Lecture 3 Instrumentation Special

Embed Size (px)

Citation preview

  • 8/16/2019 Lecture 3 Instrumentation Special

    1/40

    . ns rumen a on or op ca

    combustion dia nostics

  • 8/16/2019 Lecture 3 Instrumentation Special

    2/40

     

    Laser aser aser sys em

    2) Optics

    • Lenses

    Lens

    • o ar zer  

    • Filters

    • Mirrors

    • .

    3) Detector  • CCD-camera

    General experimental setup

    CCD-camera

    • Photomultiplier +or aser agnos cs

    • Etc.

    Per-Erik Bengtsson

  • 8/16/2019 Lecture 3 Instrumentation Special

    3/40

    Laser

    g mp ca on y mu a e m ss on o a a on

     Attenuationo

      = 

    ooooo

     

    ooooo  Amplification

    oPumping

    100 % mirror  ~80 % mirror 

  • 8/16/2019 Lecture 3 Instrumentation Special

    4/40

    Laser characteristics

    • < -1 

    • Lasers are coherent in hase

    • Lasers can be tunable (continuous

    wavelength tuning)

    • Lasers are highly directional (laserbeam)

    • Lasers can be CW or pulsed ( ns, fs, as!)

    • Lasers can give very high laser pulses (J)

  • 8/16/2019 Lecture 3 Instrumentation Special

    5/40

     • When working (or visiting) in laboratories with

    in laser safety.• Some lasers give radiation in the ultraviolet

    and infrared regions that can not be seen by

    the eye.

    •optics and surfaces can give serious damage

    .

    • IMPORTANT! No erson should take art in

    any experiment without having a guide andrelevant protection glasses

  • 8/16/2019 Lecture 3 Instrumentation Special

    6/40

    Laser survey

    1. Nd:YAG laser 

    .

    . -

    . y -

    . u - aser  

  • 8/16/2019 Lecture 3 Instrumentation Special

    7/40

     

  • 8/16/2019 Lecture 3 Instrumentation Special

    8/40

    Princi le for the YAG laser 

  • 8/16/2019 Lecture 3 Instrumentation Special

    9/40

    Nd:YAG laser

    T ical s ecification:

    • Pulselength: ~5-10 ns

    • Wavelenght: 1.06 m, 532 nm, 355 nm, 266 nm

    • Pulse energy @ 532 nm, 500mJ -1J

    • Repetition rate: 10-20 Hz

    • Linewidth: ~ 0.7 cm-1, 0.1 cm-1(etalon) 0.005 cm-1 (single

    mode)

    Companies: e.g - Quantel, Continuum, Spectra Physics,Thales

  • 8/16/2019 Lecture 3 Instrumentation Special

    10/40

    Nd:YAG laser

    Typical applications:• Pumping a dye laser all applications

      , ,• Laser-Induced Incandescence (532nm,

    1.06 m)

     

  • 8/16/2019 Lecture 3 Instrumentation Special

    11/40

    Excimer laser 

  • 8/16/2019 Lecture 3 Instrumentation Special

    12/40

     

    Typical specification:• Pulselength; ~10-15 ns

      ,• Pulse energy @ 248 nm, ~250 mJ

    • Linewidth. 1 -10 cm-1, tunability possible

    Companies: e.g - Lambda Physik

  • 8/16/2019 Lecture 3 Instrumentation Special

    13/40

     

    Typical applications:

    • Pumping a dye laser all applications

    • Raman scattering (248 nm, tunable)

    • LIF (248 nm) - OH, H2O, O2, fuel

    • LIF (308 nm) – OH, fuel

  • 8/16/2019 Lecture 3 Instrumentation Special

    14/40

    Need for a new laser?

    Specifications of an Alexandrite laser:

    • Tunable (740-790 nm)

    • High pulse energy: ~400 mJ (fundamental @ 776 nm) ~

    70 mJ 387 ~10 mJ 259 nm

    • Long pulse length: ~140 ns

    • Single mode (~0.003 cm-1 linewidth)

    • Multimode (~ 8 cm-1 linewidth)

    Strong potential for CH visualization

    using the frequency doubled beam

  • 8/16/2019 Lecture 3 Instrumentation Special

    15/40

    Dye laser 

    In a dye laser the laser medium is a liquid, and the excitation source is alaser, often an Nd:YAG laser. A dye is chosen depending on the desired

    wavelength of the output from the laser .

  • 8/16/2019 Lecture 3 Instrumentation Special

    16/40

     

    The dye laser can be

    operated in• narrowband mode

    (typical linewidth ~0.3

    cm-1, and tuneable within

    the tuning range of thedye using a grating at the

    • broadband mode

    (typical linewidth ~150-1  

    or a grating in zeroth

    order)

  • 8/16/2019 Lecture 3 Instrumentation Special

    17/40

    Dye laser 

    To cover all available wavelengths, different dyes are used

      u   t  e  n  e  r  g

       l  a   t   i  v  e  o  u   t

       R  e

    Wavelength / nm

  • 8/16/2019 Lecture 3 Instrumentation Special

    18/40

    Different approaches for high speed visualization

    • Multi YAG/framing camera approach

    t

    r nary : aser  

    t

    Nd:YAG laser cluster 

    Specification- max rep rate: ~200 kHz (8 pulses),

    max pulse energy ~400 mJ/pulse @ 532 nm

    ~ 80 mJ/pulse @ 266 nm• 4 individual Nd:YAG lasers

    • 4 pulses: time separation = 0-100ms

    • 8 ulses: time se aration = 7-145 msPossibility to pump dye lasers and OPO units for tunable radiation

    Multiple dye lasers: 20–30 mJ/pulse @ 283nm

    One OPO unit: ~10 mJ/pulse @ 283nm

    • Wavelengths: 532nm / 266nm

    (Thales)

  • 8/16/2019 Lecture 3 Instrumentation Special

    19/40

    Different approaches for high speed visualization

    • Multi YAG/framing camera approach

    Specification- max rep rate: ~200 kHz (8 pulses)

    max pulse energy ~400 mJ/pulse @ 532 nm (Thales)

    ~250 mJ/pulse @ 355 nm~ m pu se nm

    Possibility to pump dye lasers and OPO units for tunable radiation

    Multiple dye lasers: 20–30 mJ/pulse @ 283nm

    ne un : ~ m pu se nm

    • kHz laser/CMOS high-speed camera approach

    t

    - x : ~ z

    max pulse energy @ 10 kHz (Edgewave HD40IV-E):

    ~13 mJ/pulse @ 532 nm

    ~4 mJ/pulse @ 266 nm Applications: Transient phenomena, e.g;

    I nitionPossibility to pump dye laser

    ~0.3 mJ/pulse @ 283 nm at 10 kHz

    Extinction

    MisfireFlashback

  • 8/16/2019 Lecture 3 Instrumentation Special

    20/40

    Characteristics - kHz Edgewave Nd:YAG

  • 8/16/2019 Lecture 3 Instrumentation Special

    21/40

    Characteristics - Sirah credo kHz dye laser 

    • ar a e wave eng w requency

    doubling

    • Conversion efficiency of ~40 % atnm o am ne

    • Maximum UV (OH) output 3W

    (300uJ @ 10kHz)

  • 8/16/2019 Lecture 3 Instrumentation Special

    22/40

    Wavelength extension techniques.1. Fre uenc Doublin

    • Frequency doubling

      1   2  ......

    P = 

    1 E0 exp(- i

    t) + 2 E02

    exp(- i2

    t) + .......• Use doubly-refractive crystal to increase the

    efficiency by phase-matching

    • requency m x ng r p ng sum erence can a so e

    achieved

    Characteristics

    • Easy to apply• g e c ency

    • Scanning not possible if not

     

    •Linewidth increase

  • 8/16/2019 Lecture 3 Instrumentation Special

    23/40

    Wavelength extension techniques.

    2 Optical parametric oscillator (OPO)

    In an OPO, a pump beam

    is frequency converted to

    two other wavelen ths inVariable angle

     

    a crystal.

    The output wavelengths

    355

    nm

    s - nm

    (signal)

    i 730-2000 nm

    depend on the angle of

    the crystal.

    pPump beam

    BBO-crystal

    er 

     

    tuneable in a large range

    of wavelengths.

    Pump Signal Idler 

     nm941 nm

    355 nm 400 nm 710 nm 2000 nmWavelength

  • 8/16/2019 Lecture 3 Instrumentation Special

    24/40

     

  • 8/16/2019 Lecture 3 Instrumentation Special

    25/40

    Detectors: Photomultiplier 

     A photomultiplier (PMT) is a sensitive detector, where incidentradiation enters a cathode that strikes out electrons from a

    p o oca o e. ey are en acce era e owar s a ser es o

    dynodes giving rise to a large number of secondary electrons.

     A photomultiplier is often used for time-resolved detection together

    with a digital oscilloscope.

    Photocathode Dynode

     Anode

    Incident

    light

    Focusing electrode Accelerating grid

    Per-Erik Bengtsson

  • 8/16/2019 Lecture 3 Instrumentation Special

    26/40

    Detectors: Intensified char e cou le device ICCD

    -

    MCP

    Objective

    Per-Erik Bengtsson

  • 8/16/2019 Lecture 3 Instrumentation Special

    27/40

    CCD- camera chip

    The central unit in a CCD-

    camera is the CCD-chip.

    p xe s ze o aroun

    m and a number of pixels

    normal.

    Per-Erik Bengtsson

  • 8/16/2019 Lecture 3 Instrumentation Special

    28/40

    Detectors: Intensified charge couple device, ICCD

     An image-intensified

    -camera as a mu -

    channel plate in front of

    the CCD-chip.

    CCD-chipThe purpose of this

    device is mainl to

    Multi-channel

    • intensify the signal• work as a time gate

    -

    plate (MCP) 

    wavelength range

    Photocathode  Lens couplingsurface

    Phosphor 

    surface

    Per-Erik Bengtsson

  • 8/16/2019 Lecture 3 Instrumentation Special

    29/40

    Framing camera

    us om mo e g spee

    camera (Imacon 468, DRSHadland, UK)

        1     1  M   

    i   r     Beam s litter o tics

    • 8 independent CCD’s,

    576x384 pixels 10 ns

       C   C   D

      m   s

      p   l   i   t   t  e  r

      n  a

       l   i  m  a  g  e

       t  e  n  s   i   f   i  e  r

       M   C

      m

      e  s   t  o  r  e

      s  s

      s   t  o  r  a  g  e

      n  s

      m  o  u  n   t

       C   D

       2  -   6

    o  r   

    • Optional image intensifier

    -   C   C   D

       8

       B  e

       O  p   t   i   i  n

       M   C   P   8

       F  r

       M  a

    Iris

       L  e

       M   i  r  r

      o  r

     

    resolution

  • 8/16/2019 Lecture 3 Instrumentation Special

    30/40

    High speed camera

    Photron

    Fastcam SA5 Lambert image intensifierHiCATT 25 Gen 2

    • 1024*1024 pixels at 7500 fps • Intensifies ~100 000 times

    • p o ps a re uce • Gate width down to 3ns

  • 8/16/2019 Lecture 3 Instrumentation Special

    31/40

    Some characteristics of CCD-cameras

    Dynamic range The number of charges that can be collected

    needed for detection above the noise level.

    uan um e c ency e e c ency n convers on o p otons tocharges.

    Wavelength sensitivity The sensitivity of a CCD-chip to differentwavelengths of incident radiation.

    Read-out time The time it takes between two recordings for

    a camera.

    Binning This means that the charge from several“ ”, . , .

    increases sensitivity and decreases readouttime.Per-Erik Bengtsson

  • 8/16/2019 Lecture 3 Instrumentation Special

    32/40

    Optics

    Polariser Opticalfilters

     

    lens

     

    lenses Prism

    Per-Erik Bengtsson

  • 8/16/2019 Lecture 3 Instrumentation Special

    33/40

    Overlapping / Separation of beams

    • Dichroich mirrors are

    used to separate laser

    532 nmbeams of different

    colours (wavelengths)

    from each other.

    1064 nm• They can be

    532 nm +

    1064 nm

     

    reflect and transmitdifferent wavelengths. 630 nm

    532 nm +

    630 nm

    532 nm

    Per-Erik Bengtsson

  • 8/16/2019 Lecture 3 Instrumentation Special

    34/40

    Interference filter 

      m   i  s  s   i  o  n

    Full Width at

    Half Maximum

    (FWHM)

     

    transmits a wavelength

    interval around a centre

       T  r  a  n  s.

    • The transmitted

    WavelengthCentre

    wave engt nterva s

    given as FWHM and isnormally 1, 3 or 10 nm.

    wave eng

    Interference filter with centre wavelength

    of 589.3 nm and with FWHM of 10 nm.

    Per-Erik Bengtsson

    L fil

  • 8/16/2019 Lecture 3 Instrumentation Special

    35/40

    Long-pass filter 

    -

    wavelengths longer than a

    specific wavelength. The

    transmission is often

    specified.

    OG 570

    GG 495

    Per-Erik Bengtsson

    Sh t filt

  • 8/16/2019 Lecture 3 Instrumentation Special

    36/40

    Short-pass filter 

    -

    wavelengths shorter than a

    specific wavelength. The

    transmission is often

    specified.

    SP 560 nm

    Per-Erik Bengtsson

    Wi d t i l

  • 8/16/2019 Lecture 3 Instrumentation Special

    37/40

    Window material

    • Spectroscopy is often

    applied at

      n

    wavelengths in the

    ultraviolet region

  • 8/16/2019 Lecture 3 Instrumentation Special

    38/40

    Prisms

    There are different kinds of prisms that can be used for

    eren as s.

    • to separate different polarisations of the light

    • to separate beams of different wavelengths

    • o mprove e po ar sa on o a eam

    • to reflect a beam 90 degrees

    • to reflect a beam 180 de rees as a dela line 

    Per-Erik Bengtsson

  • 8/16/2019 Lecture 3 Instrumentation Special

    39/40

    I i t h

  • 8/16/2019 Lecture 3 Instrumentation Special

    40/40

    Imaging spectrograph

    Spatially distributed light

    on the entrance slit of the

    spectrometer 

    1

    2

    Spatialinformation

    2

    informationPer-Erik Bengtsson