47
Lecture 4. Aspects of Chemical Data Assimilation Adrian Sandu Computational Science Laboratory Virginia Polytechnic Institute and State University

Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Lecture 4. Aspects of

Chemical Data Assimilation

Adrian Sandu Computational Science Laboratory

Virginia Polytechnic Institute and State University

Page 2: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Simulation of air pollution, E. Asia, 3 days in March 2001, provides motivation

Page 3: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Motivation: large-scale simulations of PDE-based models with dynamic space/time adaptivity

data distribution on processors

refinement – according to criteria that minimize errors for

target species

discretization

~0.5 million variables ~0.5 billion variables

processor distribution

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 4: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Data assimilation fuses information from (1) prior, (2) model, (3) observations to obtain consistent description of a physical system

Optimal analysis state

Chemical kinetics

Aerosols

CTM

Transport Meteorology

Emissions

Observations Data

Assimilation

Targeted Observ.

Improved: •  forecasts •  science •  field experiment design •  models •  emission estimates

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 5: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Data assimilation problems of practical interest are large and computationally intensive

Lars Isaksen (http://www.ecmwf.int)

How large are the models? Typically O(108) variables, and O(10) different

physical processes

How many observations are being assimilated? All data assimilated at ECMWF 1996-2010: O(107)

Aug. 16, 2011. Statistical Engineering Division, NIST.

Page 6: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Some conventional and remote data sources used at ECMWF for numerical weather prediction

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

SYNOP/METAR/SHIP: pres., wind, RH Aircraft: wind, temperature

Lars Isaksen (http://www.ecmwf.int)

13 Sounders: NOAA AMSU-A/B, HIRS, AIRS, … Geostationary, 4 IR and 5 winds

Page 7: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

The most popular approaches for chemical data assimilation are 4D-Var and EnKF

4D-Var n  4D-Var treats all observations within one assimilation window

simultaneously (can use observations from frequently reporting stations) n  4D-Var generates analysis consistent with the system dynamics

n  4D-Var more complex: needs linearized perturbation forecast model and its adjoint to solve the cost function minimization problem efficiently

n  Analysis covariances difficult to estimate

EnKF n  EnKF is easier to implement (no adjoint) n  EnKF updates both state and error covariance n  EnKF analysis flow inconsistent with dynamics (see EnKS) n  Rank-deficient covariances require additional work to fix n  EnKF sampling error is large in large-scale models

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 8: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Discretize-then-linearize leads to the discrete adjoint model (e.g., of mass balance equations)

( ) ( )

( ) ( )( ) ( )

GROUNDii

DEPi

i

OUTi

ININii

Fii

iiiii

QCVnCK

nCK

xtCxtCtttxCxtC

ECfCKCudtdC

Γ−=∂

Γ=∂

Γ=

≤≤=

++∇⋅∇+∇⋅−=

on

on0

on,,

,,

11

000

ρρ

ρρ

tHOR

tVERT

tCHEM

tVERT

tHORttt

kttt

k

TTRTTN

CNCΔΔΔΔΔ

Δ+

Δ++

=

=

],[

],[1

( ) ( ) ( ) ( ) ( )'*'*'*'*'*],[

'*

11],[

'*

tHOR

tVERT

tCHEM

tVERT

tHORttt

kkttt

k

TTRTTN

NΔΔΔΔΔ

Δ+

++Δ+

=

+=

φλλ

Continuous forward model (PDE)

Discrete forward model (discretized PDE)

Discrete adjoint model (computes derivatives on the numerical solution)

discr

adj

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 9: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Linearize-then-discretize leads to the continuous adjoint model (e.g., of mass balance equations)

( ) ( )

( ) ( )( ) ( )

GROUNDii

DEPi

i

OUTi

ININii

Fii

iiiii

QCVnCK

nCK

xtCxtCtttxCxtC

ECfCKCudtdC

Γ−=∂

Γ=∂

Γ=

≤≤=

++∇⋅∇+∇⋅−=

on

on0

on,,

,,

11

000

ρρ

ρρ

( ) ( )

( ) ( )( )

( )

( ) GROUNDi

DEPi

i

OUTii

INi

oFFi

Fi

iiTi

ii

Vn

K

nKu

xttttxxt

CFKudtd

Γ=∂

Γ=∂

∂+

Γ=

≥≥=

−⋅−⎟⎟⎠

⎞⎜⎜⎝

⎛∇⋅⋅∇−⋅∇−=

on

on0

on0,

,,

)(

λρλ

ρ

ρλρλ

λ

λλ

φλρρλ

ρλλ

( ) ( ) ( ) ( ) ( )'*'*'*'*'*],[

'*

11],[

'*

tHOR

tVERT

tCHEM

tVERT

tHORttt

kkttt

k

TTRTTM

MΔΔΔΔΔ

Δ+

++Δ+

=

+=

φλλ

Continuous forward model (PDE) Adjoint PDE model (exact derivatives)

Continuous adjoint model (discretized adjoint PDE)

adj

discr

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 10: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Continuous and discrete adjoints (of mass balance equations) lead to different computational models

( ) ( )

( ) ( )( ) ( )

GROUNDii

DEPi

i

OUTi

ININii

Fii

iiiii

QCVnCK

nCK

xtCxtCtttxCxtC

ECfCKCudtdC

Γ−=∂

Γ=∂

Γ=

≤≤=

++∇⋅∇+∇⋅−=

on

on0

on,,

,,

11

000

ρρ

ρρ

( ) ( )

( ) ( )( ) ( )

GROUNDii

DEPi

i

OUTi

ININii

Fii

iiiii

QCVnCK

nCK

xtCxtCtttxCxtC

ECfCKCudtdC

Γ−=∂

Γ=∂

Γ=

≤≤=

++∇⋅∇+∇⋅−=

on

on0

on,,

,,

11

000

ρρ

ρρ

( ) ( )

( ) ( )( )

( )

( ) GROUNDi

DEPi

i

OUTii

INi

oFFi

Fi

iiTi

ii

Vn

K

nKu

xttttxxt

CFKudtd

Γ=∂

Γ=∂

∂+

Γ=

≥≥=

−⋅−⎟⎟⎠

⎞⎜⎜⎝

⎛∇⋅⋅∇−⋅∇−=

on

on0

on0,

,,

)(

λρλρ

ρλρλ

λλλ

φλρρλρλλ

( ) ( )

( ) ( )( )

( )

( ) GROUNDi

DEPi

i

OUTii

INi

oFFi

Fi

iiTi

ii

Vn

K

nKu

xttttxxt

CFKudtd

Γ=∂

Γ=∂

∂+

Γ=

≥≥=

−⋅−⎟⎟⎠

⎞⎜⎜⎝

⎛∇⋅⋅∇−⋅∇−=

on

on0

on0,

,,

)(

λρλρ

ρλρλ

λλλ

φλρρλρλλ

Continuous forward model (PDE)

Discrete forward model (discretized PDE)

Adjoint PDE

Adjoint models  ≠

adj

discr

adj

discr

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

( ) ( )

( ) ( )( )

( )

( ) GROUNDi

DEPi

i

OUTii

INi

oFFi

Fi

iiTi

ii

Vn

K

nKu

xttttxxt

CFKudtd

Γ=∂

Γ=∂

∂+

Γ=

≥≥=

−⋅−⎟⎟⎠

⎞⎜⎜⎝

⎛∇⋅⋅∇−⋅∇−=

on

on0

on0,

,,

)(

λρλρ

ρλρλλ

λλ

φλρρλρλλ

Page 11: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

What do each adjoint represents? The question is relevant for sensitivity analysis and inverse problems

Sensitivity analysis: how well does the derivative of the numerical solution approximate the continuous derivative?

( ) JJJ

J

J

∇−∇⋅∇≤−

=

=

hopt

2opt

hopt

hhopt

opt

)(cond

argmin

argmin

xxx

x

x

0

0

x

x

Inverse problems: how well does the discrete optimum approximate the continuous optimum?

Compute to represent

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

!#↑ℎ  !#

Page 12: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

The construction of adjoint models is work-intensive and error-prone. Automatic implementation attractive

Optimal analysis state

Chemical kinetics

Aerosols

CTM

Transport Meteorology

Emissions

Observations Data

Assimilation

Targeted Observ.

Improved: •  forecasts •  science •  field experiment design •  models •  emission estimates

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 13: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Discrete adjoints of advection numerical schemes can become inconsistent with the adjoint PDE

Change of forward scheme pattern: •  Change of upwinding direction •  Sources/sinks •  Inflow boundaries scheme Example: 3rd order upwind FD [Liu and Sandu, 2005]

Active forward limiters act as pseudo-sources in adjoint

Example: minmod

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

discretization change

upwind direction change

Page 14: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

The construction of adjoint models is work-intensive and error-prone. Automatic implementation attractive

Optimal analysis state

Chemical kinetics

Aerosols

CTM

Transport Meteorology

Emissions

Observations Data

Assimilation

Targeted Observ.

Improved: •  forecasts •  science •  field experiment design •  models •  emission estimates

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 15: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

KPP automatically generates simulation and direct/adjoint sensitivity code for chemistry

#INCLUDE atoms #DEFVAR O = O; O1D = O; O3 = O + O + O; NO = N + O; NO2 = N + O + O; #DEFFIX O2 = O + O; M = ignore; #EQUATIONS { Small Stratospheric } O2 + hv = 2O : 2.6E-10*S; O + O2 = O3 : 8.0E-17; O3 + hv = O + O2 : 6.1E-04*S; O + O3 = 2O2 : 1.5E-15; O3 + hv = O1D + O2 : 1.0E-03*S; O1D + M = O + M : 7.1E-11; O1D + O3 = 2O2 : 1.2E-10; NO + O3 = NO2 + O2 : 6.0E-15; NO2 + O = NO + O2 : 1.0E-11; NO2 + hv = NO + O : 1.2E-02*S;

SUBROUTINE FunVar ( V, F, RCT, DV ) INCLUDE 'small.h' REAL*8 V(NVAR), F(NFIX) REAL*8 RCT(NREACT), DV(NVAR) C A - rate for each equation REAL*8 A(NREACT) C Computation of equation rates A(1) = RCT(1)*F(2) A(2) = RCT(2)*V(2)*F(2) A(3) = RCT(3)*V(3) A(4) = RCT(4)*V(2)*V(3) A(5) = RCT(5)*V(3) A(6) = RCT(6)*V(1)*F(1) A(7) = RCT(7)*V(1)*V(3) A(8) = RCT(8)*V(3)*V(4) A(9) = RCT(9)*V(2)*V(5) A(10) = RCT(10)*V(5) C Aggregate function DV(1) = A(5)-A(6)-A(7) DV(2) = 2*A(1)-A(2)+A(3)-A(4)+A(6)-&A(9)+A(10) DV(3) = A(2)-A(3)-A(4)-A(5)-A(7)-A(8) DV(4) = -A(8)+A(9)+A(10) DV(5) = A(8)-A(9)-A(10) END

K P P

[Damian et.al., 1996; Sandu et.al., 2002]

Chemical mechanism Simulation code

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 16: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Sparse Jacobians , Hessians, and sparse linear algebra routines are automatically generated by KPP

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 17: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Methods available in the KPP numerical library

n  FIRK 3-stage: Radau-2A (ord.5), Radau-1A (ord.5), Lobatto-3C (ord.4), Gauss (ord.6)

n  SDIRK: 2a, 2b (2s, ord.2), 3a (3s, ord.2), 4a, 4b (5s, ord.4) n  Rosenbrock: Ros2, Ros3, Ros4, Rodas3, Rodas4.

Forward TLM (DDM) Discrete ADJ

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 18: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Discrete Runge-Kutta adjoints can be regarded as “numerical methods” applied to the adjoint ODE

λn = λn+1 + θ i

i=1

s

θ i = h JT Yi( )⋅ bi λn+1 + a j,iθj

j=1

s

∑⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

yn+1 = yn + h bif Yi( )

i=1

s

∑ ,

Yi = yn + h ai,j f Yj( )

i=1

s

RK Method Discrete RK Adjoint [Hager, 2000]

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Error analysis: The discrete adjoint (of order p RK method) converges with order p to the solution of the adjoint ODE. [Sandu, 2005]

Page 19: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Discrete Runge-Kutta adjoints: error analysis Local error analysis: The discrete adjoint of RK method of order p is an order p discretization of the adjoint equation. [Sandu, 2005] . This: - works for both explicit and implicit methods - true for arbitrary orders p

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Global error analysis: The discrete adjoint (of a RK method convergent with order p) converges with order p to the solution of the adjoint ODE. [Sandu, 2005] The analysis accounts for: 1.  the truncation error at each step, and 2.  the different trajectories about which the continuous and the discrete

adjoints are defined

Stiff case: Consider a stiffly accurate Runge Kutta method of order p with invertible coefficient matrix A. The discrete adjoint provides: 1.  an order p discretization of the adjoint of nonstiff variable 2.  an order min(p,q+1,r+1) of the adjoint of stiff variable [Sandu, 2005]

Page 20: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Adjoint differentiation of adaptive time step mechanism can result in O(1) perturbation

yn+1 =Θ yn , hn , t n( )hn+1 = Γ yn, hn , t n( )t n+1 = hn + t n

λ(y )n =Θy

T ⋅ λ(y )n+1 + Γy

T ⋅ λ(h )n+1

λ(h )n =Θh

T ⋅ λ(y )n+1 + Γh

T ⋅ λ(h )n+1 + λ( t )

n+1

λ( t )n =Θ t

T ⋅ λ(y )n+1 + Γt

T ⋅ λ(h )n+1 + λ( t )

n+1

Analysis (for one-step methods) uses extended state

Adjoints of step λ(h) influence adjoints of state

Prothero-Robinson example (DOPRI-5) with and without

adjoint correction

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 21: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

The construction of adjoint models is work-intensive and error-prone. Automatic implementation attractive

Optimal analysis state

Chemical kinetics

Aerosols

CTM

Transport Meteorology

Emissions

Observations Data

Assimilation

Targeted Observ.

Improved: •  forecasts •  science •  field experiment design •  models •  emission estimates

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 22: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

June 20, 2005

Chemical D.A. and Data Needs

for Air Quality Forecasting

Populations of aerosols (particles in the atmosphere) are described by their mass density

( ) ( )

( ) ( )( ) ( ) .0,,0,0

,1,,

''),'()',(

''),'(),'()','(

00

0

0

=∞===

≤≤==

+−+∂

∂−+

−−=

∫∞

tmqtmqnimqttmq

qRLqSmmHqm

qH

dmmtmqmmq

dmmmtmmqtmqmmm

tq

ii

ii

iiiii

i

m

ii

β

β

m+m’ m m’

Coagulation

m imH

Growth

Aerosol dynamic equation - IPDE

Page 23: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

June 20, 2005

Chemical D.A. and Data Needs

for Air Quality Forecasting

Adjoint aerosol dynamic models are needed to solve inverse problems

( ) ( ) ( ) ( )),,(),,()( 11

112

1121 k

nkk

N

kk

Tkn

kkBTB qqhyRqqhyppBppp −−+−−= ∑=

−−ψ

( ) [ ]

[ ] ( )

( ) ( )( ) ( ) ( ) ( ) .0,0,,,

)(),(),(,0,

'),'(),(),'(),'(

'),'(),(),'(')',(

100

1

10 1

1

1

0

1

=−+=

−+==

−−−+−

≤≤+−+−=∂

−+

−+−

=

=

−−

+

∞−

∑∫ ∑

tppBptmtm

qhyRhtmtmtm

mHHdmtmqtmtmmmmm

tttLdmtmqtmtmmmmmt

iBT

qii

kkk

Tq

ki

ki

Ni

mi

n

jjj

n

jjjj

kkiii

i

i

i

λλλ

λλλ

λλλλβ

λλλβλ

[Sandu et. al., 2004; Henze et. al., 2004]

( )( ) ( ) ( ))(1

1

111 kkk

Tq

n

j

kj

Tki

Tkii

TkTki

ki qhyRhAqBLAqBGt

i−+⎥

⎤⎢⎣

⎡×+⋅−×+⋅Δ+= −

=

+−+−+ ∑λλλλ

Discrete adjoint equation

Continuous adjoint equation

Cost functional

Page 24: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

June 20, 2005

Chemical D.A. and Data Needs

for Air Quality Forecasting

Data assimilation simultaneously recovers the aerosol initial distribution and model parameters

[Sandu et. al., 2004; Henze et. al., 2004]

(Growth rate) (Coag. kernel)

Complete info: Observations of density in each bin allow complete recovery

(Growth rate) (Coag. kernel)

Optical info: Observations of total surface density allow partial recovery

Page 25: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

The construction of adjoint models is work-intensive and error-prone. Automatic implementation attractive

Optimal analysis state

Chemical kinetics

Aerosols

CTM

Transport Meteorology

Emissions

Observations Data

Assimilation

Targeted Observ.

Improved: •  forecasts •  science •  field experiment design •  models •  emission estimates

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 26: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

The construction of adjoint models is work-intensive and error-prone. Automatic implementation attractive

Optimal analysis state

Chemical kinetics

Aerosols

CTM

Transport Meteorology

Emissions

Observations Data

Assimilation

Targeted Observ.

Improved: •  forecasts •  science •  field experiment design •  models •  emission estimates

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 27: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Adjoint variables for an ozone sensor located on Cheju Island at the end of the three days period

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 28: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Adjoint sensitivity analysis of non-attainment metrics can help guide policy decisions

Estimated contributions by state to violating U.S. ozone NAAQS

in July 2004

[Hakami et al., 2005]

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 29: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Ensemble-based chemical data assimilation is an alternative to variational techniques

Optimal analysis state

Chemical kinetics

Aerosols

CTM

Transport Meteorology

Emissions

Observations Ensemble

Data Assimilation

Targeted Observ.

Improved: •  forecasts •  science •  field experiment design •  models •  emission estimates

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 30: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Assimilation of ozone data from the ICARTT field campaign in Eastern U.S., July 2004

[Chai et al., 2006]

Nov. 30, 2011. Lecture 1: Data assimilation.

Page 31: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

The Ensemble Kalman Filter (EnKF) popular in NWP but not extensively used before with CTMs

Specify initial ensemble (sample B) Covariance inflation: Prevents filter

divergence (additive, multiplicative, model-specific)

Covariance localization (limit long-distance spurious correlations)

Correction localization (limit increments away from observations)

Ozonesonde S2 (18 EDT, July 20, 2004) [Constantinescu et al., 2007]

( )( ) ( )kfk

kobs

Tk

kfkk

Tk

kf

kf

ka

ka

kkf tM

yHzHPHRHPyy

yy

−++=

=−

−−

1

11,

Nov. 30, 2011. Lecture 1: Data assimilation.

Page 32: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Ground level ozone at 2pm EDT, July 20, 2004, better matches observations after LEnKF data assimilation

Forecast (R2=0.24/0.28) Analysis (R2=0.88/0.32)

Observations: circles, color coded by O3 mixing ratio

Nov. 30, 2011. Lecture 1: Data assimilation.

Page 33: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Parallelization important to speed up 4D-Var

[Sandu et.al., 2003-2008]

Chemistry w/ abstract vectors

Transport on accelerators

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 34: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

The use of adjoints in large scale simulations: atmospheric chemical transport models

Optimal analysis state

Chemical kinetics

Aerosols

CTM

Transport Meteorology

Emissions

Observations 4D-Var

Data Assimilation

Targeted Observ.

Improved: •  forecasts •  science •  field experiment design •  models •  emission estimates

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 35: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

STEM: Assimilation adjusts O3 predictions considerably at 4pm EDT on July 20, 2004

Observations: circles, color coded by O3 mixing ratio

Ground O3 (forecast) Ground O3 (analysis)

[Chai et al., 2006]

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 36: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Assimilation of ozonesonde observations for July 20, 2004, show importance of vertical information

[Chai et al., 2006]

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 37: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Assimilation of NOAA P3 in-situ and DC-8 lidar observations for July 20, 2004

[Chai et al., 2006]

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 38: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

The model results show a considerably improved agreement with observations after data assimilation

q-q modeled O3 vs observations

[Chai et al., 2006]

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 39: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

The inversion procedure can be extended to emissions, boundary conditions, etc.

NO2 emission

corrections

Texas: 4am CST July 16 to 8pm CST on July 17, 2004.

HCHO emission

corrections

O3 AirNow

NO2 Schiamacy

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

[Zhang, Sandu et al., 2006]

Page 40: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Second order adjoints provide Hessian-vector products useful in optimization and analysis

( ) ( ) ( ) 1cov −∇≈⋅∇=∇= JJJ 2x

002x

0x

0000 xxσλ δ

[Sandu et. al., 2007]

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 41: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Smallest Hessian eigenvalues (vectors) approximate the principal aposteriori error components

(a) 3D view (5ppb)

(b) East view

(c) Top view

∇ y 0 ,y 02 Ψ( )−1 ≈ cov y opt( )

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

[Sandu et. al., 2007]

Page 42: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Hessian singular vectors describe directions of maximum error growth in finite time

vvMAM ⋅∇⋅=⋅⋅⋅ ψγ 2''*

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

[Sandu et. al., 2007]

Page 43: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Best observation locations are different for different chemical species

∑≥

=1

22max

2

kksT k

σ

σ(criterion based on SVs)

Verification: Korea, ground O3

0 GMT, Mar/4/2001

O3 NO2 HCHO

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

[Sandu, 2006]

Page 44: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Assimilation of TES ozone column observations from Aug. 2006. IONS-6 ozonesonde data for validation.

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

TES is one of four instruments on the NASA EOS Aura platform,

launched July 14 2004

Page 45: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Quality of TES ozone column assimilation results for several DA methods (August 1-15, 2006)

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

[Singh, Sandu et. al., 2010]

Page 46: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Dynamic integration of data and models is an important, growing field

n  Important challenges n  Size of the problem (models & data) n  Representation of uncertainty in data, models, priors

n  Most widely used methods: n  4D-Var, 3D-Var n  Suboptimal and ensemble filters

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.

Page 47: Lecture 4. Aspects of Chemical Data Assimilationpeople.cs.vt.edu/~asandu/Public/EISDA2012/Lectures/Ewha_L04_chemistry.pdfuKFC dt d = Γ ∂ ∂ =Γ ∂ ∂ + =Γ = ≥ && ⋅− ’

Thank you for the great visit, and for the opportunity to discuss some data assimilation ideas …

Lecture given at EISDA 2012. Seoul, Korea, Aug. 2012.