50
Automatic Control Systems Lecture- 2 Introduction Mathematical Modeling Mathematical Modeling of Mechanical Systems 1

Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

  • Upload
    others

  • View
    40

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Automatic Control Systems

Lecture- 2Introduction Mathematical Modeling

Mathematical Modeling of Mechanical Systems

1

Page 2: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Lecture Outline

• Introduction to Modeling

– Ways to Study System

– Modeling Classification

• Mathematical Modeling of Mechanical Systems

– Translational Mechanical Systems

– Rotational Mechanical Systems

– Mechanical Linkages

2

Page 3: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Model

• A model is a simplified representation or

abstraction of reality.

• Reality is generally too complex to copy exactly.

• Much of the complexity is actually irrelevant in

problem solving.

3

Page 4: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

What is Mathematical Model?

A set of mathematical equations (e.g., differential eqs.) thatdescribes the input-output behavior of a system.

What is a model used for?

• Simulation

• Prediction/Forecasting

• Prognostics/Diagnostics

• Design/Performance Evaluation

• Control System Design

Page 5: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Ways to Study a System

5

System

Experiment with actual System

Experiment with a model of the System

Physical Model Mathematical Model

Analytical Solution

Simulation

Frequency Domain Time Domain Hybrid Domain

Page 6: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Black Box Model

• When only input and output are known.

• Internal dynamics are either too complex orunknown.

• Easy to Model

6

Input Output

Page 7: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Basic Types of Mechanical Systems

• Translational

– Linear Motion

• Rotational

– Rotational Motion

7

Page 8: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Basic Elements of Translational Mechanical Systems

Translational Spring

i)

Translational Mass

ii)

Translational Damper

iii)

Page 9: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Translational Spring

i)

Circuit Symbols

Translational Spring• A translational spring is a mechanical element that

can be deformed by an external force such that thedeformation is directly proportional to the forceapplied to it.

Translational Spring

Page 10: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Translational Spring• If F is the applied force

• Then is the deformation if

• Or is the deformation.

• The equation of motion is given as

• Where is stiffness of spring expressed in N/m

2x1x

02 x1x

)( 21 xx

)( 21 xxkF

k

F

F

Page 11: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Translational Mass

Translational Mass

ii)

• Translational Mass is an inertiaelement.

• A mechanical system withoutmass does not exist.

• If a force F is applied to a massand it is displaced to x metersthen the relation b/w force anddisplacements is given byNewton’s law.

M)(tF

)(tx

xMF

Page 12: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Translational Damper

Translational Damper

iii)

• Damper opposes the rate ofchange of motion.

• All the materials exhibit theproperty of damping to someextent.

• If damping in the system is notenough then extra elements (e.g.Dashpot) are added to increasedamping.

Page 13: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Common Uses of Dashpots

Door StoppersVehicle Suspension

Bridge SuspensionFlyover Suspension

Page 14: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Translational Damper

xCF

• Where C is damping coefficient (N/ms-1).

)( 21 xxCF

Page 15: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-1

• Consider the following system (friction is negligible)

15

• Free Body Diagram

MF

kf

Mf

k

F

xM

• Where and are force applied by the spring and inertial force respectively.

kf Mf

Page 16: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-1

16

• Then the differential equation of the system is:

xMkxF

• Taking the Laplace Transform of both sides and ignoring initial conditions we get

MF

kf

Mf

Mk ffF

)()()( skXsXMssF 2

Page 17: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

17

)()()( skXsXMssF 2

• The transfer function of the system is

kMssF

sX

2

1

)(

)(

• if

12000

1000

Nmk

kgM

2

00102

ssF

sX .

)(

)(

Example-1

Page 18: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

18

• The pole-zero map of the system is

2

00102

ssF

sX .

)(

)(

Example-2

-1 -0.5 0 0.5 1

0

𝑗 2

Pole-Zero Map

Real Axis

Ima

gin

ary

Axis

−𝑗 2

Page 19: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-2

• Consider the following system

19

• Free Body Diagram

k

F

xM

C

MF

kf

Mf

Cf

CMk fffF

Page 20: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-3

20

Differential equation of the system is:

kxxCxMF

Taking the Laplace Transform of both sides and ignoring Initial conditions we get

)()()()( skXsCsXsXMssF 2

kCsMssF

sX

2

1

)(

)(

Page 21: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-3

21

kCsMssF

sX

2

1

)(

)(

• if

1

1

1000

2000

1000

msNC

Nmk

kgM

/

1000

00102

sssF

sX .

)(

)(-1 -0.5 0 0.5 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Pole-Zero Map

Real Axis

Imagin

ary

Axis

Page 22: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-4

• Consider the following system

22

• Mechanical Network

k

F

2x

M

1x B

↑ M

k

BF

1x 2x

Page 23: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-4

23

• Mechanical Network

↑ M

k

BF

1x 2x

)( 21 xxkF

At node 1x

At node 2x

22120 xBxMxxk )(

Page 24: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-5

• Find the transfer function X2(s)/F(s) of the following system.

1M 2M

k

B

Page 25: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-6

25

k

)(tf

2x

1M4B3B

2M

1x

1B2B

↑ M1k 1B)(tf

1x 2x3B

2B M24B

Page 26: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-7

• Find the transfer function of the mechanical translationalsystem given in Figure-1.

26

Free Body Diagram

Figure-1

M

)(tf

kf

Mf

Bf

BMk ffftf )(kBsMssF

sX

2

1

)(

)(

Page 27: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-8

27

• Restaurant plate dispenser

Page 28: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-9

28

• Find the transfer function X2(s)/F(s) of the following system.

Free Body Diagram

M1

1kf

1Mf

Bf

M2

)(tF

1kf

2Mf

Bf2kf

2k

BMkk fffftF 221

)(

BMk fff 11

0

Page 29: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-10

29

1k

)(tu

3x

1M

4B3B

2M

2x

2B 5B

2k 3k

1x

1B

Page 30: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Basic Elements of Rotational Mechanical Systems

Rotational Spring

)( 21 kT

21

Page 31: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Basic Elements of Rotational Mechanical Systems

Rotational Damper

21

)( 21 CT

T

C

Page 32: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Basic Elements of Rotational Mechanical Systems

Moment of Inertia

JT

TJ

Page 33: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-11

1

T 1J

1k1B

2k

2J

2 3

↑ J1

1k

T

1 31B

J2

2

2k

Page 34: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-12

↑ J1

1k

1BT

1 32B

3B J24B

2

1

T 1J

1k

3B

2B4B

1B

2J

2 3

Page 35: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-13

1T

1J

1k

2B 2J

22k

Page 36: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-14

Page 37: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Gear

• Gear is a toothed machine part, suchas a wheel or cylinder, that mesheswith another toothed part totransmit motion or to change speedor direction.

37

Page 38: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Fundamental Properties• The two gears turn in opposite directions: one clockwise and

the other counterclockwise.

• Two gears revolve at different speeds when number of teethon each gear are different.

Page 39: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Gearing Up and Down

• Gearing up is able to convert torque tovelocity.

• The more velocity gained, the more torquesacrifice.

• The ratio is exactly the same: if you get threetimes your original angular velocity, youreduce the resulting torque to one third.

• This conversion is symmetric: we can alsoconvert velocity to torque at the same ratio.

• The price of the conversion is power loss dueto friction.

Page 40: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Why Gearing is necessary?

40

• A typical DC motor operates at speeds that are far too

high to be useful, and at torques that are far too low.

• Gear reduction is the standard method by which a

motor is made useful.

Page 41: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Gear Trains

41

Page 42: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Gear Ratio• You can calculate the gear ratio by using

the number of teeth of the driverdivided by the number of teeth of thefollower.

• We gear up when we increase velocityand decrease torque.Ratio: 3:1

• We gear down when we increase torqueand reduce velocity.Ratio: 1:3

Follower

Driver

𝐺𝑒𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 =𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑒𝑡ℎ 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑔𝑒𝑎𝑟

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑒𝑡ℎ 𝑜𝑓 𝑜𝑢𝑝𝑢𝑡 𝑔𝑒𝑎𝑟=

𝐼𝑛𝑝𝑢𝑡 𝑇𝑜𝑟𝑞𝑢𝑒

𝑂𝑢𝑝𝑢𝑡 𝑇𝑜𝑟𝑞𝑢𝑒=𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑝𝑒𝑒𝑑

𝐼𝑛𝑝𝑢𝑡 𝑆𝑝𝑒𝑒𝑑

Page 43: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example of Gear Trains• A most commonly used example of gear trains is the gears of

an automobile.

43

Page 44: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Mathematical Modeling of Gear Trains

• Gears increase or descrease angular velocity (whilesimultaneously decreasing or increasing torque, suchthat energy is conserved).

44

2211 NN

1N Number of Teeth of Driving Gear

1 Angular Movement of Driving Gear

2N Number of Teeth of Following Gear

2 Angular Movement of Following Gear

Energy of Driving Gear = Energy of Following Gear

Page 45: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Mathematical Modelling of Gear Trains

• In the system below, a torque, τa, is applied to gear 1 (withnumber of teeth N1, moment of inertia J1 and a rotational frictionB1).

• It, in turn, is connected to gear 2 (with number of teeth N2,moment of inertia J2 and a rotational friction B2).

• The angle θ1 is defined positive clockwise, θ2 is defined positiveclockwise. The torque acts in the direction of θ1.

• Assume that TL is the load torque applied by the load connectedto Gear-2.

45

B1

B2

N1

N2

Page 46: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Mathematical Modelling of Gear Trains

• For Gear-1

• For Gear-2

• Since

• therefore

46

B1

B2

N1

N2

2211 NN

11111 TBJa Eq (1)

LTBJT 22222 Eq (2)

12

12

N

N Eq (3)

Page 47: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Mathematical Modelling of Gear Trains

• Gear Ratio is calculated as

• Put this value in eq (1)

• Put T2 from eq (2)

• Substitute θ2 from eq (3)

47

B1

B2

N1

N2

22

11

1

2

1

2 TN

NT

N

N

T

T

22

11111 T

N

NBJa

)( La TBJN

NBJ 2222

2

11111

)( La TN

N

N

NB

N

NJ

N

NBJ

2

12

2

121

2

12

2

11111

Page 48: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Mathematical Modelling of Gear Trains

• After simplification

48

)( La TN

N

N

NB

N

NJ

N

NBJ

2

12

2

121

2

12

2

11111

La TN

NB

N

NBJ

N

NJ

2

112

2

2

11112

2

2

111

La TN

NB

N

NBJ

N

NJ

2

112

2

2

1112

2

2

11

2

2

2

11 J

N

NJJeq

2

2

2

11 B

N

NBBeq

Leqeqa TN

NBJ

2

111

Page 49: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Mathematical Modelling of Gear Trains

• For three gears connected together

49

3

2

4

3

2

2

12

2

2

11 J

N

N

N

NJ

N

NJJeq

3

2

4

3

2

2

12

2

2

11 B

N

N

N

NB

N

NBBeq

Page 50: Lecture- 2 Introduction Mathematical Modeling Mathematical ...deltauniv.edu.eg/new/engineering/wp-content/uploads/lecture_2_2intro_to_modelling...Lecture- 2 Introduction Mathematical

Example-15

• Drive Jeq and Beq and relation between appliedtorque τa and load torque TL for three gearsconnected together.

50

J1 J2 J3

1

3

2

τa

1N

2N

3N

1B2B

3B

LT