35
Stephan Henzler Mixed-Signal-Electronics 2011/12 Mixed-Signal-Electronics PD Dr.-Ing. Stephan Henzler 1

Lecture 5 Presentation

Embed Size (px)

Citation preview

Stephan Henzler Mixed-Signal-Electronics 2011/12

Mixed-Signal-Electronics

PD Dr.-Ing. Stephan Henzler

1

Stephan Henzler Mixed-Signal-Electronics 2011/12

Binary Number Representation

2

# #

normalized

Sign

magnitude

1‘s

complement

2‘s

complement

Offset

binary

+7 +7/8 0111 0111 0111 1111

+6 +6/8 0110 0110 0110 1110

+5 +5/8 0101 0101 0101 1101

+4 +4/8 0100 0100 0100 1100

+3 +3/8 0011 0011 0011 1011

+2 +2/8 0010 0010 0010 1010

+1 +1/8 0001 0001 0001 1001

+0 0 0000 0000 0000 1000

-0 0 1000 1111

-1 -1/8 1001 1110 1111 0111

-2 -2/8 1010 1101 1110 0110

-3 -3/8 1011 1100 1101 0101

-4 -4/8 1100 1011 1100 0100

-5 -5/8 1101 1010 1011 0011

-6 -6/8 1110 1001 1010 0010

-7 -7/8 1111 1000 1001 0001

-8 -8/8 1000 0000

Stephan Henzler Mixed-Signal-Electronics 2011/12

Nyquist Rate

Digital-to-Analog Converters

3

Chapter 5

Stephan Henzler Mixed-Signal-Electronics 2011/12

Nyquist Rate Digital-to-Analog Converters

4

Basic Idea:

• Generate all possible voltages which are possible

according to eq. 1

• Use switches to connect the voltage selected by Bin to

the output

N

Nrefinrefout bbbVBVV 222 2

2

1

1

Stephan Henzler Mixed-Signal-Electronics 2011/12

3-Bit Resistor String Converter

Generate all possible voltages with

resistive voltage divider

Switches = NMOS transistors

Transmission gates enable

– higher voltage range

– but higher parasitic cap, area

(layout more complicated)

Buffer experiences high input

voltage variation

Slow due to buffer and analog mux

How fast does the DAC settle

5

str

ictl

y m

on

oto

nic

voltage follower

bu

s

max value

Stephan Henzler Mixed-Signal-Electronics 2011/12

Elmore Delay

6

Prerequisites:

– one input only

– caps between network node and ground only

– no resistive loops

W. C. Elmore, The Transient Response of Damped Linear Networks with Particular Regard to Wideband Amplifiers, Journal of Applied Physics, 1948.

Stephan Henzler Mixed-Signal-Electronics 2011/12

Elmore Delay (cont.): Path Resistance

7

There is exactly one resistive path from a network node i to

the input s.

The sum of all resistances along this path is the path

resistance Rii, e.g. R44 = R4 + R3 + R1

Stephan Henzler Mixed-Signal-Electronics 2011/12

Elmore Delay: Shared Path Resistance

The shared path resistance Rik is the sum of all resistances

along the joint sub-path of the two paths s i and s k.

Example: Ri4 = R1 + R3

8

Stephan Henzler Mixed-Signal-Electronics 2011/12

SS 2008

9

Elmore Delay (cont): Delay Approximation

Elmore delay:

First order approximation of the delay after which a voltage step at the input s can be observed at the output i.

Stephan Henzler Mixed-Signal-Electronics 2011/12

SS 2008

10

Elmore Delay (cont): Delay Approximation

Elmore delay:

Useful for

– Estimation of wire delay

– Estimation of DAC settling time

– …

Stephan Henzler Mixed-Signal-Electronics 2011/12

Resistor String Converter

11

Stephan Henzler Mixed-Signal-Electronics 2011/12 12

Resistor String Converter

(with pass-gate decoder)

Stephan Henzler Mixed-Signal-Electronics 2011/12

Delay Comparison

13

0 2 4 6 8 10 12 14 160

50

100

150

200

250

300

Number of Bits

No

rma

lize

d D

ela

y

string

tree

Stephan Henzler Mixed-Signal-Electronics 2011/12

Folded Resistor String Converter

14

Combine the advantages of both converters:

(low effort for decoder, small load cap.)

Access scheme as in memories:

MSBs select row

LSBs select column

transistors at output bus

all bitlines are charged

N22

Stephan Henzler Mixed-Signal-Electronics 2011/12

Multi-Stage

Resistor String Converter

Subdivde voltage range in

coarse sub-intervals first

Copy the respective voltage

interval

Fine interpolation of the

copied interval

15

• if opamps match the converter is monotonic

• less resistors

• reduced area and power

Stephan Henzler Mixed-Signal-Electronics 2011/12

Binary Weighted Current Mode Converters

16

Until now: All possible voltages are generated,

1 out of 2N voltages is copied to the output

Now:

• Current mode, i.e. currents are generated, superposed

and then converted into the output voltage

• Input word is already binary generated binary weighted

currents and superpose them into a current that corresponds

to the input word.

IbIbIbIbIF 481

341

221

1

1

min

max 2 N

I

I

scale switches

Stephan Henzler Mixed-Signal-Electronics 2011/12

Monotonicity in Binary Weighted DACs

Binary weighted converters are not necessarily monotonic

Example:

17

81

41

211

1110

0001 1

87

81

41

21

86

1110

0001 86

87

Stephan Henzler Mixed-Signal-Electronics 2011/12

Glitches in Binary Weighted DACs

Different delays in the control logic of the switches causes

voltage spikes, i.e. glitches

18

1110 0001

1110 1111

1110 0000

0001

0001

Stephan Henzler Mixed-Signal-Electronics 2011/12

Implementation of Binary Weighted DAC

19

How can we generate binary weighted currents easily?

Stephan Henzler Mixed-Signal-Electronics 2011/12

Implementation of Binary Weighted DAC

For bi = 0 the same current flows, not to VGND but to AGND

30 unit resistors (in binary weighted array)

Not necessarily monotonic

Glitches, if switches do not switch simultaneously

20

Stephan Henzler Mixed-Signal-Electronics 2011/12

High Resolution DAC II

High number of bits

– large area

– matching difficult if MSB/LSB ratio is large (currents, resistors)

21

Stephan Henzler Mixed-Signal-Electronics 2011/12

High Resolution DAC

High number of bits

– large area

– matching difficult if MSB/LSB ratio is large (currents, resistors)

22

Stephan Henzler Mixed-Signal-Electronics 2011/12

Implementation of Binary Weighted DAC

(with improved resistor ratio)

23

Stephan Henzler Mixed-Signal-Electronics 2011/12

Implementation of Binary Weighted DAC

(with improved resistor ratio)

(reduced)

19 unit resistors 24 24

Stephan Henzler Mixed-Signal-Electronics 2011/12

R-2R-Ladder Network

25

Stephan Henzler Mixed-Signal-Electronics 2011/12

Implementation of Binary Weighted DAC

(with R-2R-Ladder)

Take R-2R ladder and replace AGND by a virtual ground in

order to collect binary weighted currents

Insert switches (such that node potential is not changed)

26

Stephan Henzler Mixed-Signal-Electronics 2011/12

Implementation of Binary Weighted DAC

(with R-2R-current divider)

R-2R ladder as current divider

27

Stephan Henzler Mixed-Signal-Electronics 2011/12

Switched Capacitor Amplifier

(without output reset)

28 28

Stephan Henzler Mixed-Signal-Electronics 2011/12

SC-Amplifier with Controllable Capacitors

Various variants possible

Gain is altered according to binary input

multiplying DAC (M-DAC)

29

Stephan Henzler Mixed-Signal-Electronics 2011/12

Thermometer Code Converters

(method to force monotonicity)

30

# binary thermometer code

b1 b2 b3 d1 d2 d3 d4 d5 d6 d7

0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 1

2 0 1 0 0 0 0 0 0 1 1

3 0 1 1 0 0 0 0 1 1 1

4 1 0 0 0 0 0 1 1 1 1

5 1 0 1 0 0 1 1 1 1 1

6 1 1 0 0 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1 1

Stephan Henzler Mixed-Signal-Electronics 2011/12

Thermometer Code Converters

(method to force monotonicity)

31

Stephan Henzler Mixed-Signal-Electronics 2011/12

Thermometer Code Converters

(method to force monotonicity)

32

Stephan Henzler Mixed-Signal-Electronics 2011/12

Hybrid Converter Architectures

33

Stephan Henzler Advanced Integrated Circuit Design 2011/12

Differential Current Steering DAC

34

b1 b2 b3 I+ I- Vo

0 0 0 0 I 7/4 I -7/8 RI

0 0 1 1/4 I 6/4 I -5/8 RI

0 1 0 2/4 I 5/4 I -3/8 RI

0 1 1 3/4 I 4/4 I -1/8 RI

1 0 0 4/4 I 3/4 I 1/8 RI

1 0 1 5/4 I 2/4 I 3/8 RI

1 1 0 6/4 I 1/4 I 5/8 RI

1 1 1 7/4 I 0 I 7/8 RI

Stephan Henzler Advanced Integrated Circuit Design 2011/12

Charge Scaling DAC

Compatibel with switched capacitor circuits

Principle: Divide charge binarily

All caps discharged during 1 (reset phase, no valid output)

35