53
Lecture 6: Kinematics: Velocity Kinematics - the Jacobian Skew Symmetric Matrices c Anton Shiriaev. 5EL158: Lecture 6 – p. 1/12

Lecture 6: Kinematics: Velocity Kinematics - the · PDF fileLecture 6: Kinematics: Velocity Kinematics - the Jacobian • Skew Symmetric Matrices • Linear and Angular Velocities

  • Upload
    doananh

  • View
    268

  • Download
    1

Embed Size (px)

Citation preview

Lecture 6: Kinematics: Velocity Kinematics - the Jacobian

• Skew Symmetric Matrices

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 1/12

Lecture 6: Kinematics: Velocity Kinematics - the Jacobian

• Skew Symmetric Matrices

• Linear and Angular Velocities of a Moving Frame

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 1/12

Angular Velocity for Describing Rotation around Fixed Axis

When a rigid body rotates around a fixed axis

• Every point of the body moves in a circle

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 2/12

Angular Velocity for Describing Rotation around Fixed Axis

When a rigid body rotates around a fixed axis

• Every point of the body moves in a circle• As the body rotates a perpendicular from any point of the

body to the axis sweeps the same an angle θ

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 2/12

Angular Velocity for Describing Rotation around Fixed Axis

When a rigid body rotates around a fixed axis

• Every point of the body moves in a circle• As the body rotates a perpendicular from any point of the

body to the axis sweeps the same an angle θ

• If ~k is a unit vector in the direction of the axis of rotation,then the angular velocity is given by

~ω = ddt

θ · ~k

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 2/12

Angular Velocity for Describing Rotation around Fixed Axis

When a rigid body rotates around a fixed axis

• Every point of the body moves in a circle• As the body rotates a perpendicular from any point of the

body to the axis sweeps the same an angle θ

• If ~k is a unit vector in the direction of the axis of rotation,then the angular velocity is given by

~ω = ddt

θ · ~k

• The linear velocity of any point of the body is then

~v = ~ω × ~r

where ~r is the vector from the origin, which is assumed tolie on the axis.

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 2/12

Skew Symmetric Matrices

An n × n matrix S is said to be skew symmetric and denotedS ∈ so(n) if

S + ST = 0

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 3/12

Skew Symmetric Matrices

An n × n matrix S is said to be skew symmetric and denotedS ∈ so(n) if

S + ST = 0

The matrix equation written for each item of S ∈ so(n) is

sij + sji = 0, i = 1, . . . , n, j = 1, . . . , n

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 3/12

Skew Symmetric Matrices

An n × n matrix S is said to be skew symmetric and denotedS ∈ so(n) if

S + ST = 0

The matrix equation written for each item of S ∈ so(n) is

sij + sji = 0, i = 1, . . . , n, j = 1, . . . , n

⇒{

sii = 0 and sij = −sji ∀ i 6= j}

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 3/12

Skew Symmetric Matrices

An n × n matrix S is said to be skew symmetric and denotedS ∈ so(n) if

S + ST = 0

The matrix equation written for each item of S ∈ so(n) is

sij + sji = 0, i = 1, . . . , n, j = 1, . . . , n

⇒{

sii = 0 and sij = −sji ∀ i 6= j}

For example, if n = 3, then any S ∈ so(3) has the form

S =

0 ∗ ∗

∗ 0 ∗

∗ ∗ 0

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 3/12

Skew Symmetric Matrices

An n × n matrix S is said to be skew symmetric and denotedS ∈ so(n) if

S + ST = 0

The matrix equation written for each item of S ∈ so(n) is

sij + sji = 0, i = 1, . . . , n, j = 1, . . . , n

⇒{

sii = 0 and sij = −sji ∀ i 6= j}

For example, if n = 3, then any S ∈ so(3) has the form

S =

0 ∗ ∗

∗ 0 ∗

∗ ∗ 0

=

0 −s3 s2

s3 0 −s1

−s2 s1 0

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 3/12

Skew Symmetric Matrices (Cont’d)

Given ~a = [ax, ay, az]T , define

S (~a) =

0 −az ay

az 0 −ax

−ay ax 0

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 4/12

Skew Symmetric Matrices (Cont’d)

Given ~a = [ax, ay, az]T , define

S (~a) =

0 −az ay

az 0 −ax

−ay ax 0

Property:

S (α~a + β~c) = αS(~a

)+ βS

(~c)

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 4/12

Skew Symmetric Matrices (Cont’d)

Given ~a = [ax, ay, az]T , define

S (~a) =

0 −az ay

az 0 −ax

−ay ax 0

Property:

S (α~a + β~c) = αS(~a

)+ βS

(~c)

Property:

S (~a) ~p = ~a × ~p for any ~a, ~p ∈ R3

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 4/12

Skew Symmetric Matrices (Cont’d)

Given ~a = [ax, ay, az]T , define

S (~a) =

0 −az ay

az 0 −ax

−ay ax 0

Property:

S (α~a + β~c) = αS(~a

)+ βS

(~c)

Property:

S (~a) ~p = ~a × ~p for any ~a, ~p ∈ R3

S (~a) ~p =

0 −az ay

az 0 −ax

−ay ax 0

px

py

pz

=

pzay − pyaz

pxaz − pzax

pyax − pxay

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 4/12

Skew Symmetric Matrices (Cont’d)

Property:

RS (~a) RT = S(R~a

)for any R ∈ SO(3), ~a ∈ R

3

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 5/12

Skew Symmetric Matrices (Cont’d)

Property:

RS (~a) RT = S(R~a

)for any R ∈ SO(3), ~a ∈ R

3

R[S (~a) RT ~p

]= R

[~a × RT ~p

]= R

[

~a ×~b]

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 5/12

Skew Symmetric Matrices (Cont’d)

Property:

RS (~a) RT = S(R~a

)for any R ∈ SO(3), ~a ∈ R

3

R[S (~a) RT ~p

]= R

[~a × RT ~p

]= R

[

~a ×~b]

= R~a × R~b

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 5/12

Skew Symmetric Matrices (Cont’d)

Property:

RS (~a) RT = S(R~a

)for any R ∈ SO(3), ~a ∈ R

3

R[S (~a) RT ~p

]= R

[~a × RT ~p

]= R

[

~a ×~b]

= R~a × R~b = R~a × R(RT ~p

)= R~a × ~p

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 5/12

Skew Symmetric Matrices (Cont’d)

Property:

RS (~a) RT = S(R~a

)for any R ∈ SO(3), ~a ∈ R

3

R[S (~a) RT ~p

]= R

[~a × RT ~p

]= R

[

~a ×~b]

= R~a × R~b = R~a × R(RT ~p

)= R~a × ~p

= S (R~a) ~p

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 5/12

Skew Symmetric Matrices (Cont’d)

Property:

RS (~a) RT = S(R~a

)for any R ∈ SO(3), ~a ∈ R

3

R[S (~a) RT ~p

]= R

[~a × RT ~p

]= R

[

~a ×~b]

= R~a × R~b = R~a × R(RT ~p

)= R~a × ~p

= S (R~a) ~p

Property:

xT Sx = 0 for any S ∈ so(3), x ∈ R3

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 5/12

Derivative of Rotation Matrix

Consider a function of a scalar variable θ → R(θ) ∈ SO(3)

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 6/12

Derivative of Rotation Matrix

Consider a function of a scalar variable θ → R(θ) ∈ SO(3)

How to compute ddθ

R(θ)?

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 6/12

Derivative of Rotation Matrix

Consider a function of a scalar variable θ → R(θ) ∈ SO(3)

How to compute ddθ

R(θ)?

For any θ the matrix R(θ) is a rotation, then

R(θ)RT (θ) = RT (θ)R(θ) = I

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 6/12

Derivative of Rotation Matrix

Consider a function of a scalar variable θ → R(θ) ∈ SO(3)

How to compute ddθ

R(θ)?

For any θ the matrix R(θ) is a rotation, then

R(θ)RT (θ) = RT (θ)R(θ) = I

Therefore

ddt

[R(θ)RT (θ)

]= d

dt

[R(θ)

]RT (θ)+R(θ) d

dt

[RT (θ)

]= d

dtI = 0

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 6/12

Derivative of Rotation Matrix

Consider a function of a scalar variable θ → R(θ) ∈ SO(3)

How to compute ddθ

R(θ)?

For any θ the matrix R(θ) is a rotation, then

R(θ)RT (θ) = RT (θ)R(θ) = I

Therefore

ddt

[R(θ)RT (θ)

]= d

dt

[R(θ)

]RT (θ)

︸ ︷︷ ︸

= S

+R(θ) ddt

[RT (θ)

]= d

dtI = 0

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 6/12

Derivative of Rotation Matrix

Consider a function of a scalar variable θ → R(θ) ∈ SO(3)

How to compute ddθ

R(θ)?

For any θ the matrix R(θ) is a rotation, then

R(θ)RT (θ) = RT (θ)R(θ) = I

Therefore

ddt

[R(θ)RT (θ)

]= d

dt

[R(θ)

]RT (θ)

︸ ︷︷ ︸

= S

+ R(θ) ddt

[RT (θ)

]

︸ ︷︷ ︸

= ST

= ddt

I = 0

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 6/12

Derivative of Rotation Matrix

Consider a function of a scalar variable θ → R(θ) ∈ SO(3)

How to compute ddθ

R(θ)?

For any θ the matrix R(θ) is a rotation, then

R(θ)RT (θ) = RT (θ)R(θ) = I

Therefore

ddt

[R(θ)RT (θ)

]= d

dt

[R(θ)

]RT (θ)

︸ ︷︷ ︸

= S

+ R(θ) ddt

[RT (θ)

]

︸ ︷︷ ︸

= ST

= ddt

I = 0

⇒ ddt

[R(θ)

]= SR(θ), S ∈ so(3)

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 6/12

Derivative of Rotation Matrix (Example 4.2)

If R(θ) = Rz,θ, that is the basic rotation around the axis z, then

S = ddθ

[Rz,θ

]RT

z,θ = ddθ

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

T

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 7/12

Derivative of Rotation Matrix (Example 4.2)

If R(θ) = Rz,θ, that is the basic rotation around the axis z, then

S = ddθ

[Rz,θ

]RT

z,θ = ddθ

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

T

=

− sin θ − cos θ 0

cos θ − sin θ 0

0 0 0

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 7/12

Derivative of Rotation Matrix (Example 4.2)

If R(θ) = Rz,θ, that is the basic rotation around the axis z, then

S = ddθ

[Rz,θ

]RT

z,θ = ddθ

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

T

=

− sin θ − cos θ 0

cos θ − sin θ 0

0 0 0

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

=

0 −1 0

1 0 0

0 0 0

=

0 −az ay

az 0 −ax

−ay ax 0

= S (~a)

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 7/12

Derivative of Rotation Matrix (Example 4.2)

If R(θ) = Rz,θ, that is the basic rotation around the axis z, then

S = ddθ

[Rz,θ

]RT

z,θ = ddθ

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

T

=

− sin θ − cos θ 0

cos θ − sin θ 0

0 0 0

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

=

0 −1 0

1 0 0

0 0 0

=

0 −az ay

az 0 −ax

−ay ax 0

= S (~a)

= S(~k), ~k = [0, 0, 1]T

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 7/12

Lecture 6: Kinematics: Velocity Kinematics - the Jacobian

• Skew Symmetric Matrices

• Linear and Angular Velocities of a Moving Frame

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 8/12

Angular Velocity

If R(t) ∈ SO(3) is time-varying and has a time-derivative, then

ddt

R(t) = S(t)R(t) = S(ω(t))R(t), S(·) ∈ so(3)

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 9/12

Angular Velocity

If R(t) ∈ SO(3) is time-varying and has a time-derivative, then

ddt

R(t) = S(t)R(t) = S(ω(t))R(t), S(·) ∈ so(3)

The vector ω(t) will be the

angular velocity

of rotating frame wrt to the fixed frame at time t.

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 9/12

Angular Velocity

If R(t) ∈ SO(3) is time-varying and has a time-derivative, then

ddt

R(t) = S(t)R(t) = S(ω(t))R(t), S(·) ∈ so(3)

The vector ω(t) will be the

angular velocity

of rotating frame wrt to the fixed frame at time t.

Consider a point p rigidly attached to a moving frame, then

p0(t) = R0

1(t) p1

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 9/12

Angular Velocity

If R(t) ∈ SO(3) is time-varying and has a time-derivative, then

ddt

R(t) = S(t)R(t) = S(ω(t))R(t), S(·) ∈ so(3)

The vector ω(t) will be the

angular velocity

of rotating frame wrt to the fixed frame at time t.

Consider a point p rigidly attached to a moving frame, then

p0(t) = R0

1(t) p1

Differentiating this expression we obtain

ddt

[p0(t)

]= d

dt

[R0

1(t)

]p1 = S(ω(t))R0

1(t)p1 = ω(t) × R0

1(t)p1

= ω(t) × p0(t)

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 9/12

Addition of Angular Velocities

An angular velocity is a free vectorωk

i,j(t)

it corresponds to{

ddt

Rij(t)

}

expressed in k-coordinate frame

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 10/12

Addition of Angular Velocities

An angular velocity is a free vectorωk

i,j(t)

it corresponds to{

ddt

Rij(t)

}

expressed in k-coordinate frame

Consider two moving frames and the fixed one all with thecommon origin

R0

2(t) = R0

1(t)R1

2(t)

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 10/12

Addition of Angular Velocities

An angular velocity is a free vectorωk

i,j(t)

it corresponds to{

ddt

Rij(t)

}

expressed in k-coordinate frame

Consider two moving frames and the fixed one all with thecommon origin

R0

2(t) = R0

1(t)R1

2(t)

Taking time derivative of the left and right sides we have

ddt

R0

2(t) = d

dt

[R0

1(t)

]R1

2(t) + R0

1(t) d

dt

[R1

2(t)

]

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 10/12

Addition of Angular Velocities

An angular velocity is a free vectorωk

i,j(t)

it corresponds to{

ddt

Rij(t)

}

expressed in k-coordinate frame

Consider two moving frames and the fixed one all with thecommon origin

R0

2(t) = R0

1(t)R1

2(t)

Taking time derivative of the left and right sides we have

ddt

R0

2(t) = d

dt

[R0

1(t)

]R1

2(t) + R0

1(t) d

dt

[R1

2(t)

]

= S(ω0

0,2(t))R0

2

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 10/12

Addition of Angular Velocities

An angular velocity is a free vectorωk

i,j(t)

it corresponds to{

ddt

Rij(t)

}

expressed in k-coordinate frame

Consider two moving frames and the fixed one all with thecommon origin

R0

2(t) = R0

1(t)R1

2(t)

Taking time derivative of the left and right sides we have

ddt

R0

2(t) = d

dt

[R0

1(t)

]R1

2(t) + R0

1(t) d

dt

[R1

2(t)

]

= S(ω0

0,2(t))R0

2

=[

S(ω0

0,1(t))R0

1(t)

]

R1

2(t) + R0

1(t)

[

S(ω1

1,2(t))R1

2(t)

]

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 10/12

Addition of Angular Velocities

An angular velocity is a free vectorωk

i,j(t)

it corresponds to{

ddt

Rij(t)

}

expressed in k-coordinate frame

Consider two moving frames and the fixed one all with thecommon origin

R0

2(t) = R0

1(t)R1

2(t)

Taking time derivative of the left and right sides we have

ddt

R0

2(t) = d

dt

[R0

1(t)

]R1

2(t) + R0

1(t) d

dt

[R1

2(t)

]

= S(ω0

0,2(t))R0

2

= S(ω0

0,1(t)) R0

1(t)R1

2(t)

︸ ︷︷ ︸

= R0

2(t)

+R0

1(t)

[

S(ω1

1,2(t))R1

2(t)

]

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 10/12

Addition of Angular Velocities

An angular velocity is a free vectorωk

i,j(t)

it corresponds to{

ddt

Rij(t)

}

expressed in k-coordinate frame

Consider two moving frames and the fixed one all with thecommon origin

R0

2(t) = R0

1(t)R1

2(t)

Taking time derivative of the left and right sides we have

ddt

R0

2(t) = d

dt

[R0

1(t)

]R1

2(t) + R0

1(t) d

dt

[R1

2(t)

]

= S(ω0

0,2(t))R0

2

= S(ω0

0,1(t))R0

2(t) + R0

1(t)S(ω1

1,2(t)) R0

1(t)T R0

1(t)

︸ ︷︷ ︸

= I

R1

2(t)

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 10/12

Addition of Angular Velocities

An angular velocity is a free vectorωk

i,j(t)

it corresponds to{

ddt

Rij(t)

}

expressed in k-coordinate frame

Consider two moving frames and the fixed one all with thecommon origin

R0

2(t) = R0

1(t)R1

2(t)

Taking time derivative of the left and right sides we have

ddt

R0

2(t) = d

dt

[R0

1(t)

]R1

2(t) + R0

1(t) d

dt

[R1

2(t)

]

= S(ω0

0,2(t))R0

2

= S(ω0

0,1(t))R0

2(t) + R0

1(t)S(ω1

1,2(t))R0

1(t)T

︸ ︷︷ ︸

= S(R0

1(t)ω1

1,2(t))

R0

1(t)R1

2(t)

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 10/12

Addition of Angular Velocities

An angular velocity is a free vectorωk

i,j(t)

it corresponds to{

ddt

Rij(t)

}

expressed in k-coordinate frame

Consider two moving frames and the fixed one all with thecommon origin

R0

2(t) = R0

1(t)R1

2(t)

Taking time derivative of the left and right sides we have

ddt

R0

2(t) = d

dt

[R0

1(t)

]R1

2(t) + R0

1(t) d

dt

[R1

2(t)

]

= S(ω0

0,2(t))R0

2

= S(ω0

0,1(t))R0

2(t) + S(R0

1(t)ω1

1,2(t)) R0

1(t)R1

2(t)

︸ ︷︷ ︸

= R0

2(t)

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 10/12

Addition of Angular Velocities

An angular velocity is a free vectorωk

i,j(t)

it corresponds to{

ddt

Rij(t)

}

expressed in k-coordinate frame

Consider two moving frames and the fixed one all with thecommon origin

R0

2(t) = R0

1(t)R1

2(t)

Taking time derivative of the left and right sides we have

ddt

R0

2(t) = d

dt

[R0

1(t)

]R1

2(t) + R0

1(t) d

dt

[R1

2(t)

]

= S(ω0

0,2(t))R0

2

=[

S(ω0

0,1(t)) + S(R0

1(t)ω1

1,2(t))]

R0

2(t)

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 10/12

Addition of Angular Velocities

An angular velocity is a free vectorωk

i,j(t)

it corresponds to{

ddt

Rij(t)

}

expressed in k-coordinate frame

Consider two moving frames and the fixed one all with thecommon origin

R0

2(t) = R0

1(t)R1

2(t)

Taking time derivative of the left and right sides we have

ddt

R0

2(t) = d

dt

[R0

1(t)

]R1

2(t) + R0

1(t) d

dt

[R1

2(t)

]

= S(ω0

0,2(t))R0

2

=[

S(ω0

0,1(t)) + S(R0

1(t)ω1

1,2(t))]

R0

2(t)

⇒ S(ω0

0,2(t)) = S(ω0

0,1(t)) + S(R0

1(t)ω1

1,2(t))

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 10/12

Addition of Angular Velocities (Cont’d)

The relation

S(ω0

0,2(t)) = S(ω0

0,1(t)) + S(R0

1(t)ω1

1,2(t))

together with the property: S(a) + S(c) = S(a + c), imply thatthe angular velocity can be computed as

ω0

0,2(t) = ω0

0,1(t) + R0

1(t)ω1

1,2(t) = ω0

0,1(t) + ω0

1,2(t)

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 11/12

Addition of Angular Velocities (Cont’d)

The relation

S(ω0

0,2(t)) = S(ω0

0,1(t)) + S(R0

1(t)ω1

1,2(t))

together with the property: S(a) + S(c) = S(a + c), imply thatthe angular velocity can be computed as

ω0

0,2(t) = ω0

0,1(t) + R0

1(t)ω1

1,2(t) = ω0

0,1(t) + ω0

1,2(t)

Given n-moving frames with the same origins as for fixed one

R0

n(t) = R0

1(t)R1

2(t) · · · Rn−1

n (t) ⇒ ddt

R0

n(t) = S(ω0

0,n(t))R0

n(t)

ω0

0,n(t) = ω0

0,1(t) + ω0

1,2(t) + ω0

2,3(t) + · · · + ω0

n−1,n(t)

= ω0

0,1 + R0

1ω1

1,2 + R0

2ω2

2,3 + · · · + R0

n−1ω

n−1

n−1,n

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 11/12

Computing a Linear Velocity of a Point

Given moving and fixed frames related by a homogeneoustransform

H0

1(t) =

R0

1(t) o0

1(t)

0 1

that is, coordinates of each point of moving frame are

p0(t) = R0

1(t)p1 + o0

1(t)

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 12/12

Computing a Linear Velocity of a Point

Given moving and fixed frames related by a homogeneoustransform

H0

1(t) =

R0

1(t) o0

1(t)

0 1

that is, coordinates of each point of moving frame are

p0(t) = R0

1(t)p1 + o0

1(t)

Hence

ddt

p0(t) = ddt

[R0

1(t)

]p1 + d

dt

[o0

1(t)

]

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 12/12

Computing a Linear Velocity of a Point

Given moving and fixed frames related by a homogeneoustransform

H0

1(t) =

R0

1(t) o0

1(t)

0 1

that is, coordinates of each point of moving frame are

p0(t) = R0

1(t)p1 + o0

1(t)

Hence

ddt

p0(t) = ddt

[R0

1(t)

]p1 + d

dt

[o0

1(t)

]

= S(ω0

1(t))R0

1p1 + d

dt

[o0

1(t)

]

= ω0

1(t) × (R0

1p1) + d

dt

[o0

1(t)

]

c©Anton Shiriaev. 5EL158: Lecture 6 – p. 12/12