29
PHYS 461 & 561, Fall 2011-2012 1 10/13/2011 Lecture 7: Two-State Systems: From Ion Channels To Cooperative Binding Lecturer: Brigita Urbanc Office: 12-909 (E-mail: [email protected]) Course website: www.physics.drexel.edu/~brigita/COURSES/BIOPHYS_2011-2012/

Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

  • Upload
    buiminh

  • View
    219

  • Download
    5

Embed Size (px)

Citation preview

Page 1: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 110/13/2011

Lecture 7: Two­State Systems: From Ion Channels

To Cooperative Binding

Lecturer:Brigita Urbanc Office: 12­909(E­mail: [email protected])

Course website: www.physics.drexel.edu/~brigita/COURSES/BIOPHYS_2011­2012/

Page 2: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 210/13/2011

Examples of two­state systems: state variable 

Page 3: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 310/13/2011

Current trace and its two state idealization(transition time « dwell time)

Page 4: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 410/13/2011

Ion channels within a lipidMembrane:

Differentvoltages resultin different currents acrossthe membrane

Page 5: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 510/13/2011

Current proportional to the probability of a channel to be open

Page 6: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 610/13/2011

When the ion channel opens, the energy of the loading device (weights in the figure) decreases (potential energy of weightsdecreases as the weights are lowered): 

weights are a simple representation of externally applied forces

tension is released

Page 7: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 710/13/2011

How does the external tension couple to the energy? G

TENSION =  s ⨯ R R/R

OUT ⨯ 2R

OUT/s

s  … force on the arc

RR/ROUT

   … the outer radius  change (patch displacement)

2ROUT

/s … the number of patches

The outer radius  change ROUT 

follows from the condition that

The membrane area is constant:  R2OUT

 −R2 = const.

ROUT

ROUT

 −RR = 0

GTENSION

 =  R R = A

Page 8: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 810/13/2011

Energy as a function of the internal state variable openclosed

No external driving force: 

E() = OPEN

 + (1) CLOSED

With an external driving force: 

E() = OPEN

 + (1) CLOSED

  A

The last term favors an open state! 

Page 9: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 910/13/2011

Two states with the corresponding weights

Page 10: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 1010/13/2011

Energy landscape for an ion channel as a function of radius R for different forces that promote opening

Page 11: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 1110/13/2011

Z = ∑={0,1}

 exp[E()]  =     = exp[

CLOSED] + exp[

OPEN+A]

‹›pOPEN

 = p(1) = exp[OPEN

+A]/Z

Page 12: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 1210/13/2011

Ion channel opening probability as a function of drivingforce for gating (membrane tension)

Page 13: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 1310/13/2011

State variable description of binding:Grand partition function and Gibbs distribution

Open system exchangesboth energy and particleswith the reservoir.

Page 14: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 1410/13/2011

We apply the same principle of maximal entropy to the isolated “universe” of the system and the reservoir:W

TOT(E

TOT – E

S, N

TOT –  E

S) = 1⨯W

R(E

TOT – E

S, N

TOT   N

S) 

Such that the ratio of the probabilities to find the system in microstates I and II can be expressed as:p(E

SI, N

SI) p(E

SII, N

SII) 

WR(E

TOT – E

SI, N

TOT   N

SI)W

R(E

TOT – E

SII, N

TOTN

SII)

Because S = kB lnW, the above ratio can be expressed as:

WR(E

TOT – E

SI, N

TOT   N

SI)W

R(E

TOT – E

SII, N

TOTN

SII) =

exp[SR(E

TOT – E

SI, N

TOT   N

SI)/k

B]/exp[S

R(E

TOT – E

SII, N

TOT   N

SII)/k

B]

Page 15: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 1510/13/2011

SR(E

TOT – E

S, N

TOT – N

S)  = S

R(E

TOT) – (∂S

R/∂E) E

S  – 

(∂SR/∂N) N

S  = S

R(E

TOT) – E

S /T + N

S/T

(∂SR/∂E) = 1/T   and (∂S

R/∂N) = /T

Thus, we find:p(E

SI, N

SI) p(E

SII, N

SII) 

exp[(ES

INS

I)]/exp[(ES

IINS

II)]

We derived the Gibbs distribution:p(E

Si, N

Si) exp[(E

SiN

Si)]/Z

Z = ∑ exp[(ES

iNS

i)] … grand partition function

Page 16: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 1610/13/2011

Simple Ligand­Receptor Binding through Gibbs distribution

Z = 1 + exp[b­)] … grand partition function

pb = ‹N› = 1 ∂lnZ/∂

exp[b]/Z

0 + 1 ln(c/c

0)

pb = ‹N› =  

c/c0 exp(c/c

0 exp(

Page 17: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 1710/13/2011

Phosphorylation(covalent post­translational modification)Attachment of phosphate groups to specific substrates:

­in proteins within eukaryotic cells amino acids with hydroxyl groups (serine, threonine, and tyrosine), added a phosphate

       group with two negative charges

­ATP

­kinase enzymes assist in phosphorylation

­reversed process facilitated by  another type of enzymes:         phosphatases (use water to hydrolyze the bonds)

­controls protein activity (in response to environmental changes)

Page 18: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 1810/13/2011

Example of a twostate description:

S = 1 … active

S = 0 … inactive

P = 1 … phosphorylated

P = 0 … unphosphorylated

phosphorylation lowers theenergy of both states but morethe active state

Page 19: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 1910/13/2011

Free energy of the protein:G(

P, 

S) = 

    (1­P) [(1­

S) 0 + 

S] 

+  P[(1­

S) (­I

2) + 

S(

]

= SI

2

P + (I

2

P

­pA = exp()/[1+exp()]

  for unphosphorylated case­ p

A* = B/(B+C) » p

A

 for phosphorylated case B = exp[

)] & C = exp(

factor of 2 up to 1,000 fold increasein activity upon phosphorylation

Page 20: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 2010/13/2011

Oxygen  binding in hemoglobin

­ 4 oxygen binding sites in each  hemoglobin molecule­ cooperativity: binding energy  of each oxygen depends on the  number of oxygens that are  already bound to hemoglobin­ biophysical basis: each bound O:  conformational change that makes  it easier for other Os to bind­ toy model of dimeric hemoglobin (O

2)

   dimoglobin bindingE = (

1 + 

2) + J

2

Page 21: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 2110/13/2011

Grand partition function: Z = 1 + 2 exp[] + exp[J)] … (p

0,p

1,p

2)

p0=  1/Z;  p

1= 2 exp[]/Z;  p

2= exp[J)/Z

Page 22: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 2210/13/2011

0 + k

BT ln(c/c

0); 

0; x = c/c

0;

‹N› = A/(1+A); A = 2x exp() + 2x2 exp[(2  +J)]

Page 23: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 2310/13/2011

The Monod­Wyman­Changeux (MWC) Model of Cooperative Binding

tensestates

M = 0

relaxedstates

M = 1

Page 24: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 2410/13/2011

Description of the MWC model of oxygen binding in dimoglobin:

­ a classic two­state model for binding­ protein can exist in two distinct states: T (tense) and R (relaxed)­ T is favored over R: 

T < 

R so that 

T > 0

­ the first two­state variable: M

 = 0 (Tense),  M

 = 1 (Relaxed)

­ the second two­state variable: i = 0 (empty),  

i = 1 (occupied)

­ the variable i ∈  {1, 2} corresponds to the receptor place in   dimoglobin (two sites of binding) ­ complete energy E:

E = (1   M

) T ∑

i + 

M (

R∑

i

i)

 Tense Part + Relaxed Part

Page 25: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 2510/13/2011

Z = 1 + exp[(T)] + exp[(2

T2)] + exp() ⨯ 

{1 + exp[(R)] + exp[(2

R2)]}

<N> = 1 (∂/∂)lnZ

<N> = 2/Z ⨯ [x + x2 +  exp()(y + y2)]

x = c/c0 exp[(

T

)]

y = c/c0 exp[(

R

)]

Page 26: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 2610/13/2011

Increasingly Complex Binding Models for Hemoglobin

(1) Noncooperative Model:­ binding on the 4 sites of hemoglobin independent­ energy: E =   ∑

i    i ∈ {1,2,3,4}

(2) Pauling Model:­ four sites as vertices of a tetrahedron­ binding to the neighboring sites is favorable­ energy: E =   ∑

i + J/2 ∑'

ij 

i

j   i,j ∈ {1,2,3,4}

(3) Adair Model:­ in addition to cooperativity of the Pauling model  accounts for three­ and four­body interactions­ energy E:

E =   ∑i 

i + J/2! ∑'

ij

i

j  + K/3! ∑'

ijk

i

j

k  + L/4! ∑'

ijkl 

i

j

k

l  

Page 27: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 2710/13/2011

Page 28: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 2810/13/2011

Cooperative binding associated with a sharper transition

Page 29: Lecture 7: Two­State Systems: From Ion Channels To Cooperative · PDF file · 2011-10-18Lecture 7: Two­State ... force for gating (membrane tension ) ... State variable description

PHYS 461 & 561, Fall 2011-2012 2910/13/2011

Cooperative binding eliminates the intermediate states (1, 2, or 3 oxygens bound to hemoglobin: all­or­none behavior)