules for the identity predicateCourse homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://KLMS.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory October 7, 2012 2 / 26

Page 3: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Introduction

About this lecture

Reasoning in predicate calculusInference rules for the universal quantifiers

Inference rules for the existential quantifiersTheorems and quantifier equivalence rulesInference rules for the identity predicateCourse homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://KLMS.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory October 7, 2012 2 / 26

Page 4: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Introduction

About this lecture

Reasoning in predicate calculusInference rules for the universal quantifiersInference rules for the existential quantifiers

Theorems and quantifier equivalence rulesInference rules for the identity predicateCourse homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://KLMS.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory October 7, 2012 2 / 26

Page 5: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Introduction

About this lecture

Reasoning in predicate calculusInference rules for the universal quantifiersInference rules for the existential quantifiersTheorems and quantifier equivalence rules

Inference rules for the identity predicateCourse homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://KLMS.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory October 7, 2012 2 / 26

Page 6: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Introduction

About this lecture

Reasoning in predicate calculusInference rules for the universal quantifiersInference rules for the existential quantifiersTheorems and quantifier equivalence rulesInference rules for the identity predicate

Course homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://KLMS.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory October 7, 2012 2 / 26

Page 7: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Introduction

About this lecture

Reasoning in predicate calculusInference rules for the universal quantifiersInference rules for the existential quantifiersTheorems and quantifier equivalence rulesInference rules for the identity predicateCourse homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://KLMS.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory October 7, 2012 2 / 26

Page 8: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Introduction

About this lecture

Reasoning in predicate calculusInference rules for the universal quantifiersInference rules for the existential quantifiersTheorems and quantifier equivalence rulesInference rules for the identity predicateCourse homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://KLMS.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory October 7, 2012 2 / 26

Page 9: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Introduction

Some helpful referencesSets, Logic and Categories, Peter J. Cameron, Springer. ReadChapters 3,4,5.

A mathematical introduction to logic, H. Enderton, AcademicPress.http://plato.stanford.edu/contents.html has muchresource.http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/CourseHome/ See "Monadic PredicateCalculus" and MPC completeness, Predicate Calculus, PredicateCalculus Deriviationshttp://philosophy.hku.hk/think/pl/. See Module:Predicate Logic.http://logic.philosophy.ox.ac.uk/. See "PredicateCalculus" in Tutorial.

S. Choi (KAIST) Logic and set theory October 7, 2012 3 / 26

Page 10: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Introduction

Some helpful referencesSets, Logic and Categories, Peter J. Cameron, Springer. ReadChapters 3,4,5.A mathematical introduction to logic, H. Enderton, AcademicPress.

http://plato.stanford.edu/contents.html has muchresource.http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/CourseHome/ See "Monadic PredicateCalculus" and MPC completeness, Predicate Calculus, PredicateCalculus Deriviationshttp://philosophy.hku.hk/think/pl/. See Module:Predicate Logic.http://logic.philosophy.ox.ac.uk/. See "PredicateCalculus" in Tutorial.

S. Choi (KAIST) Logic and set theory October 7, 2012 3 / 26

Page 11: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Introduction

Some helpful referencesSets, Logic and Categories, Peter J. Cameron, Springer. ReadChapters 3,4,5.A mathematical introduction to logic, H. Enderton, AcademicPress.http://plato.stanford.edu/contents.html has muchresource.

http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/CourseHome/ See "Monadic PredicateCalculus" and MPC completeness, Predicate Calculus, PredicateCalculus Deriviationshttp://philosophy.hku.hk/think/pl/. See Module:Predicate Logic.http://logic.philosophy.ox.ac.uk/. See "PredicateCalculus" in Tutorial.

S. Choi (KAIST) Logic and set theory October 7, 2012 3 / 26

Page 12: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Introduction

Some helpful referencesSets, Logic and Categories, Peter J. Cameron, Springer. ReadChapters 3,4,5.A mathematical introduction to logic, H. Enderton, AcademicPress.http://plato.stanford.edu/contents.html has muchresource.http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/CourseHome/ See "Monadic PredicateCalculus" and MPC completeness, Predicate Calculus, PredicateCalculus Deriviations

http://philosophy.hku.hk/think/pl/. See Module:Predicate Logic.http://logic.philosophy.ox.ac.uk/. See "PredicateCalculus" in Tutorial.

S. Choi (KAIST) Logic and set theory October 7, 2012 3 / 26

Page 13: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Introduction

Some helpful referencesSets, Logic and Categories, Peter J. Cameron, Springer. ReadChapters 3,4,5.A mathematical introduction to logic, H. Enderton, AcademicPress.http://plato.stanford.edu/contents.html has muchresource.http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/CourseHome/ See "Monadic PredicateCalculus" and MPC completeness, Predicate Calculus, PredicateCalculus Deriviationshttp://philosophy.hku.hk/think/pl/. See Module:Predicate Logic.

http://logic.philosophy.ox.ac.uk/. See "PredicateCalculus" in Tutorial.

S. Choi (KAIST) Logic and set theory October 7, 2012 3 / 26

Page 14: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Introduction

Some helpful referencesSets, Logic and Categories, Peter J. Cameron, Springer. ReadChapters 3,4,5.A mathematical introduction to logic, H. Enderton, AcademicPress.http://plato.stanford.edu/contents.html has muchresource.http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/CourseHome/ See "Monadic PredicateCalculus" and MPC completeness, Predicate Calculus, PredicateCalculus Deriviationshttp://philosophy.hku.hk/think/pl/. See Module:Predicate Logic.http://logic.philosophy.ox.ac.uk/. See "PredicateCalculus" in Tutorial.

S. Choi (KAIST) Logic and set theory October 7, 2012 3 / 26

Page 15: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Introduction

Some helpful references

http://en.wikipedia.org/wiki/Truth_table,

http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral.html, complete (i.e. has all the steps)http://svn.oriontransfer.org/TruthTable/index.rhtml,has xor, complete.

S. Choi (KAIST) Logic and set theory October 7, 2012 4 / 26

Page 16: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Introduction

Some helpful references

http://en.wikipedia.org/wiki/Truth_table,http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral.html, complete (i.e. has all the steps)

http://svn.oriontransfer.org/TruthTable/index.rhtml,has xor, complete.

S. Choi (KAIST) Logic and set theory October 7, 2012 4 / 26

Page 17: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Introduction

Some helpful references

http://en.wikipedia.org/wiki/Truth_table,http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral.html, complete (i.e. has all the steps)http://svn.oriontransfer.org/TruthTable/index.rhtml,has xor, complete.

S. Choi (KAIST) Logic and set theory October 7, 2012 4 / 26

Page 18: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Inference rules for the universal quantifiers

The inferences rules of propositional calculus hold here also.

Here we use ` since this is an inference without models.Universal elimination or universal instantiation ∀E :Given a wff ∀βφ, we may infer φα/β replacing each occurence of βwith some name letter α. (could be a new one withoutassumptions.)Example: ∀x(M1x → M2x),M1S ` M2S.1. ∀x(M1x → M2x). A, 2. M1S A, 3. M1S → M2S. 4. M2S.

S. Choi (KAIST) Logic and set theory October 7, 2012 5 / 26

Page 19: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Inference rules for the universal quantifiers

The inferences rules of propositional calculus hold here also.Here we use ` since this is an inference without models.

Universal elimination or universal instantiation ∀E :Given a wff ∀βφ, we may infer φα/β replacing each occurence of βwith some name letter α. (could be a new one withoutassumptions.)Example: ∀x(M1x → M2x),M1S ` M2S.1. ∀x(M1x → M2x). A, 2. M1S A, 3. M1S → M2S. 4. M2S.

S. Choi (KAIST) Logic and set theory October 7, 2012 5 / 26

Page 20: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Inference rules for the universal quantifiers

The inferences rules of propositional calculus hold here also.Here we use ` since this is an inference without models.Universal elimination or universal instantiation ∀E :

Given a wff ∀βφ, we may infer φα/β replacing each occurence of βwith some name letter α. (could be a new one withoutassumptions.)Example: ∀x(M1x → M2x),M1S ` M2S.1. ∀x(M1x → M2x). A, 2. M1S A, 3. M1S → M2S. 4. M2S.

S. Choi (KAIST) Logic and set theory October 7, 2012 5 / 26

Page 21: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Inference rules for the universal quantifiers

The inferences rules of propositional calculus hold here also.Here we use ` since this is an inference without models.Universal elimination or universal instantiation ∀E :Given a wff ∀βφ, we may infer φα/β replacing each occurence of βwith some name letter α. (could be a new one withoutassumptions.)

Example: ∀x(M1x → M2x),M1S ` M2S.1. ∀x(M1x → M2x). A, 2. M1S A, 3. M1S → M2S. 4. M2S.

S. Choi (KAIST) Logic and set theory October 7, 2012 5 / 26

Page 22: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Inference rules for the universal quantifiers

The inferences rules of propositional calculus hold here also.Here we use ` since this is an inference without models.Universal elimination or universal instantiation ∀E :Given a wff ∀βφ, we may infer φα/β replacing each occurence of βwith some name letter α. (could be a new one withoutassumptions.)Example: ∀x(M1x → M2x),M1S ` M2S.

1. ∀x(M1x → M2x). A, 2. M1S A, 3. M1S → M2S. 4. M2S.

S. Choi (KAIST) Logic and set theory October 7, 2012 5 / 26

Page 23: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Inference rules for the universal quantifiers

The inferences rules of propositional calculus hold here also.Here we use ` since this is an inference without models.Universal elimination or universal instantiation ∀E :Given a wff ∀βφ, we may infer φα/β replacing each occurence of βwith some name letter α. (could be a new one withoutassumptions.)Example: ∀x(M1x → M2x),M1S ` M2S.1. ∀x(M1x → M2x). A, 2. M1S A, 3. M1S → M2S. 4. M2S.

S. Choi (KAIST) Logic and set theory October 7, 2012 5 / 26

Page 24: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Example

¬Fa ` ¬∀xFx .

1. ¬Fa A.2.: ∀xFx H.3.: Fa. 2.4.: Fa ∧ ¬Fa. 1.35. ¬∀xFx . 1-4

S. Choi (KAIST) Logic and set theory October 7, 2012 6 / 26

Page 25: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Example

¬Fa ` ¬∀xFx .1. ¬Fa A.

2.: ∀xFx H.3.: Fa. 2.4.: Fa ∧ ¬Fa. 1.35. ¬∀xFx . 1-4

S. Choi (KAIST) Logic and set theory October 7, 2012 6 / 26

Page 26: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Example

¬Fa ` ¬∀xFx .1. ¬Fa A.2.: ∀xFx H.

3.: Fa. 2.4.: Fa ∧ ¬Fa. 1.35. ¬∀xFx . 1-4

S. Choi (KAIST) Logic and set theory October 7, 2012 6 / 26

Page 27: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Example

¬Fa ` ¬∀xFx .1. ¬Fa A.2.: ∀xFx H.3.: Fa. 2.

4.: Fa ∧ ¬Fa. 1.35. ¬∀xFx . 1-4

S. Choi (KAIST) Logic and set theory October 7, 2012 6 / 26

Page 28: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Example

¬Fa ` ¬∀xFx .1. ¬Fa A.2.: ∀xFx H.3.: Fa. 2.4.: Fa ∧ ¬Fa. 1.3

5. ¬∀xFx . 1-4

S. Choi (KAIST) Logic and set theory October 7, 2012 6 / 26

Page 29: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Example

¬Fa ` ¬∀xFx .1. ¬Fa A.2.: ∀xFx H.3.: Fa. 2.4.: Fa ∧ ¬Fa. 1.35. ¬∀xFx . 1-4

S. Choi (KAIST) Logic and set theory October 7, 2012 6 / 26

Page 30: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Universal Introduction

φ containing a name letter α without any conditions on it. Wereplace by ∀βφβ/α.

Here φβ/α is the result of replacing all occurance of α with β.Some restrictions:

I The name letter α may not appear in any assumptions.I The name letter α may not appear in any hypothesis in effect at the

line where φ occurs.I φβ/α here is the result of replacing every occurance of α with β.I We can introduce one quantifier at a time.

S. Choi (KAIST) Logic and set theory October 7, 2012 7 / 26

Page 31: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Universal Introduction

φ containing a name letter α without any conditions on it. Wereplace by ∀βφβ/α.Here φβ/α is the result of replacing all occurance of α with β.

Some restrictions:

I The name letter α may not appear in any assumptions.I The name letter α may not appear in any hypothesis in effect at the

line where φ occurs.I φβ/α here is the result of replacing every occurance of α with β.I We can introduce one quantifier at a time.

S. Choi (KAIST) Logic and set theory October 7, 2012 7 / 26

Page 32: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Universal Introduction

φ containing a name letter α without any conditions on it. Wereplace by ∀βφβ/α.Here φβ/α is the result of replacing all occurance of α with β.Some restrictions:

I The name letter α may not appear in any assumptions.I The name letter α may not appear in any hypothesis in effect at the

line where φ occurs.I φβ/α here is the result of replacing every occurance of α with β.I We can introduce one quantifier at a time.

S. Choi (KAIST) Logic and set theory October 7, 2012 7 / 26

Page 33: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Universal Introduction

φ containing a name letter α without any conditions on it. Wereplace by ∀βφβ/α.Here φβ/α is the result of replacing all occurance of α with β.Some restrictions:

I The name letter α may not appear in any assumptions.

I The name letter α may not appear in any hypothesis in effect at theline where φ occurs.

I φβ/α here is the result of replacing every occurance of α with β.I We can introduce one quantifier at a time.

S. Choi (KAIST) Logic and set theory October 7, 2012 7 / 26

Page 34: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Universal Introduction

φ containing a name letter α without any conditions on it. Wereplace by ∀βφβ/α.Here φβ/α is the result of replacing all occurance of α with β.Some restrictions:

I The name letter α may not appear in any assumptions.I The name letter α may not appear in any hypothesis in effect at the

line where φ occurs.

I φβ/α here is the result of replacing every occurance of α with β.I We can introduce one quantifier at a time.

S. Choi (KAIST) Logic and set theory October 7, 2012 7 / 26

Page 35: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Universal Introduction

φ containing a name letter α without any conditions on it. Wereplace by ∀βφβ/α.Here φβ/α is the result of replacing all occurance of α with β.Some restrictions:

I The name letter α may not appear in any assumptions.I The name letter α may not appear in any hypothesis in effect at the

line where φ occurs.I φβ/α here is the result of replacing every occurance of α with β.

I We can introduce one quantifier at a time.

S. Choi (KAIST) Logic and set theory October 7, 2012 7 / 26

Page 36: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Universal Introduction

φ containing a name letter α without any conditions on it. Wereplace by ∀βφβ/α.Here φβ/α is the result of replacing all occurance of α with β.Some restrictions:

I The name letter α may not appear in any assumptions.I The name letter α may not appear in any hypothesis in effect at the

line where φ occurs.I φβ/α here is the result of replacing every occurance of α with β.I We can introduce one quantifier at a time.

S. Choi (KAIST) Logic and set theory October 7, 2012 7 / 26

Page 37: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

ExamplesFa A. ` ∀xAx . This is incorrect.

∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx , Fa → ∀xGx . This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ` ∀xFx ∧ ∀xGx .Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.3. Fa.4. Gb.5. ∀xFx .6. ∀xGx .7. ∀xFx ∧ ∀xGx .Is the converse true also. How does one prove it?

S. Choi (KAIST) Logic and set theory October 7, 2012 8 / 26

Page 38: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

ExamplesFa A. ` ∀xAx . This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx , Fa → ∀xGx . This isincorrect.

∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ` ∀xFx ∧ ∀xGx .Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.3. Fa.4. Gb.5. ∀xFx .6. ∀xGx .7. ∀xFx ∧ ∀xGx .Is the converse true also. How does one prove it?

S. Choi (KAIST) Logic and set theory October 7, 2012 8 / 26

Page 39: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

ExamplesFa A. ` ∀xAx . This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx , Fa → ∀xGx . This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.

∀x(Fx ∧ Gx) ` ∀xFx ∧ ∀xGx .Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.3. Fa.4. Gb.5. ∀xFx .6. ∀xGx .7. ∀xFx ∧ ∀xGx .Is the converse true also. How does one prove it?

S. Choi (KAIST) Logic and set theory October 7, 2012 8 / 26

Page 40: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

ExamplesFa A. ` ∀xAx . This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx , Fa → ∀xGx . This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ` ∀xFx ∧ ∀xGx .

Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.3. Fa.4. Gb.5. ∀xFx .6. ∀xGx .7. ∀xFx ∧ ∀xGx .Is the converse true also. How does one prove it?

S. Choi (KAIST) Logic and set theory October 7, 2012 8 / 26

Page 41: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

ExamplesFa A. ` ∀xAx . This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx , Fa → ∀xGx . This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ` ∀xFx ∧ ∀xGx .Proof: 1. ∀x(Gx ∧ Fx) A.

2. Fa ∧ Ga from 1.3. Fa.4. Gb.5. ∀xFx .6. ∀xGx .7. ∀xFx ∧ ∀xGx .Is the converse true also. How does one prove it?

S. Choi (KAIST) Logic and set theory October 7, 2012 8 / 26

Page 42: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

ExamplesFa A. ` ∀xAx . This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx , Fa → ∀xGx . This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ` ∀xFx ∧ ∀xGx .Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.

3. Fa.4. Gb.5. ∀xFx .6. ∀xGx .7. ∀xFx ∧ ∀xGx .Is the converse true also. How does one prove it?

S. Choi (KAIST) Logic and set theory October 7, 2012 8 / 26

Page 43: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

ExamplesFa A. ` ∀xAx . This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx , Fa → ∀xGx . This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ` ∀xFx ∧ ∀xGx .Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.3. Fa.

4. Gb.5. ∀xFx .6. ∀xGx .7. ∀xFx ∧ ∀xGx .Is the converse true also. How does one prove it?

S. Choi (KAIST) Logic and set theory October 7, 2012 8 / 26

Page 44: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

ExamplesFa A. ` ∀xAx . This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx , Fa → ∀xGx . This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ` ∀xFx ∧ ∀xGx .Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.3. Fa.4. Gb.

5. ∀xFx .6. ∀xGx .7. ∀xFx ∧ ∀xGx .Is the converse true also. How does one prove it?

S. Choi (KAIST) Logic and set theory October 7, 2012 8 / 26

Page 45: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

ExamplesFa A. ` ∀xAx . This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx , Fa → ∀xGx . This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ` ∀xFx ∧ ∀xGx .Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.3. Fa.4. Gb.5. ∀xFx .

6. ∀xGx .7. ∀xFx ∧ ∀xGx .Is the converse true also. How does one prove it?

S. Choi (KAIST) Logic and set theory October 7, 2012 8 / 26

Page 46: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

ExamplesFa A. ` ∀xAx . This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx , Fa → ∀xGx . This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ` ∀xFx ∧ ∀xGx .Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.3. Fa.4. Gb.5. ∀xFx .6. ∀xGx .

7. ∀xFx ∧ ∀xGx .Is the converse true also. How does one prove it?

S. Choi (KAIST) Logic and set theory October 7, 2012 8 / 26

Page 47: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

ExamplesFa A. ` ∀xAx . This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx , Fa → ∀xGx . This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ` ∀xFx ∧ ∀xGx .Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.3. Fa.4. Gb.5. ∀xFx .6. ∀xGx .7. ∀xFx ∧ ∀xGx .

Is the converse true also. How does one prove it?

S. Choi (KAIST) Logic and set theory October 7, 2012 8 / 26

Page 48: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

ExamplesFa A. ` ∀xAx . This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx , Fa → ∀xGx . This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ` ∀xFx ∧ ∀xGx .Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.3. Fa.4. Gb.5. ∀xFx .6. ∀xGx .7. ∀xFx ∧ ∀xGx .Is the converse true also. How does one prove it?

S. Choi (KAIST) Logic and set theory October 7, 2012 8 / 26

Page 49: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Examples

∀x(Fx → (Gx ∨ Hx)),∀x¬Gx ` ∀xFx → ∀xHx .

1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).4. ¬Ga.5.: ∀xFx H.6.: Fa.7.: Ga ∨ Ha. from 3.8.: Ha. 4 7. Disjunctive Syllogism9.: ∀xHx .10. ∀xFx → ∀xHx .

S. Choi (KAIST) Logic and set theory October 7, 2012 9 / 26

Page 50: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Examples

∀x(Fx → (Gx ∨ Hx)),∀x¬Gx ` ∀xFx → ∀xHx .1. ∀x(Fx → (Gx ∨ Hx)) A.

2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).4. ¬Ga.5.: ∀xFx H.6.: Fa.7.: Ga ∨ Ha. from 3.8.: Ha. 4 7. Disjunctive Syllogism9.: ∀xHx .10. ∀xFx → ∀xHx .

S. Choi (KAIST) Logic and set theory October 7, 2012 9 / 26

Page 51: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Examples

∀x(Fx → (Gx ∨ Hx)),∀x¬Gx ` ∀xFx → ∀xHx .1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.

3. Fa → (Ga ∨ Ha).4. ¬Ga.5.: ∀xFx H.6.: Fa.7.: Ga ∨ Ha. from 3.8.: Ha. 4 7. Disjunctive Syllogism9.: ∀xHx .10. ∀xFx → ∀xHx .

S. Choi (KAIST) Logic and set theory October 7, 2012 9 / 26

Page 52: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Examples

∀x(Fx → (Gx ∨ Hx)),∀x¬Gx ` ∀xFx → ∀xHx .1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).

4. ¬Ga.5.: ∀xFx H.6.: Fa.7.: Ga ∨ Ha. from 3.8.: Ha. 4 7. Disjunctive Syllogism9.: ∀xHx .10. ∀xFx → ∀xHx .

S. Choi (KAIST) Logic and set theory October 7, 2012 9 / 26

Page 53: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Examples

∀x(Fx → (Gx ∨ Hx)),∀x¬Gx ` ∀xFx → ∀xHx .1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).4. ¬Ga.

5.: ∀xFx H.6.: Fa.7.: Ga ∨ Ha. from 3.8.: Ha. 4 7. Disjunctive Syllogism9.: ∀xHx .10. ∀xFx → ∀xHx .

S. Choi (KAIST) Logic and set theory October 7, 2012 9 / 26

Page 54: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Examples

∀x(Fx → (Gx ∨ Hx)),∀x¬Gx ` ∀xFx → ∀xHx .1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).4. ¬Ga.5.: ∀xFx H.

6.: Fa.7.: Ga ∨ Ha. from 3.8.: Ha. 4 7. Disjunctive Syllogism9.: ∀xHx .10. ∀xFx → ∀xHx .

S. Choi (KAIST) Logic and set theory October 7, 2012 9 / 26

Page 55: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Examples

∀x(Fx → (Gx ∨ Hx)),∀x¬Gx ` ∀xFx → ∀xHx .1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).4. ¬Ga.5.: ∀xFx H.6.: Fa.

7.: Ga ∨ Ha. from 3.8.: Ha. 4 7. Disjunctive Syllogism9.: ∀xHx .10. ∀xFx → ∀xHx .

S. Choi (KAIST) Logic and set theory October 7, 2012 9 / 26

Page 56: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Examples

∀x(Fx → (Gx ∨ Hx)),∀x¬Gx ` ∀xFx → ∀xHx .1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).4. ¬Ga.5.: ∀xFx H.6.: Fa.7.: Ga ∨ Ha. from 3.

8.: Ha. 4 7. Disjunctive Syllogism9.: ∀xHx .10. ∀xFx → ∀xHx .

S. Choi (KAIST) Logic and set theory October 7, 2012 9 / 26

Page 57: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Examples

∀x(Fx → (Gx ∨ Hx)),∀x¬Gx ` ∀xFx → ∀xHx .1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).4. ¬Ga.5.: ∀xFx H.6.: Fa.7.: Ga ∨ Ha. from 3.8.: Ha. 4 7. Disjunctive Syllogism

9.: ∀xHx .10. ∀xFx → ∀xHx .

S. Choi (KAIST) Logic and set theory October 7, 2012 9 / 26

Page 58: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Examples

∀x(Fx → (Gx ∨ Hx)),∀x¬Gx ` ∀xFx → ∀xHx .1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).4. ¬Ga.5.: ∀xFx H.6.: Fa.7.: Ga ∨ Ha. from 3.8.: Ha. 4 7. Disjunctive Syllogism9.: ∀xHx .

10. ∀xFx → ∀xHx .

S. Choi (KAIST) Logic and set theory October 7, 2012 9 / 26

Page 59: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Examples

∀x(Fx → (Gx ∨ Hx)),∀x¬Gx ` ∀xFx → ∀xHx .1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).4. ¬Ga.5.: ∀xFx H.6.: Fa.7.: Ga ∨ Ha. from 3.8.: Ha. 4 7. Disjunctive Syllogism9.: ∀xHx .10. ∀xFx → ∀xHx .

S. Choi (KAIST) Logic and set theory October 7, 2012 9 / 26

Page 60: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Interchangiblility proof:

∀x∀y interchangible to ∀y∀x .

∃x∃y interchangible to ∃y∃x .The first one can be done.∀x∀yφ(x , y) ↔ ∀y∀xφ(x , y).Proof follows from the universal instantiations and introductions.The second one is similar and proved after the inference rules forexistential quantifiers.

S. Choi (KAIST) Logic and set theory October 7, 2012 10 / 26

Page 61: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Interchangiblility proof:

∀x∀y interchangible to ∀y∀x .∃x∃y interchangible to ∃y∃x .

The first one can be done.∀x∀yφ(x , y) ↔ ∀y∀xφ(x , y).Proof follows from the universal instantiations and introductions.The second one is similar and proved after the inference rules forexistential quantifiers.

S. Choi (KAIST) Logic and set theory October 7, 2012 10 / 26

Page 62: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Interchangiblility proof:

∀x∀y interchangible to ∀y∀x .∃x∃y interchangible to ∃y∃x .The first one can be done.

∀x∀yφ(x , y) ↔ ∀y∀xφ(x , y).Proof follows from the universal instantiations and introductions.The second one is similar and proved after the inference rules forexistential quantifiers.

S. Choi (KAIST) Logic and set theory October 7, 2012 10 / 26

Page 63: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Interchangiblility proof:

∀x∀y interchangible to ∀y∀x .∃x∃y interchangible to ∃y∃x .The first one can be done.∀x∀yφ(x , y) ↔ ∀y∀xφ(x , y).

Proof follows from the universal instantiations and introductions.The second one is similar and proved after the inference rules forexistential quantifiers.

S. Choi (KAIST) Logic and set theory October 7, 2012 10 / 26

Page 64: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Interchangiblility proof:

∀x∀y interchangible to ∀y∀x .∃x∃y interchangible to ∃y∃x .The first one can be done.∀x∀yφ(x , y) ↔ ∀y∀xφ(x , y).Proof follows from the universal instantiations and introductions.

The second one is similar and proved after the inference rules forexistential quantifiers.

S. Choi (KAIST) Logic and set theory October 7, 2012 10 / 26

Page 65: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for the universal quantifiers

Interchangiblility proof:

∀x∀y interchangible to ∀y∀x .∃x∃y interchangible to ∃y∃x .The first one can be done.∀x∀yφ(x , y) ↔ ∀y∀xφ(x , y).Proof follows from the universal instantiations and introductions.The second one is similar and proved after the inference rules forexistential quantifiers.

S. Choi (KAIST) Logic and set theory October 7, 2012 10 / 26

Page 66: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Inference rules for existential quantifiers

Existential introduction ∃I.

φ contains α. Replace with ∃βφβ/α. Here we replace someoccurrences of α with β.The previous occurrence of α does not matter.We can introduce one quantifier at a time. (This is also true in ∀I.)

S. Choi (KAIST) Logic and set theory October 7, 2012 11 / 26

Page 67: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Inference rules for existential quantifiers

Existential introduction ∃I.φ contains α. Replace with ∃βφβ/α. Here we replace someoccurrences of α with β.

The previous occurrence of α does not matter.We can introduce one quantifier at a time. (This is also true in ∀I.)

S. Choi (KAIST) Logic and set theory October 7, 2012 11 / 26

Page 68: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Inference rules for existential quantifiers

Existential introduction ∃I.φ contains α. Replace with ∃βφβ/α. Here we replace someoccurrences of α with β.The previous occurrence of α does not matter.

We can introduce one quantifier at a time. (This is also true in ∀I.)

S. Choi (KAIST) Logic and set theory October 7, 2012 11 / 26

Page 69: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Inference rules for existential quantifiers

Existential introduction ∃I.φ contains α. Replace with ∃βφβ/α. Here we replace someoccurrences of α with β.The previous occurrence of α does not matter.We can introduce one quantifier at a time. (This is also true in ∀I.)

S. Choi (KAIST) Logic and set theory October 7, 2012 11 / 26

Page 70: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Inference rules for existential quantifiers

Example: ¬∃xFx ` ∀x¬Fx .

1. ¬∃xFx . A.2.: Fa H. (You can do that ...)3.: ∃xFx . from 2.4.: ∃xFx ∧ ¬∃xFx .5. ¬Fa.6. ∀x¬Fx .The converse can be proven also.

S. Choi (KAIST) Logic and set theory October 7, 2012 12 / 26

Page 71: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Inference rules for existential quantifiers

Example: ¬∃xFx ` ∀x¬Fx .1. ¬∃xFx . A.

2.: Fa H. (You can do that ...)3.: ∃xFx . from 2.4.: ∃xFx ∧ ¬∃xFx .5. ¬Fa.6. ∀x¬Fx .The converse can be proven also.

S. Choi (KAIST) Logic and set theory October 7, 2012 12 / 26

Page 72: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Inference rules for existential quantifiers

Example: ¬∃xFx ` ∀x¬Fx .1. ¬∃xFx . A.2.: Fa H. (You can do that ...)

3.: ∃xFx . from 2.4.: ∃xFx ∧ ¬∃xFx .5. ¬Fa.6. ∀x¬Fx .The converse can be proven also.

S. Choi (KAIST) Logic and set theory October 7, 2012 12 / 26

Page 73: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Inference rules for existential quantifiers

Example: ¬∃xFx ` ∀x¬Fx .1. ¬∃xFx . A.2.: Fa H. (You can do that ...)3.: ∃xFx . from 2.

4.: ∃xFx ∧ ¬∃xFx .5. ¬Fa.6. ∀x¬Fx .The converse can be proven also.

S. Choi (KAIST) Logic and set theory October 7, 2012 12 / 26

Page 74: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Inference rules for existential quantifiers

Example: ¬∃xFx ` ∀x¬Fx .1. ¬∃xFx . A.2.: Fa H. (You can do that ...)3.: ∃xFx . from 2.4.: ∃xFx ∧ ¬∃xFx .

5. ¬Fa.6. ∀x¬Fx .The converse can be proven also.

S. Choi (KAIST) Logic and set theory October 7, 2012 12 / 26

Page 75: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Inference rules for existential quantifiers

Example: ¬∃xFx ` ∀x¬Fx .1. ¬∃xFx . A.2.: Fa H. (You can do that ...)3.: ∃xFx . from 2.4.: ∃xFx ∧ ¬∃xFx .5. ¬Fa.

6. ∀x¬Fx .The converse can be proven also.

S. Choi (KAIST) Logic and set theory October 7, 2012 12 / 26

Page 76: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Inference rules for existential quantifiers

Example: ¬∃xFx ` ∀x¬Fx .1. ¬∃xFx . A.2.: Fa H. (You can do that ...)3.: ∃xFx . from 2.4.: ∃xFx ∧ ¬∃xFx .5. ¬Fa.6. ∀x¬Fx .

The converse can be proven also.

S. Choi (KAIST) Logic and set theory October 7, 2012 12 / 26

Page 77: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Inference rules for existential quantifiers

Example: ¬∃xFx ` ∀x¬Fx .1. ¬∃xFx . A.2.: Fa H. (You can do that ...)3.: ∃xFx . from 2.4.: ∃xFx ∧ ¬∃xFx .5. ¬Fa.6. ∀x¬Fx .The converse can be proven also.

S. Choi (KAIST) Logic and set theory October 7, 2012 12 / 26

Page 78: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example ¬∀xFx ` ∃x¬Fx .

1. ¬∀xFx .2.: ¬∃x¬Fx . (H)3.:: ¬Fa (H) (note this also.)4.:: ∃x¬Fx . 3 (∃I).5.:: ∃x¬Fx ∧ ¬∃x¬Fx 2.4.6.: Fa. 3-5.7.: ∀xFx . 6. (∀I).8.: ∀xFx ∧ ¬∀xFx . 1. 7.9. ∃x¬Fx . 2-8.

S. Choi (KAIST) Logic and set theory October 7, 2012 13 / 26

Page 79: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example ¬∀xFx ` ∃x¬Fx .1. ¬∀xFx .

2.: ¬∃x¬Fx . (H)3.:: ¬Fa (H) (note this also.)4.:: ∃x¬Fx . 3 (∃I).5.:: ∃x¬Fx ∧ ¬∃x¬Fx 2.4.6.: Fa. 3-5.7.: ∀xFx . 6. (∀I).8.: ∀xFx ∧ ¬∀xFx . 1. 7.9. ∃x¬Fx . 2-8.

S. Choi (KAIST) Logic and set theory October 7, 2012 13 / 26

Page 80: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example ¬∀xFx ` ∃x¬Fx .1. ¬∀xFx .2.: ¬∃x¬Fx . (H)

3.:: ¬Fa (H) (note this also.)4.:: ∃x¬Fx . 3 (∃I).5.:: ∃x¬Fx ∧ ¬∃x¬Fx 2.4.6.: Fa. 3-5.7.: ∀xFx . 6. (∀I).8.: ∀xFx ∧ ¬∀xFx . 1. 7.9. ∃x¬Fx . 2-8.

S. Choi (KAIST) Logic and set theory October 7, 2012 13 / 26

Page 81: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example ¬∀xFx ` ∃x¬Fx .1. ¬∀xFx .2.: ¬∃x¬Fx . (H)3.:: ¬Fa (H) (note this also.)

4.:: ∃x¬Fx . 3 (∃I).5.:: ∃x¬Fx ∧ ¬∃x¬Fx 2.4.6.: Fa. 3-5.7.: ∀xFx . 6. (∀I).8.: ∀xFx ∧ ¬∀xFx . 1. 7.9. ∃x¬Fx . 2-8.

S. Choi (KAIST) Logic and set theory October 7, 2012 13 / 26

Page 82: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example ¬∀xFx ` ∃x¬Fx .1. ¬∀xFx .2.: ¬∃x¬Fx . (H)3.:: ¬Fa (H) (note this also.)4.:: ∃x¬Fx . 3 (∃I).

5.:: ∃x¬Fx ∧ ¬∃x¬Fx 2.4.6.: Fa. 3-5.7.: ∀xFx . 6. (∀I).8.: ∀xFx ∧ ¬∀xFx . 1. 7.9. ∃x¬Fx . 2-8.

S. Choi (KAIST) Logic and set theory October 7, 2012 13 / 26

Page 83: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example ¬∀xFx ` ∃x¬Fx .1. ¬∀xFx .2.: ¬∃x¬Fx . (H)3.:: ¬Fa (H) (note this also.)4.:: ∃x¬Fx . 3 (∃I).5.:: ∃x¬Fx ∧ ¬∃x¬Fx 2.4.

6.: Fa. 3-5.7.: ∀xFx . 6. (∀I).8.: ∀xFx ∧ ¬∀xFx . 1. 7.9. ∃x¬Fx . 2-8.

S. Choi (KAIST) Logic and set theory October 7, 2012 13 / 26

Page 84: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example ¬∀xFx ` ∃x¬Fx .1. ¬∀xFx .2.: ¬∃x¬Fx . (H)3.:: ¬Fa (H) (note this also.)4.:: ∃x¬Fx . 3 (∃I).5.:: ∃x¬Fx ∧ ¬∃x¬Fx 2.4.6.: Fa. 3-5.

7.: ∀xFx . 6. (∀I).8.: ∀xFx ∧ ¬∀xFx . 1. 7.9. ∃x¬Fx . 2-8.

S. Choi (KAIST) Logic and set theory October 7, 2012 13 / 26

Page 85: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example ¬∀xFx ` ∃x¬Fx .1. ¬∀xFx .2.: ¬∃x¬Fx . (H)3.:: ¬Fa (H) (note this also.)4.:: ∃x¬Fx . 3 (∃I).5.:: ∃x¬Fx ∧ ¬∃x¬Fx 2.4.6.: Fa. 3-5.7.: ∀xFx . 6. (∀I).

8.: ∀xFx ∧ ¬∀xFx . 1. 7.9. ∃x¬Fx . 2-8.

S. Choi (KAIST) Logic and set theory October 7, 2012 13 / 26

Page 86: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example ¬∀xFx ` ∃x¬Fx .1. ¬∀xFx .2.: ¬∃x¬Fx . (H)3.:: ¬Fa (H) (note this also.)4.:: ∃x¬Fx . 3 (∃I).5.:: ∃x¬Fx ∧ ¬∃x¬Fx 2.4.6.: Fa. 3-5.7.: ∀xFx . 6. (∀I).8.: ∀xFx ∧ ¬∀xFx . 1. 7.

9. ∃x¬Fx . 2-8.

S. Choi (KAIST) Logic and set theory October 7, 2012 13 / 26

Page 87: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example ¬∀xFx ` ∃x¬Fx .1. ¬∀xFx .2.: ¬∃x¬Fx . (H)3.:: ¬Fa (H) (note this also.)4.:: ∃x¬Fx . 3 (∃I).5.:: ∃x¬Fx ∧ ¬∃x¬Fx 2.4.6.: Fa. 3-5.7.: ∀xFx . 6. (∀I).8.: ∀xFx ∧ ¬∀xFx . 1. 7.9. ∃x¬Fx . 2-8.

S. Choi (KAIST) Logic and set theory October 7, 2012 13 / 26

Page 88: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Existential Elimination

Existential Elimination ∃E :

∃βφ. We derive φα/β → ψ. Discharge φ and assert ψ.

I The name letter α may not have occurred earlier.I α may not occur at ψ.I α may not occur in assumptions.I α may not occur in hypothesis in effect.

S. Choi (KAIST) Logic and set theory October 7, 2012 14 / 26

Page 89: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Existential Elimination

Existential Elimination ∃E :∃βφ. We derive φα/β → ψ. Discharge φ and assert ψ.

I The name letter α may not have occurred earlier.I α may not occur at ψ.I α may not occur in assumptions.I α may not occur in hypothesis in effect.

S. Choi (KAIST) Logic and set theory October 7, 2012 14 / 26

Page 90: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Existential Elimination

Existential Elimination ∃E :∃βφ. We derive φα/β → ψ. Discharge φ and assert ψ.

I The name letter α may not have occurred earlier.

I α may not occur at ψ.I α may not occur in assumptions.I α may not occur in hypothesis in effect.

S. Choi (KAIST) Logic and set theory October 7, 2012 14 / 26

Page 91: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Existential Elimination

Existential Elimination ∃E :∃βφ. We derive φα/β → ψ. Discharge φ and assert ψ.

I The name letter α may not have occurred earlier.I α may not occur at ψ.

I α may not occur in assumptions.I α may not occur in hypothesis in effect.

S. Choi (KAIST) Logic and set theory October 7, 2012 14 / 26

Page 92: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Existential Elimination

Existential Elimination ∃E :∃βφ. We derive φα/β → ψ. Discharge φ and assert ψ.

I The name letter α may not have occurred earlier.I α may not occur at ψ.I α may not occur in assumptions.

I α may not occur in hypothesis in effect.

S. Choi (KAIST) Logic and set theory October 7, 2012 14 / 26

Page 93: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Existential Elimination

Existential Elimination ∃E :∃βφ. We derive φα/β → ψ. Discharge φ and assert ψ.

I The name letter α may not have occurred earlier.I α may not occur at ψ.I α may not occur in assumptions.I α may not occur in hypothesis in effect.

S. Choi (KAIST) Logic and set theory October 7, 2012 14 / 26

Page 94: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x(Fx → Gx), ∃xFx ` ∃xGx .

1. ∀x(Fx → Gx) A2. ∃xFx . A.3.: Fa. for ∃E .4.: Fa → Ga. 1,3.5.: Ga.6.: ∃xGx .7. ∃xGx .

S. Choi (KAIST) Logic and set theory October 7, 2012 15 / 26

Page 95: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x(Fx → Gx), ∃xFx ` ∃xGx .1. ∀x(Fx → Gx) A

2. ∃xFx . A.3.: Fa. for ∃E .4.: Fa → Ga. 1,3.5.: Ga.6.: ∃xGx .7. ∃xGx .

S. Choi (KAIST) Logic and set theory October 7, 2012 15 / 26

Page 96: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x(Fx → Gx), ∃xFx ` ∃xGx .1. ∀x(Fx → Gx) A2. ∃xFx . A.

3.: Fa. for ∃E .4.: Fa → Ga. 1,3.5.: Ga.6.: ∃xGx .7. ∃xGx .

S. Choi (KAIST) Logic and set theory October 7, 2012 15 / 26

Page 97: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x(Fx → Gx), ∃xFx ` ∃xGx .1. ∀x(Fx → Gx) A2. ∃xFx . A.3.: Fa. for ∃E .

4.: Fa → Ga. 1,3.5.: Ga.6.: ∃xGx .7. ∃xGx .

S. Choi (KAIST) Logic and set theory October 7, 2012 15 / 26

Page 98: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x(Fx → Gx), ∃xFx ` ∃xGx .1. ∀x(Fx → Gx) A2. ∃xFx . A.3.: Fa. for ∃E .4.: Fa → Ga. 1,3.

5.: Ga.6.: ∃xGx .7. ∃xGx .

S. Choi (KAIST) Logic and set theory October 7, 2012 15 / 26

Page 99: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x(Fx → Gx), ∃xFx ` ∃xGx .1. ∀x(Fx → Gx) A2. ∃xFx . A.3.: Fa. for ∃E .4.: Fa → Ga. 1,3.5.: Ga.

6.: ∃xGx .7. ∃xGx .

S. Choi (KAIST) Logic and set theory October 7, 2012 15 / 26

Page 100: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x(Fx → Gx), ∃xFx ` ∃xGx .1. ∀x(Fx → Gx) A2. ∃xFx . A.3.: Fa. for ∃E .4.: Fa → Ga. 1,3.5.: Ga.6.: ∃xGx .

7. ∃xGx .

S. Choi (KAIST) Logic and set theory October 7, 2012 15 / 26

Page 101: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x(Fx → Gx), ∃xFx ` ∃xGx .1. ∀x(Fx → Gx) A2. ∃xFx . A.3.: Fa. for ∃E .4.: Fa → Ga. 1,3.5.: Ga.6.: ∃xGx .7. ∃xGx .

S. Choi (KAIST) Logic and set theory October 7, 2012 15 / 26

Page 102: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x¬Fx ` ¬∃xFx .

1. ∀x¬Fx . A.2.: ∃xFx . H for ¬I.3.:: Fa. by ∃E .4.:: ¬Fa. 1,3.5.:: Fa ∧ ¬Fa.6.: ¬∃xFx .7. ∃xFx → ¬∃xFx . 2-7.8. ¬∃xFx . (Use. ¬P → P,` P or P → ¬P,` ¬P)

S. Choi (KAIST) Logic and set theory October 7, 2012 16 / 26

Page 103: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x¬Fx ` ¬∃xFx .1. ∀x¬Fx . A.

2.: ∃xFx . H for ¬I.3.:: Fa. by ∃E .4.:: ¬Fa. 1,3.5.:: Fa ∧ ¬Fa.6.: ¬∃xFx .7. ∃xFx → ¬∃xFx . 2-7.8. ¬∃xFx . (Use. ¬P → P,` P or P → ¬P,` ¬P)

S. Choi (KAIST) Logic and set theory October 7, 2012 16 / 26

Page 104: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x¬Fx ` ¬∃xFx .1. ∀x¬Fx . A.2.: ∃xFx . H for ¬I.

3.:: Fa. by ∃E .4.:: ¬Fa. 1,3.5.:: Fa ∧ ¬Fa.6.: ¬∃xFx .7. ∃xFx → ¬∃xFx . 2-7.8. ¬∃xFx . (Use. ¬P → P,` P or P → ¬P,` ¬P)

S. Choi (KAIST) Logic and set theory October 7, 2012 16 / 26

Page 105: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x¬Fx ` ¬∃xFx .1. ∀x¬Fx . A.2.: ∃xFx . H for ¬I.3.:: Fa. by ∃E .

4.:: ¬Fa. 1,3.5.:: Fa ∧ ¬Fa.6.: ¬∃xFx .7. ∃xFx → ¬∃xFx . 2-7.8. ¬∃xFx . (Use. ¬P → P,` P or P → ¬P,` ¬P)

S. Choi (KAIST) Logic and set theory October 7, 2012 16 / 26

Page 106: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x¬Fx ` ¬∃xFx .1. ∀x¬Fx . A.2.: ∃xFx . H for ¬I.3.:: Fa. by ∃E .4.:: ¬Fa. 1,3.

5.:: Fa ∧ ¬Fa.6.: ¬∃xFx .7. ∃xFx → ¬∃xFx . 2-7.8. ¬∃xFx . (Use. ¬P → P,` P or P → ¬P,` ¬P)

S. Choi (KAIST) Logic and set theory October 7, 2012 16 / 26

Page 107: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x¬Fx ` ¬∃xFx .1. ∀x¬Fx . A.2.: ∃xFx . H for ¬I.3.:: Fa. by ∃E .4.:: ¬Fa. 1,3.5.:: Fa ∧ ¬Fa.

6.: ¬∃xFx .7. ∃xFx → ¬∃xFx . 2-7.8. ¬∃xFx . (Use. ¬P → P,` P or P → ¬P,` ¬P)

S. Choi (KAIST) Logic and set theory October 7, 2012 16 / 26

Page 108: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x¬Fx ` ¬∃xFx .1. ∀x¬Fx . A.2.: ∃xFx . H for ¬I.3.:: Fa. by ∃E .4.:: ¬Fa. 1,3.5.:: Fa ∧ ¬Fa.6.: ¬∃xFx .

7. ∃xFx → ¬∃xFx . 2-7.8. ¬∃xFx . (Use. ¬P → P,` P or P → ¬P,` ¬P)

S. Choi (KAIST) Logic and set theory October 7, 2012 16 / 26

Page 109: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x¬Fx ` ¬∃xFx .1. ∀x¬Fx . A.2.: ∃xFx . H for ¬I.3.:: Fa. by ∃E .4.:: ¬Fa. 1,3.5.:: Fa ∧ ¬Fa.6.: ¬∃xFx .7. ∃xFx → ¬∃xFx . 2-7.

8. ¬∃xFx . (Use. ¬P → P,` P or P → ¬P,` ¬P)

S. Choi (KAIST) Logic and set theory October 7, 2012 16 / 26

Page 110: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

Example: ∀x¬Fx ` ¬∃xFx .1. ∀x¬Fx . A.2.: ∃xFx . H for ¬I.3.:: Fa. by ∃E .4.:: ¬Fa. 1,3.5.:: Fa ∧ ¬Fa.6.: ¬∃xFx .7. ∃xFx → ¬∃xFx . 2-7.8. ¬∃xFx . (Use. ¬P → P,` P or P → ¬P,` ¬P)

S. Choi (KAIST) Logic and set theory October 7, 2012 16 / 26

Page 111: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

∃x¬Fx ` ¬∀xFx .

1. ∃x¬Fx .2.: ∀xFx . (H)3.:: ¬Fa. 1. (for ∃E).4.:: Fa 2.5.:: Fa ∧ ¬Fa. 3.4.6.:: ¬∀xFx .7.: ¬∀xFx . 3-6 (∃E).8. ∀xFx → ¬∀xFx . 2-79. ¬∀xFx .

S. Choi (KAIST) Logic and set theory October 7, 2012 17 / 26

Page 112: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

∃x¬Fx ` ¬∀xFx .1. ∃x¬Fx .

2.: ∀xFx . (H)3.:: ¬Fa. 1. (for ∃E).4.:: Fa 2.5.:: Fa ∧ ¬Fa. 3.4.6.:: ¬∀xFx .7.: ¬∀xFx . 3-6 (∃E).8. ∀xFx → ¬∀xFx . 2-79. ¬∀xFx .

S. Choi (KAIST) Logic and set theory October 7, 2012 17 / 26

Page 113: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

∃x¬Fx ` ¬∀xFx .1. ∃x¬Fx .2.: ∀xFx . (H)

3.:: ¬Fa. 1. (for ∃E).4.:: Fa 2.5.:: Fa ∧ ¬Fa. 3.4.6.:: ¬∀xFx .7.: ¬∀xFx . 3-6 (∃E).8. ∀xFx → ¬∀xFx . 2-79. ¬∀xFx .

S. Choi (KAIST) Logic and set theory October 7, 2012 17 / 26

Page 114: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

∃x¬Fx ` ¬∀xFx .1. ∃x¬Fx .2.: ∀xFx . (H)3.:: ¬Fa. 1. (for ∃E).

4.:: Fa 2.5.:: Fa ∧ ¬Fa. 3.4.6.:: ¬∀xFx .7.: ¬∀xFx . 3-6 (∃E).8. ∀xFx → ¬∀xFx . 2-79. ¬∀xFx .

S. Choi (KAIST) Logic and set theory October 7, 2012 17 / 26

Page 115: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

∃x¬Fx ` ¬∀xFx .1. ∃x¬Fx .2.: ∀xFx . (H)3.:: ¬Fa. 1. (for ∃E).4.:: Fa 2.

5.:: Fa ∧ ¬Fa. 3.4.6.:: ¬∀xFx .7.: ¬∀xFx . 3-6 (∃E).8. ∀xFx → ¬∀xFx . 2-79. ¬∀xFx .

S. Choi (KAIST) Logic and set theory October 7, 2012 17 / 26

Page 116: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

∃x¬Fx ` ¬∀xFx .1. ∃x¬Fx .2.: ∀xFx . (H)3.:: ¬Fa. 1. (for ∃E).4.:: Fa 2.5.:: Fa ∧ ¬Fa. 3.4.

6.:: ¬∀xFx .7.: ¬∀xFx . 3-6 (∃E).8. ∀xFx → ¬∀xFx . 2-79. ¬∀xFx .

S. Choi (KAIST) Logic and set theory October 7, 2012 17 / 26

Page 117: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

∃x¬Fx ` ¬∀xFx .1. ∃x¬Fx .2.: ∀xFx . (H)3.:: ¬Fa. 1. (for ∃E).4.:: Fa 2.5.:: Fa ∧ ¬Fa. 3.4.6.:: ¬∀xFx .

7.: ¬∀xFx . 3-6 (∃E).8. ∀xFx → ¬∀xFx . 2-79. ¬∀xFx .

S. Choi (KAIST) Logic and set theory October 7, 2012 17 / 26

Page 118: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

∃x¬Fx ` ¬∀xFx .1. ∃x¬Fx .2.: ∀xFx . (H)3.:: ¬Fa. 1. (for ∃E).4.:: Fa 2.5.:: Fa ∧ ¬Fa. 3.4.6.:: ¬∀xFx .7.: ¬∀xFx . 3-6 (∃E).

8. ∀xFx → ¬∀xFx . 2-79. ¬∀xFx .

S. Choi (KAIST) Logic and set theory October 7, 2012 17 / 26

Page 119: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

∃x¬Fx ` ¬∀xFx .1. ∃x¬Fx .2.: ∀xFx . (H)3.:: ¬Fa. 1. (for ∃E).4.:: Fa 2.5.:: Fa ∧ ¬Fa. 3.4.6.:: ¬∀xFx .7.: ¬∀xFx . 3-6 (∃E).8. ∀xFx → ¬∀xFx . 2-7

9. ¬∀xFx .

S. Choi (KAIST) Logic and set theory October 7, 2012 17 / 26

Page 120: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Example

∃x¬Fx ` ¬∀xFx .1. ∃x¬Fx .2.: ∀xFx . (H)3.:: ¬Fa. 1. (for ∃E).4.:: Fa 2.5.:: Fa ∧ ¬Fa. 3.4.6.:: ¬∀xFx .7.: ¬∀xFx . 3-6 (∃E).8. ∀xFx → ¬∀xFx . 2-79. ¬∀xFx .

S. Choi (KAIST) Logic and set theory October 7, 2012 17 / 26

Page 121: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Some strategies

1. Be careful about where the quantifiers apply. Noticeparanthesis well.

2. To prove

I ∃xFx : We prove Fa.I ∀x(Fx → Gx): We prove Fa → Ga.I ∀x¬Fx : We prove ¬Fa.I ∀x∃yFxy : We prove ∃yFay .I ∃yFay : We prove Fab.I ∃xFxx : We prove Faa.

3. To prove the forms in negation, conjunction, disjunction,conditional, or biconditional, then use propositional calculusmethods.... (Similar to (∀xP) → (∀xQ)).

S. Choi (KAIST) Logic and set theory October 7, 2012 18 / 26

Page 122: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Some strategies

1. Be careful about where the quantifiers apply. Noticeparanthesis well.2. To prove

I ∃xFx : We prove Fa.I ∀x(Fx → Gx): We prove Fa → Ga.I ∀x¬Fx : We prove ¬Fa.I ∀x∃yFxy : We prove ∃yFay .I ∃yFay : We prove Fab.I ∃xFxx : We prove Faa.

3. To prove the forms in negation, conjunction, disjunction,conditional, or biconditional, then use propositional calculusmethods.... (Similar to (∀xP) → (∀xQ)).

S. Choi (KAIST) Logic and set theory October 7, 2012 18 / 26

Page 123: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Some strategies

1. Be careful about where the quantifiers apply. Noticeparanthesis well.2. To prove

I ∃xFx : We prove Fa.

I ∀x(Fx → Gx): We prove Fa → Ga.I ∀x¬Fx : We prove ¬Fa.I ∀x∃yFxy : We prove ∃yFay .I ∃yFay : We prove Fab.I ∃xFxx : We prove Faa.

3. To prove the forms in negation, conjunction, disjunction,conditional, or biconditional, then use propositional calculusmethods.... (Similar to (∀xP) → (∀xQ)).

S. Choi (KAIST) Logic and set theory October 7, 2012 18 / 26

Page 124: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Some strategies

1. Be careful about where the quantifiers apply. Noticeparanthesis well.2. To prove

I ∃xFx : We prove Fa.I ∀x(Fx → Gx): We prove Fa → Ga.

I ∀x¬Fx : We prove ¬Fa.I ∀x∃yFxy : We prove ∃yFay .I ∃yFay : We prove Fab.I ∃xFxx : We prove Faa.

3. To prove the forms in negation, conjunction, disjunction,conditional, or biconditional, then use propositional calculusmethods.... (Similar to (∀xP) → (∀xQ)).

S. Choi (KAIST) Logic and set theory October 7, 2012 18 / 26

Page 125: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Some strategies

1. Be careful about where the quantifiers apply. Noticeparanthesis well.2. To prove

I ∃xFx : We prove Fa.I ∀x(Fx → Gx): We prove Fa → Ga.I ∀x¬Fx : We prove ¬Fa.

I ∀x∃yFxy : We prove ∃yFay .I ∃yFay : We prove Fab.I ∃xFxx : We prove Faa.

3. To prove the forms in negation, conjunction, disjunction,conditional, or biconditional, then use propositional calculusmethods.... (Similar to (∀xP) → (∀xQ)).

S. Choi (KAIST) Logic and set theory October 7, 2012 18 / 26

Page 126: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Some strategies

1. Be careful about where the quantifiers apply. Noticeparanthesis well.2. To prove

I ∃xFx : We prove Fa.I ∀x(Fx → Gx): We prove Fa → Ga.I ∀x¬Fx : We prove ¬Fa.I ∀x∃yFxy : We prove ∃yFay .

I ∃yFay : We prove Fab.I ∃xFxx : We prove Faa.

3. To prove the forms in negation, conjunction, disjunction,conditional, or biconditional, then use propositional calculusmethods.... (Similar to (∀xP) → (∀xQ)).

S. Choi (KAIST) Logic and set theory October 7, 2012 18 / 26

Page 127: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Some strategies

1. Be careful about where the quantifiers apply. Noticeparanthesis well.2. To prove

I ∃xFx : We prove Fa.I ∀x(Fx → Gx): We prove Fa → Ga.I ∀x¬Fx : We prove ¬Fa.I ∀x∃yFxy : We prove ∃yFay .I ∃yFay : We prove Fab.

I ∃xFxx : We prove Faa.

3. To prove the forms in negation, conjunction, disjunction,conditional, or biconditional, then use propositional calculusmethods.... (Similar to (∀xP) → (∀xQ)).

S. Choi (KAIST) Logic and set theory October 7, 2012 18 / 26

Page 128: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Some strategies

1. Be careful about where the quantifiers apply. Noticeparanthesis well.2. To prove

I ∃xFx : We prove Fa.I ∀x(Fx → Gx): We prove Fa → Ga.I ∀x¬Fx : We prove ¬Fa.I ∀x∃yFxy : We prove ∃yFay .I ∃yFay : We prove Fab.I ∃xFxx : We prove Faa.

3. To prove the forms in negation, conjunction, disjunction,conditional, or biconditional, then use propositional calculusmethods.... (Similar to (∀xP) → (∀xQ)).

S. Choi (KAIST) Logic and set theory October 7, 2012 18 / 26

Page 129: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers

Some strategies

1. Be careful about where the quantifiers apply. Noticeparanthesis well.2. To prove

I ∃xFx : We prove Fa.I ∀x(Fx → Gx): We prove Fa → Ga.I ∀x¬Fx : We prove ¬Fa.I ∀x∃yFxy : We prove ∃yFay .I ∃yFay : We prove Fab.I ∃xFxx : We prove Faa.

3. To prove the forms in negation, conjunction, disjunction,conditional, or biconditional, then use propositional calculusmethods.... (Similar to (∀xP) → (∀xQ)).

S. Choi (KAIST) Logic and set theory October 7, 2012 18 / 26

Page 130: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Theorems

The truth that follows from no assumptions.

These hold in every model.These are called theorems.Example: ` ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx .3.: ∃x¬Fx .4.:: ¬Fa. (for ∃E).5.:: Fa 2.6.:: ¬Fa ∧ Fa.7.: ¬Fa ∧ Fa.8. ¬(∀xFx ∧ ∃x¬Fx)

S. Choi (KAIST) Logic and set theory October 7, 2012 19 / 26

Page 131: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Theorems

The truth that follows from no assumptions.These hold in every model.

These are called theorems.Example: ` ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx .3.: ∃x¬Fx .4.:: ¬Fa. (for ∃E).5.:: Fa 2.6.:: ¬Fa ∧ Fa.7.: ¬Fa ∧ Fa.8. ¬(∀xFx ∧ ∃x¬Fx)

S. Choi (KAIST) Logic and set theory October 7, 2012 19 / 26

Page 132: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Theorems

The truth that follows from no assumptions.These hold in every model.These are called theorems.

Example: ` ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx .3.: ∃x¬Fx .4.:: ¬Fa. (for ∃E).5.:: Fa 2.6.:: ¬Fa ∧ Fa.7.: ¬Fa ∧ Fa.8. ¬(∀xFx ∧ ∃x¬Fx)

S. Choi (KAIST) Logic and set theory October 7, 2012 19 / 26

Page 133: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Theorems

The truth that follows from no assumptions.These hold in every model.These are called theorems.Example: ` ¬(∀xFx ∧ ∃x¬Fx)

1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx .3.: ∃x¬Fx .4.:: ¬Fa. (for ∃E).5.:: Fa 2.6.:: ¬Fa ∧ Fa.7.: ¬Fa ∧ Fa.8. ¬(∀xFx ∧ ∃x¬Fx)

S. Choi (KAIST) Logic and set theory October 7, 2012 19 / 26

Page 134: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Theorems

The truth that follows from no assumptions.These hold in every model.These are called theorems.Example: ` ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.

2.: ∀xFx .3.: ∃x¬Fx .4.:: ¬Fa. (for ∃E).5.:: Fa 2.6.:: ¬Fa ∧ Fa.7.: ¬Fa ∧ Fa.8. ¬(∀xFx ∧ ∃x¬Fx)

S. Choi (KAIST) Logic and set theory October 7, 2012 19 / 26

Page 135: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Theorems

The truth that follows from no assumptions.These hold in every model.These are called theorems.Example: ` ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx .

3.: ∃x¬Fx .4.:: ¬Fa. (for ∃E).5.:: Fa 2.6.:: ¬Fa ∧ Fa.7.: ¬Fa ∧ Fa.8. ¬(∀xFx ∧ ∃x¬Fx)

S. Choi (KAIST) Logic and set theory October 7, 2012 19 / 26

Page 136: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Theorems

The truth that follows from no assumptions.These hold in every model.These are called theorems.Example: ` ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx .3.: ∃x¬Fx .

4.:: ¬Fa. (for ∃E).5.:: Fa 2.6.:: ¬Fa ∧ Fa.7.: ¬Fa ∧ Fa.8. ¬(∀xFx ∧ ∃x¬Fx)

S. Choi (KAIST) Logic and set theory October 7, 2012 19 / 26

Page 137: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Theorems

The truth that follows from no assumptions.These hold in every model.These are called theorems.Example: ` ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx .3.: ∃x¬Fx .4.:: ¬Fa. (for ∃E).

5.:: Fa 2.6.:: ¬Fa ∧ Fa.7.: ¬Fa ∧ Fa.8. ¬(∀xFx ∧ ∃x¬Fx)

S. Choi (KAIST) Logic and set theory October 7, 2012 19 / 26

Page 138: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Theorems

The truth that follows from no assumptions.These hold in every model.These are called theorems.Example: ` ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx .3.: ∃x¬Fx .4.:: ¬Fa. (for ∃E).5.:: Fa 2.

6.:: ¬Fa ∧ Fa.7.: ¬Fa ∧ Fa.8. ¬(∀xFx ∧ ∃x¬Fx)

S. Choi (KAIST) Logic and set theory October 7, 2012 19 / 26

Page 139: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Theorems

The truth that follows from no assumptions.These hold in every model.These are called theorems.Example: ` ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx .3.: ∃x¬Fx .4.:: ¬Fa. (for ∃E).5.:: Fa 2.6.:: ¬Fa ∧ Fa.

7.: ¬Fa ∧ Fa.8. ¬(∀xFx ∧ ∃x¬Fx)

S. Choi (KAIST) Logic and set theory October 7, 2012 19 / 26

Page 140: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Theorems

The truth that follows from no assumptions.These hold in every model.These are called theorems.Example: ` ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx .3.: ∃x¬Fx .4.:: ¬Fa. (for ∃E).5.:: Fa 2.6.:: ¬Fa ∧ Fa.7.: ¬Fa ∧ Fa.

8. ¬(∀xFx ∧ ∃x¬Fx)

S. Choi (KAIST) Logic and set theory October 7, 2012 19 / 26

Page 141: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Theorems

The truth that follows from no assumptions.These hold in every model.These are called theorems.Example: ` ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx .3.: ∃x¬Fx .4.:: ¬Fa. (for ∃E).5.:: Fa 2.6.:: ¬Fa ∧ Fa.7.: ¬Fa ∧ Fa.8. ¬(∀xFx ∧ ∃x¬Fx)

S. Choi (KAIST) Logic and set theory October 7, 2012 19 / 26

Page 142: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples` ∀xFx ∨ ∃x¬Fx .

1.: ¬∀xFx . H for → I.2.:: ¬∃x¬Fx . H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx .6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx .9.:: ∀xFx ∧ ¬∀xFx .10.: ¬¬∃x¬Fx .11.: ∃x¬Fx .12. ¬∀xFx → ∃x¬Fx .13. ¬¬∀xFx ∨ ∃x¬Fx . MI14. ∀xFx ∨ ∃x¬Fx . DN.There is a way using equivalences.

S. Choi (KAIST) Logic and set theory October 7, 2012 20 / 26

Page 143: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples` ∀xFx ∨ ∃x¬Fx .1.: ¬∀xFx . H for → I.

2.:: ¬∃x¬Fx . H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx .6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx .9.:: ∀xFx ∧ ¬∀xFx .10.: ¬¬∃x¬Fx .11.: ∃x¬Fx .12. ¬∀xFx → ∃x¬Fx .13. ¬¬∀xFx ∨ ∃x¬Fx . MI14. ∀xFx ∨ ∃x¬Fx . DN.There is a way using equivalences.

S. Choi (KAIST) Logic and set theory October 7, 2012 20 / 26

Page 144: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples` ∀xFx ∨ ∃x¬Fx .1.: ¬∀xFx . H for → I.2.:: ¬∃x¬Fx . H for ¬I.

3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx .6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx .9.:: ∀xFx ∧ ¬∀xFx .10.: ¬¬∃x¬Fx .11.: ∃x¬Fx .12. ¬∀xFx → ∃x¬Fx .13. ¬¬∀xFx ∨ ∃x¬Fx . MI14. ∀xFx ∨ ∃x¬Fx . DN.There is a way using equivalences.

S. Choi (KAIST) Logic and set theory October 7, 2012 20 / 26

Page 145: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples` ∀xFx ∨ ∃x¬Fx .1.: ¬∀xFx . H for → I.2.:: ¬∃x¬Fx . H for ¬I.3.::: ¬Fa H. for ¬I.

4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx .6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx .9.:: ∀xFx ∧ ¬∀xFx .10.: ¬¬∃x¬Fx .11.: ∃x¬Fx .12. ¬∀xFx → ∃x¬Fx .13. ¬¬∀xFx ∨ ∃x¬Fx . MI14. ∀xFx ∨ ∃x¬Fx . DN.There is a way using equivalences.

S. Choi (KAIST) Logic and set theory October 7, 2012 20 / 26

Page 146: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples` ∀xFx ∨ ∃x¬Fx .1.: ¬∀xFx . H for → I.2.:: ¬∃x¬Fx . H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx

5.::: ∃x¬Fx ∧ ¬∃x¬Fx .6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx .9.:: ∀xFx ∧ ¬∀xFx .10.: ¬¬∃x¬Fx .11.: ∃x¬Fx .12. ¬∀xFx → ∃x¬Fx .13. ¬¬∀xFx ∨ ∃x¬Fx . MI14. ∀xFx ∨ ∃x¬Fx . DN.There is a way using equivalences.

S. Choi (KAIST) Logic and set theory October 7, 2012 20 / 26

Page 147: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples` ∀xFx ∨ ∃x¬Fx .1.: ¬∀xFx . H for → I.2.:: ¬∃x¬Fx . H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx .

6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx .9.:: ∀xFx ∧ ¬∀xFx .10.: ¬¬∃x¬Fx .11.: ∃x¬Fx .12. ¬∀xFx → ∃x¬Fx .13. ¬¬∀xFx ∨ ∃x¬Fx . MI14. ∀xFx ∨ ∃x¬Fx . DN.There is a way using equivalences.

S. Choi (KAIST) Logic and set theory October 7, 2012 20 / 26

Page 148: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples` ∀xFx ∨ ∃x¬Fx .1.: ¬∀xFx . H for → I.2.:: ¬∃x¬Fx . H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx .6.:: ¬¬Fa.

7.:: Fa.8.:: ∀xFx .9.:: ∀xFx ∧ ¬∀xFx .10.: ¬¬∃x¬Fx .11.: ∃x¬Fx .12. ¬∀xFx → ∃x¬Fx .13. ¬¬∀xFx ∨ ∃x¬Fx . MI14. ∀xFx ∨ ∃x¬Fx . DN.There is a way using equivalences.

S. Choi (KAIST) Logic and set theory October 7, 2012 20 / 26

Page 149: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples` ∀xFx ∨ ∃x¬Fx .1.: ¬∀xFx . H for → I.2.:: ¬∃x¬Fx . H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx .6.:: ¬¬Fa.7.:: Fa.

8.:: ∀xFx .9.:: ∀xFx ∧ ¬∀xFx .10.: ¬¬∃x¬Fx .11.: ∃x¬Fx .12. ¬∀xFx → ∃x¬Fx .13. ¬¬∀xFx ∨ ∃x¬Fx . MI14. ∀xFx ∨ ∃x¬Fx . DN.There is a way using equivalences.

S. Choi (KAIST) Logic and set theory October 7, 2012 20 / 26

Page 150: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples` ∀xFx ∨ ∃x¬Fx .1.: ¬∀xFx . H for → I.2.:: ¬∃x¬Fx . H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx .6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx .

9.:: ∀xFx ∧ ¬∀xFx .10.: ¬¬∃x¬Fx .11.: ∃x¬Fx .12. ¬∀xFx → ∃x¬Fx .13. ¬¬∀xFx ∨ ∃x¬Fx . MI14. ∀xFx ∨ ∃x¬Fx . DN.There is a way using equivalences.

S. Choi (KAIST) Logic and set theory October 7, 2012 20 / 26

Page 151: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples` ∀xFx ∨ ∃x¬Fx .1.: ¬∀xFx . H for → I.2.:: ¬∃x¬Fx . H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx .6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx .9.:: ∀xFx ∧ ¬∀xFx .

10.: ¬¬∃x¬Fx .11.: ∃x¬Fx .12. ¬∀xFx → ∃x¬Fx .13. ¬¬∀xFx ∨ ∃x¬Fx . MI14. ∀xFx ∨ ∃x¬Fx . DN.There is a way using equivalences.

S. Choi (KAIST) Logic and set theory October 7, 2012 20 / 26

Page 152: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples` ∀xFx ∨ ∃x¬Fx .1.: ¬∀xFx . H for → I.2.:: ¬∃x¬Fx . H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx .6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx .9.:: ∀xFx ∧ ¬∀xFx .10.: ¬¬∃x¬Fx .

11.: ∃x¬Fx .12. ¬∀xFx → ∃x¬Fx .13. ¬¬∀xFx ∨ ∃x¬Fx . MI14. ∀xFx ∨ ∃x¬Fx . DN.There is a way using equivalences.

S. Choi (KAIST) Logic and set theory October 7, 2012 20 / 26

Page 153: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples` ∀xFx ∨ ∃x¬Fx .1.: ¬∀xFx . H for → I.2.:: ¬∃x¬Fx . H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx .6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx .9.:: ∀xFx ∧ ¬∀xFx .10.: ¬¬∃x¬Fx .11.: ∃x¬Fx .

12. ¬∀xFx → ∃x¬Fx .13. ¬¬∀xFx ∨ ∃x¬Fx . MI14. ∀xFx ∨ ∃x¬Fx . DN.There is a way using equivalences.

S. Choi (KAIST) Logic and set theory October 7, 2012 20 / 26

Page 154: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples` ∀xFx ∨ ∃x¬Fx .1.: ¬∀xFx . H for → I.2.:: ¬∃x¬Fx . H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx .6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx .9.:: ∀xFx ∧ ¬∀xFx .10.: ¬¬∃x¬Fx .11.: ∃x¬Fx .12. ¬∀xFx → ∃x¬Fx .

13. ¬¬∀xFx ∨ ∃x¬Fx . MI14. ∀xFx ∨ ∃x¬Fx . DN.There is a way using equivalences.

S. Choi (KAIST) Logic and set theory October 7, 2012 20 / 26

Page 155: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples` ∀xFx ∨ ∃x¬Fx .1.: ¬∀xFx . H for → I.2.:: ¬∃x¬Fx . H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx .6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx .9.:: ∀xFx ∧ ¬∀xFx .10.: ¬¬∃x¬Fx .11.: ∃x¬Fx .12. ¬∀xFx → ∃x¬Fx .13. ¬¬∀xFx ∨ ∃x¬Fx . MI

14. ∀xFx ∨ ∃x¬Fx . DN.There is a way using equivalences.

S. Choi (KAIST) Logic and set theory October 7, 2012 20 / 26

Page 156: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples` ∀xFx ∨ ∃x¬Fx .1.: ¬∀xFx . H for → I.2.:: ¬∃x¬Fx . H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx .6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx .9.:: ∀xFx ∧ ¬∀xFx .10.: ¬¬∃x¬Fx .11.: ∃x¬Fx .12. ¬∀xFx → ∃x¬Fx .13. ¬¬∀xFx ∨ ∃x¬Fx . MI14. ∀xFx ∨ ∃x¬Fx . DN.

There is a way using equivalences.

S. Choi (KAIST) Logic and set theory October 7, 2012 20 / 26

Page 157: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples` ∀xFx ∨ ∃x¬Fx .1.: ¬∀xFx . H for → I.2.:: ¬∃x¬Fx . H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx .6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx .9.:: ∀xFx ∧ ¬∀xFx .10.: ¬¬∃x¬Fx .11.: ∃x¬Fx .12. ¬∀xFx → ∃x¬Fx .13. ¬¬∀xFx ∨ ∃x¬Fx . MI14. ∀xFx ∨ ∃x¬Fx . DN.There is a way using equivalences.

S. Choi (KAIST) Logic and set theory October 7, 2012 20 / 26

Page 158: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples

The rule ` ∀xP → ∃xP.

We apply this rule to obtain:` ∀x∀yP → ∀x∃yP.` ∀x∀yP → ∃x∀yP.` ∀x∀yP → ∃x∃yP.` ∀x∃yP → ∃x∃yP.In fact, we can use a theorem to generate many more theorems....

S. Choi (KAIST) Logic and set theory October 7, 2012 21 / 26

Page 159: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples

The rule ` ∀xP → ∃xP.We apply this rule to obtain:

` ∀x∀yP → ∀x∃yP.` ∀x∀yP → ∃x∀yP.` ∀x∀yP → ∃x∃yP.` ∀x∃yP → ∃x∃yP.In fact, we can use a theorem to generate many more theorems....

S. Choi (KAIST) Logic and set theory October 7, 2012 21 / 26

Page 160: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples

The rule ` ∀xP → ∃xP.We apply this rule to obtain:` ∀x∀yP → ∀x∃yP.

` ∀x∀yP → ∃x∀yP.` ∀x∀yP → ∃x∃yP.` ∀x∃yP → ∃x∃yP.In fact, we can use a theorem to generate many more theorems....

S. Choi (KAIST) Logic and set theory October 7, 2012 21 / 26

Page 161: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples

The rule ` ∀xP → ∃xP.We apply this rule to obtain:` ∀x∀yP → ∀x∃yP.` ∀x∀yP → ∃x∀yP.

` ∀x∀yP → ∃x∃yP.` ∀x∃yP → ∃x∃yP.In fact, we can use a theorem to generate many more theorems....

S. Choi (KAIST) Logic and set theory October 7, 2012 21 / 26

Page 162: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples

The rule ` ∀xP → ∃xP.We apply this rule to obtain:` ∀x∀yP → ∀x∃yP.` ∀x∀yP → ∃x∀yP.` ∀x∀yP → ∃x∃yP.

` ∀x∃yP → ∃x∃yP.In fact, we can use a theorem to generate many more theorems....

S. Choi (KAIST) Logic and set theory October 7, 2012 21 / 26

Page 163: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples

The rule ` ∀xP → ∃xP.We apply this rule to obtain:` ∀x∀yP → ∀x∃yP.` ∀x∀yP → ∃x∀yP.` ∀x∀yP → ∃x∃yP.` ∀x∃yP → ∃x∃yP.

In fact, we can use a theorem to generate many more theorems....

S. Choi (KAIST) Logic and set theory October 7, 2012 21 / 26

Page 164: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Examples

The rule ` ∀xP → ∃xP.We apply this rule to obtain:` ∀x∀yP → ∀x∃yP.` ∀x∀yP → ∃x∀yP.` ∀x∀yP → ∃x∃yP.` ∀x∃yP → ∃x∃yP.In fact, we can use a theorem to generate many more theorems....

S. Choi (KAIST) Logic and set theory October 7, 2012 21 / 26

Page 165: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Equivalences

We studied equivalences called interchanges: ∃x∃y ↔ ∃y∃x and∀x∀y ↔ ∀y∀x .

` ¬∀x¬Fx ↔ ∃xFx .` ¬∀xFx ↔ ∃x¬Fx . This was proved above.` ∀x¬Fx ↔ ¬∃xFx . This was proved above.` ∀xFx ↔ ¬∃x¬Fx .The first and the fourth items are consequence of items two andthree.

S. Choi (KAIST) Logic and set theory October 7, 2012 22 / 26

Page 166: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Equivalences

We studied equivalences called interchanges: ∃x∃y ↔ ∃y∃x and∀x∀y ↔ ∀y∀x .` ¬∀x¬Fx ↔ ∃xFx .

` ¬∀xFx ↔ ∃x¬Fx . This was proved above.` ∀x¬Fx ↔ ¬∃xFx . This was proved above.` ∀xFx ↔ ¬∃x¬Fx .The first and the fourth items are consequence of items two andthree.

S. Choi (KAIST) Logic and set theory October 7, 2012 22 / 26

Page 167: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Equivalences

We studied equivalences called interchanges: ∃x∃y ↔ ∃y∃x and∀x∀y ↔ ∀y∀x .` ¬∀x¬Fx ↔ ∃xFx .` ¬∀xFx ↔ ∃x¬Fx . This was proved above.

` ∀x¬Fx ↔ ¬∃xFx . This was proved above.` ∀xFx ↔ ¬∃x¬Fx .The first and the fourth items are consequence of items two andthree.

S. Choi (KAIST) Logic and set theory October 7, 2012 22 / 26

Page 168: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Equivalences

We studied equivalences called interchanges: ∃x∃y ↔ ∃y∃x and∀x∀y ↔ ∀y∀x .` ¬∀x¬Fx ↔ ∃xFx .` ¬∀xFx ↔ ∃x¬Fx . This was proved above.` ∀x¬Fx ↔ ¬∃xFx . This was proved above.

` ∀xFx ↔ ¬∃x¬Fx .The first and the fourth items are consequence of items two andthree.

S. Choi (KAIST) Logic and set theory October 7, 2012 22 / 26

Page 169: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Equivalences

We studied equivalences called interchanges: ∃x∃y ↔ ∃y∃x and∀x∀y ↔ ∀y∀x .` ¬∀x¬Fx ↔ ∃xFx .` ¬∀xFx ↔ ∃x¬Fx . This was proved above.` ∀x¬Fx ↔ ¬∃xFx . This was proved above.` ∀xFx ↔ ¬∃x¬Fx .

The first and the fourth items are consequence of items two andthree.

S. Choi (KAIST) Logic and set theory October 7, 2012 22 / 26

Page 170: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Equivalences

We studied equivalences called interchanges: ∃x∃y ↔ ∃y∃x and∀x∀y ↔ ∀y∀x .` ¬∀x¬Fx ↔ ∃xFx .` ¬∀xFx ↔ ∃x¬Fx . This was proved above.` ∀x¬Fx ↔ ¬∃xFx . This was proved above.` ∀xFx ↔ ¬∃x¬Fx .The first and the fourth items are consequence of items two andthree.

S. Choi (KAIST) Logic and set theory October 7, 2012 22 / 26

Page 171: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Quantifier exchanges

Using the above equivalences, we obtain the quantifier exchangerules.

¬∀β¬φ, ∃βφ.¬∀βφ, ∃β¬φ.∀β¬φ, ¬∃βφ.∀βφ, ¬∃β¬φ.Using this many predicate calculus results are simply theconsequences of propositional caculus results.

S. Choi (KAIST) Logic and set theory October 7, 2012 23 / 26

Page 172: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Quantifier exchanges

Using the above equivalences, we obtain the quantifier exchangerules.¬∀β¬φ, ∃βφ.

¬∀βφ, ∃β¬φ.∀β¬φ, ¬∃βφ.∀βφ, ¬∃β¬φ.Using this many predicate calculus results are simply theconsequences of propositional caculus results.

S. Choi (KAIST) Logic and set theory October 7, 2012 23 / 26

Page 173: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Quantifier exchanges

Using the above equivalences, we obtain the quantifier exchangerules.¬∀β¬φ, ∃βφ.¬∀βφ, ∃β¬φ.

∀β¬φ, ¬∃βφ.∀βφ, ¬∃β¬φ.Using this many predicate calculus results are simply theconsequences of propositional caculus results.

S. Choi (KAIST) Logic and set theory October 7, 2012 23 / 26

Page 174: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Quantifier exchanges

Using the above equivalences, we obtain the quantifier exchangerules.¬∀β¬φ, ∃βφ.¬∀βφ, ∃β¬φ.∀β¬φ, ¬∃βφ.

∀βφ, ¬∃β¬φ.Using this many predicate calculus results are simply theconsequences of propositional caculus results.

S. Choi (KAIST) Logic and set theory October 7, 2012 23 / 26

Page 175: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Quantifier exchanges

Using the above equivalences, we obtain the quantifier exchangerules.¬∀β¬φ, ∃βφ.¬∀βφ, ∃β¬φ.∀β¬φ, ¬∃βφ.∀βφ, ¬∃β¬φ.

Using this many predicate calculus results are simply theconsequences of propositional caculus results.

S. Choi (KAIST) Logic and set theory October 7, 2012 23 / 26

Page 176: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Quantifier exchanges

Using the above equivalences, we obtain the quantifier exchangerules.¬∀β¬φ, ∃βφ.¬∀βφ, ∃β¬φ.∀β¬φ, ¬∃βφ.∀βφ, ¬∃β¬φ.Using this many predicate calculus results are simply theconsequences of propositional caculus results.

S. Choi (KAIST) Logic and set theory October 7, 2012 23 / 26

Page 177: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Some other equivalences (Repeated)

How would one prove? :

∃xf ↔ f if x is not a free variable of f .∀xf ↔ f if x is not a free variable of f .∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.∀x(f ∧ g) ↔ ∀xf ∧ ∀yg.∃x(f ∧ g) ↔ (∃xf ) ∧ g if x does not occur as a free variable of g.And also ∃x(f ∨ g) ↔ (∃xf ) ∨ g∀x(f ∨ g) ↔ (∀xf ) ∨ g if x does not occur as a free variable of g.And also ∀x(f ∧ g) ↔ (∀xf ) ∧ g∃yf (x1, ..., xn, y) ↔ ∃zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.∀yf (x1, ..., xn, y) ↔ ∀zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.

S. Choi (KAIST) Logic and set theory October 7, 2012 24 / 26

Page 178: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Some other equivalences (Repeated)

How would one prove? :∃xf ↔ f if x is not a free variable of f .

∀xf ↔ f if x is not a free variable of f .∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.∀x(f ∧ g) ↔ ∀xf ∧ ∀yg.∃x(f ∧ g) ↔ (∃xf ) ∧ g if x does not occur as a free variable of g.And also ∃x(f ∨ g) ↔ (∃xf ) ∨ g∀x(f ∨ g) ↔ (∀xf ) ∨ g if x does not occur as a free variable of g.And also ∀x(f ∧ g) ↔ (∀xf ) ∧ g∃yf (x1, ..., xn, y) ↔ ∃zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.∀yf (x1, ..., xn, y) ↔ ∀zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.

S. Choi (KAIST) Logic and set theory October 7, 2012 24 / 26

Page 179: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Some other equivalences (Repeated)

How would one prove? :∃xf ↔ f if x is not a free variable of f .∀xf ↔ f if x is not a free variable of f .

∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.∀x(f ∧ g) ↔ ∀xf ∧ ∀yg.∃x(f ∧ g) ↔ (∃xf ) ∧ g if x does not occur as a free variable of g.And also ∃x(f ∨ g) ↔ (∃xf ) ∨ g∀x(f ∨ g) ↔ (∀xf ) ∨ g if x does not occur as a free variable of g.And also ∀x(f ∧ g) ↔ (∀xf ) ∧ g∃yf (x1, ..., xn, y) ↔ ∃zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.∀yf (x1, ..., xn, y) ↔ ∀zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.

S. Choi (KAIST) Logic and set theory October 7, 2012 24 / 26

Page 180: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Some other equivalences (Repeated)

How would one prove? :∃xf ↔ f if x is not a free variable of f .∀xf ↔ f if x is not a free variable of f .∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.

∀x(f ∧ g) ↔ ∀xf ∧ ∀yg.∃x(f ∧ g) ↔ (∃xf ) ∧ g if x does not occur as a free variable of g.And also ∃x(f ∨ g) ↔ (∃xf ) ∨ g∀x(f ∨ g) ↔ (∀xf ) ∨ g if x does not occur as a free variable of g.And also ∀x(f ∧ g) ↔ (∀xf ) ∧ g∃yf (x1, ..., xn, y) ↔ ∃zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.∀yf (x1, ..., xn, y) ↔ ∀zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.

S. Choi (KAIST) Logic and set theory October 7, 2012 24 / 26

Page 181: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Some other equivalences (Repeated)

How would one prove? :∃xf ↔ f if x is not a free variable of f .∀xf ↔ f if x is not a free variable of f .∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.∀x(f ∧ g) ↔ ∀xf ∧ ∀yg.

∃x(f ∧ g) ↔ (∃xf ) ∧ g if x does not occur as a free variable of g.And also ∃x(f ∨ g) ↔ (∃xf ) ∨ g∀x(f ∨ g) ↔ (∀xf ) ∨ g if x does not occur as a free variable of g.And also ∀x(f ∧ g) ↔ (∀xf ) ∧ g∃yf (x1, ..., xn, y) ↔ ∃zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.∀yf (x1, ..., xn, y) ↔ ∀zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.

S. Choi (KAIST) Logic and set theory October 7, 2012 24 / 26

Page 182: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Some other equivalences (Repeated)

How would one prove? :∃xf ↔ f if x is not a free variable of f .∀xf ↔ f if x is not a free variable of f .∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.∀x(f ∧ g) ↔ ∀xf ∧ ∀yg.∃x(f ∧ g) ↔ (∃xf ) ∧ g if x does not occur as a free variable of g.And also ∃x(f ∨ g) ↔ (∃xf ) ∨ g

∀x(f ∨ g) ↔ (∀xf ) ∨ g if x does not occur as a free variable of g.And also ∀x(f ∧ g) ↔ (∀xf ) ∧ g∃yf (x1, ..., xn, y) ↔ ∃zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.∀yf (x1, ..., xn, y) ↔ ∀zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.

S. Choi (KAIST) Logic and set theory October 7, 2012 24 / 26

Page 183: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Some other equivalences (Repeated)

How would one prove? :∃xf ↔ f if x is not a free variable of f .∀xf ↔ f if x is not a free variable of f .∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.∀x(f ∧ g) ↔ ∀xf ∧ ∀yg.∃x(f ∧ g) ↔ (∃xf ) ∧ g if x does not occur as a free variable of g.And also ∃x(f ∨ g) ↔ (∃xf ) ∨ g∀x(f ∨ g) ↔ (∀xf ) ∨ g if x does not occur as a free variable of g.And also ∀x(f ∧ g) ↔ (∀xf ) ∧ g

∃yf (x1, ..., xn, y) ↔ ∃zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.∀yf (x1, ..., xn, y) ↔ ∀zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.

S. Choi (KAIST) Logic and set theory October 7, 2012 24 / 26

Page 184: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Some other equivalences (Repeated)

How would one prove? :∃xf ↔ f if x is not a free variable of f .∀xf ↔ f if x is not a free variable of f .∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.∀x(f ∧ g) ↔ ∀xf ∧ ∀yg.∃x(f ∧ g) ↔ (∃xf ) ∧ g if x does not occur as a free variable of g.And also ∃x(f ∨ g) ↔ (∃xf ) ∨ g∀x(f ∨ g) ↔ (∀xf ) ∨ g if x does not occur as a free variable of g.And also ∀x(f ∧ g) ↔ (∀xf ) ∧ g∃yf (x1, ..., xn, y) ↔ ∃zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.

∀yf (x1, ..., xn, y) ↔ ∀zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.

S. Choi (KAIST) Logic and set theory October 7, 2012 24 / 26

Page 185: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Some other equivalences (Repeated)

How would one prove? :∃xf ↔ f if x is not a free variable of f .∀xf ↔ f if x is not a free variable of f .∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.∀x(f ∧ g) ↔ ∀xf ∧ ∀yg.∃x(f ∧ g) ↔ (∃xf ) ∧ g if x does not occur as a free variable of g.And also ∃x(f ∨ g) ↔ (∃xf ) ∨ g∀x(f ∨ g) ↔ (∀xf ) ∨ g if x does not occur as a free variable of g.And also ∀x(f ∧ g) ↔ (∀xf ) ∧ g∃yf (x1, ..., xn, y) ↔ ∃zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.∀yf (x1, ..., xn, y) ↔ ∀zf (x1, .., xn, z) if neither y , z are part ofx1, ..., xn.

S. Choi (KAIST) Logic and set theory October 7, 2012 24 / 26

Page 186: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Inference rules of =

Identity introduction (= I):

For any name letter α, assert α = α at any line.Example ` ∃x ,a = x .1. a = a (= I).2. ∃x ,a = x 1. (∃I).

S. Choi (KAIST) Logic and set theory October 7, 2012 25 / 26

Page 187: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Inference rules of =

Identity introduction (= I):For any name letter α, assert α = α at any line.

Example ` ∃x ,a = x .1. a = a (= I).2. ∃x ,a = x 1. (∃I).

S. Choi (KAIST) Logic and set theory October 7, 2012 25 / 26

Page 188: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Inference rules of =

Identity introduction (= I):For any name letter α, assert α = α at any line.Example ` ∃x ,a = x .

1. a = a (= I).2. ∃x ,a = x 1. (∃I).

S. Choi (KAIST) Logic and set theory October 7, 2012 25 / 26

Page 189: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Inference rules of =

Identity introduction (= I):For any name letter α, assert α = α at any line.Example ` ∃x ,a = x .1. a = a (= I).

2. ∃x ,a = x 1. (∃I).

S. Choi (KAIST) Logic and set theory October 7, 2012 25 / 26

Page 190: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Inference rules of =

Identity introduction (= I):For any name letter α, assert α = α at any line.Example ` ∃x ,a = x .1. a = a (= I).2. ∃x ,a = x 1. (∃I).

S. Choi (KAIST) Logic and set theory October 7, 2012 25 / 26

Page 191: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Identity elimination (= E):

A wff φ containing α. We have α = β or β = α. Then infer φβ/α.Example: ` ∀x∀y(x = y → y = x).1.: a = b H for → I.2.: a = a.3.: b = a. (= E).4. a = b → b = a. 1-3∀y(a = y → y = a). (∀I).∀x∀y(x = y → y = x). (∀I).

S. Choi (KAIST) Logic and set theory October 7, 2012 26 / 26

Page 192: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Identity elimination (= E):A wff φ containing α. We have α = β or β = α. Then infer φβ/α.

Example: ` ∀x∀y(x = y → y = x).1.: a = b H for → I.2.: a = a.3.: b = a. (= E).4. a = b → b = a. 1-3∀y(a = y → y = a). (∀I).∀x∀y(x = y → y = x). (∀I).

S. Choi (KAIST) Logic and set theory October 7, 2012 26 / 26

Page 193: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Identity elimination (= E):A wff φ containing α. We have α = β or β = α. Then infer φβ/α.Example: ` ∀x∀y(x = y → y = x).

1.: a = b H for → I.2.: a = a.3.: b = a. (= E).4. a = b → b = a. 1-3∀y(a = y → y = a). (∀I).∀x∀y(x = y → y = x). (∀I).

S. Choi (KAIST) Logic and set theory October 7, 2012 26 / 26

Page 194: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Identity elimination (= E):A wff φ containing α. We have α = β or β = α. Then infer φβ/α.Example: ` ∀x∀y(x = y → y = x).1.: a = b H for → I.

2.: a = a.3.: b = a. (= E).4. a = b → b = a. 1-3∀y(a = y → y = a). (∀I).∀x∀y(x = y → y = x). (∀I).

S. Choi (KAIST) Logic and set theory October 7, 2012 26 / 26

Page 195: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Identity elimination (= E):A wff φ containing α. We have α = β or β = α. Then infer φβ/α.Example: ` ∀x∀y(x = y → y = x).1.: a = b H for → I.2.: a = a.

3.: b = a. (= E).4. a = b → b = a. 1-3∀y(a = y → y = a). (∀I).∀x∀y(x = y → y = x). (∀I).

S. Choi (KAIST) Logic and set theory October 7, 2012 26 / 26

Page 196: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Identity elimination (= E):A wff φ containing α. We have α = β or β = α. Then infer φβ/α.Example: ` ∀x∀y(x = y → y = x).1.: a = b H for → I.2.: a = a.3.: b = a. (= E).

4. a = b → b = a. 1-3∀y(a = y → y = a). (∀I).∀x∀y(x = y → y = x). (∀I).

S. Choi (KAIST) Logic and set theory October 7, 2012 26 / 26

Page 197: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Identity elimination (= E):A wff φ containing α. We have α = β or β = α. Then infer φβ/α.Example: ` ∀x∀y(x = y → y = x).1.: a = b H for → I.2.: a = a.3.: b = a. (= E).4. a = b → b = a. 1-3

∀y(a = y → y = a). (∀I).∀x∀y(x = y → y = x). (∀I).

S. Choi (KAIST) Logic and set theory October 7, 2012 26 / 26

Page 198: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Identity elimination (= E):A wff φ containing α. We have α = β or β = α. Then infer φβ/α.Example: ` ∀x∀y(x = y → y = x).1.: a = b H for → I.2.: a = a.3.: b = a. (= E).4. a = b → b = a. 1-3∀y(a = y → y = a). (∀I).

∀x∀y(x = y → y = x). (∀I).

S. Choi (KAIST) Logic and set theory October 7, 2012 26 / 26

Page 199: Lecture 9: Predicate Calculus S. Choi - KAIST 수리과학과mathsci.kaist.ac.kr/~schoi/Logiclec9-10.pdf · Logic and the set theory Lecture 9: Predicate Calculus S. Choi Department

Inference rules for existential quantifiers Theorems and quantifier equivalence relations

Identity elimination (= E):A wff φ containing α. We have α = β or β = α. Then infer φβ/α.Example: ` ∀x∀y(x = y → y = x).1.: a = b H for → I.2.: a = a.3.: b = a. (= E).4. a = b → b = a. 1-3∀y(a = y → y = a). (∀I).∀x∀y(x = y → y = x). (∀I).

S. Choi (KAIST) Logic and set theory October 7, 2012 26 / 26