Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

Embed Size (px)

Citation preview

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    1/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    1| P a g e

    LECTURE2

    BRIDGESUPERSTRUCTURE

    (Structural

    Form,

    Behaviour

    and

    Idealization)

    OBJECTIVE

    Outlininggeneralconsiderationsneedforconceptualplanningandpreliminarydesignofabridgesuperstructure.

    Understandingthedifferentdeckformsandtheir loaddistributionbehaviour.

    Alookatwaysofidealizingthedifferentbridgedeckbehaviourforanalysispurpose.

    Andthesuitableanalysismethodsrequiredforeachdeckform.

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    2/22

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    3/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    3| P a g e

    1.2. DifferencebetweenBuildingSlabandBridgeDeck Loading are conventionally uniform in building but complex inbridgesduetoconstantvariableactionsofheavymovingloads.

    Bridgedecksareconstantlyexposedtosevereenvironmentalactionsi.e.temperaturechanges,effectsofwindetc.

    Bridge deck is very load sensitive hence, longitudinal and lateraldistributionofstressesbecomevitalforeconomicdesign.

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    4/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    4| P a g e

    2.0 DECKGENERALCONSIDERATIONS2.1. ConceptualDesign

    Conceptualdesignforbridgesdependsontheexperienceandintuitionof

    thedesigner.The term conceptualdesign ismore crucial for large/long

    spanbridgeswhosestructuralcomplexitiesincrease innonlinearmanner

    withrespecttotheirspanlengths.

    DeckGeometricEfficiency

    Forcast insitubridges,deckdesign istotallygovernbythespan length.

    For

    shorter

    spans,

    simpler

    and

    heavier

    shapes

    are

    mostly

    preferred.

    And

    as span length increases, deck shapesmust bemademore efficient to

    reducetheweightinordertolimitbendingforces.Butwhenspanlength

    becomesverylarge,prioritymustbegiventostructuralefficiencyandto

    reduce weight. This is the reason why deck shapes progresses from

    rectangularslabs(forsmallerspans)toclassicalboxgirders.

    Geometricefficiencycoefficient:

    Where I= flexural inertia,A thecrosssectionareaofdeck,yandyarethedistances from thecentreofgravity to theextreme fibres. Itsvalue

    variesfrom0.333forrectangularslabtoabout0.550.65forboxgirder.

    Evidentofefficientshape forchangingcrosssection iswhenpermanent

    loads producemore than 75 to 80% of the bendingmoments at the

    criticalcrosssection.

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    5/22

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    6/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    6| P a g e

    ConstructionMethods

    Decktypesbasedonbridgeconstruction:

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    7/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    7| P a g e

    AestheticRequirement

    Basedonthefunctionalityofthebridgestructuresomeinherentaesthetic

    featuresmayberequiredi.e.inlongspanbridgeswhichareoftenusedas

    nations landmark structures. Hence this must be considered in the

    detaileddesignandthisissometimesdevelopedwiththecollaborationof

    anarchitect.

    2.2. BridgeDeckIdealizationIdealization is the rational process ofmaking simplifications about the

    behaviourofstructuresforthepurposeofstructuralanalysisanddetailed

    design.

    PurposeofIdealization

    Todistilthekeymodesofcomplexstructuralbehaviourintopracticalanalysis.

    Toidentifytheloadtransmissionandtravelpaths. Toensure thatprimarymodesarecapturedby thechosenanalysismodelandthesignificanceofsecondarymodesondesignforcesare

    evaluated.

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    8/22

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    9/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    9| P a g e

    3.0 DECKSTRUCTURALFORMSPrincipal types of bridge deck are divided into beam, grid, solid slab,

    beamandslabdeck,andcellular/boxdeck inordertodifferentiatetheir

    individualgeometricandbehaviourcharacteristic.

    3.1. BeamDecksThesearebridgedeckswith the lengthsexceeding theirwidthsby such

    amountthatunderloadstheybendandtwistalongtheirlengths.

    Figures(a)(d)belowshowtypicalformsofbeamdeck:

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    10/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    10| P a g e

    Theyaremostcommoninfootbridges. Caneitherbesteel,reinforcedconcreteorprestressedconcrete. Theyareoftencontinuousovertwoormorespans.

    3.2. ConcreteSolidSlabDeckThe use of solid slab bridge deck today, provides the simplest form of

    concretebridgedecks. Easeofconstructionresultingfromthesimplicity

    makesthisthemosteconomictypeforshortspanstructures.

    Concreteslabdecksarecommonlyusedforshortspansandcanspanupto15mlong.

    Theycanbesimplysupportedfromabutmenttopiersorcontinuousoverintermediatesupportstoendabutments.

    Thetypicalslabthicknessisbetween1/25and1/35ofthespan.

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    11/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    11| P a g e

    The slab depth increases as the span increase. And hence, thematerialweightof a solid slabwill start tobecome excessive as it

    exceeds15m.

    The ability for the reinforced solid slab to carry sagging (+ve) andhogging(ve)moments,makesitadequateforcontinuousmultispan

    bridgesandallowsfortheuseoflongprestressingtendons.

    (a)Solidslab;(b)Voidedslab;(c)Compositesolid;and(d)Compositevoid

    3.3. ConcreteVoidedSlabDeckDue to the increasing and excessivematerialweight as solid slab span

    exceeds 15m it comes necessary to lighten itsweight by incorporating

    voids.Voided slabdecks are frequently constructed as cast insituwith

    permanent void formers or of precast prestressed concrete boxbeams

    posttensionedtransverselytoensuretransversecontinuity.

    If the void sizes are less than 60% of the overall deck depth, then the

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    12/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    12| P a g e

    effectofvoidsonthedeckstiffnessisnegligiblysmall,hencethedeckcan

    be analysed effectively as solid plate. Butwhen the void sizes exceeds

    60%of thedeckdepth, thedeckcangenerallybeconsideredascellular

    constructionwithbehaviourdifferentfromvoidedslab.

    3.4. GridDecksTheprimary structural form for thisdeck type isagridof twoormore

    longitudinal beams with transverse beams which support the running

    slab.

    Because of the amount of workmanship needed for fabricating or

    shuttering the transversebeams, thisdeck type is lesspopularnowand

    hasbeen replacedby slabandbeamandslabdeckswithno transverse

    diaphragms.

    3.5. ConcreteBeamandSlabDeckThis deck type consists of a number of longitudinal beams connected

    transversely across their tops by a thin continuous concrete slab. This

    decktypecouldalsobesimplysupportedorcontinuousatsupports.

    When transferring load longitudinally to the support, the slab acts in

    concertwith thebeamsas top flanges.Andgreaterdeflection from the

    most heavily loaded beamswill cause the slab tobend transversely so

    thatittransfersandshareoutloadtotheadjacentneighbouringbeams.

    Conventionalconcretebeamandslabcanbeconstructedas:

    Concreteinsituslaboninsitubeams Concreteinsituslabonprecastbeams

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    13/22

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    14/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    14| P a g e

    Maineconomicadvantagesare:

    I. The use of Isection steel girder will reduce the weight of thesuperstructureandhence,theoverallcostofthefoundation.

    II. Foragivenspanandloadingsystemasmallerdepthofbeamcanbeusedthanforaconcretebeamsolution,whichleadstoeconomiesin

    theapproachembankments.

    III. Thesystemallowsforspeedconstructionandhence,savestime.IV. Thecrosssectionalareaofthegirdertopflangecanbereducedsince

    insituconcretecontributestothestiffness.

    V.Transverse

    stiffening

    for

    the

    top

    compression

    flange

    of

    the

    steel

    girdercanbereducedsincerestraintagainstbuckling isprovidedby

    theconcreteslab.

    3.7. BoxgirderDeckTheircomplexstructuraldeckformsaremadeupofanumberofthinslab

    andwebs.Thesedeckformsarepreferableforspanover40m.

    Inadditiontothelessmaterialandlowweightadvantages,theyhavehigh

    longitudinalbendingstiffnessandtorsionalstiffnessandthesegivethem

    betterstabilityandloaddistributioncharacteristics.

    Aboxgirdersectioncouldbemadeofasingleboxormultibox.Theyare

    practicallythemost feasibledeck forms for longerspanbridgesandthis

    placethemincompetitionwithothertypesofdecks.

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    15/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    15| P a g e

    4.0 DECKSTRUCTURALBEHAVIOURANDIDEALIZATIONDeckbehaviour in termof loaddistribution is such that traffic loadson

    bridge decks are distributed according to the stiffness, geometry and

    boundaryconditionsofthedeck.

    Methodofanalysismostappropriatetoaparticulardeckdependsonthe

    complexityofthestructuralform.

    4.1. BeamDeckandFrameBeam deck behaves as a beam thatwhen loads causes it to bend and

    twist

    along

    its

    length,

    its

    cross

    section

    displaces

    bodily

    and

    do

    not

    change

    shape.

    Hence itsbehaviourcanbe idealizedusingsimplebeamelastictheoryof

    bendingandtorsion.Inthesimplebeamelastictheory,itisassumedthat

    thedecksectionremainsplaneandthatthebeamiscomposedofdiscrete

    linearfibres inwhichthe longitudinalbendingstress isproportionalto

    longitudinalstrain inthefibre.

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    16/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    16| P a g e

    Flexureabouttheprincipalaxisofthesectioncanbeexpressedas:

    Most longspanbridgesbehavesasbeamsbecause thedominate load is

    concentrated so that thedistortionof thecrosssectionundereccentric

    loadshasrelativelylittleinfluenceontheprincipalbendingstress.

    Analysisofbeam deck can bedone asdeterminate beam structure for

    simply supported case and as indeterminate beam structure for

    continuouscases.

    Beam decks can also exhibit frame action in which the stiffness and

    geometryof the supportshave significant influenceon theirbehaviour.

    Hence,theycanbeidealisedandanalysedeitherasplaneor3Dframe.

    4.2. SlabDeckDeck slab is structurally continuous in twoorthogonaldirectionsof the

    slabsothatanappliedloadissupportedby2dimensionaldistributionof

    shears,momentandtorqueeffects.

    Classicalplatetheorycanbeusedfordeterminingthebehaviourofsolid

    slab but for simplicity, deck slab can be idealized and analysed using

    similarassumptionforelastictheoryofbendingasbeams.

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    17/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    17| P a g e

    (a)Prototypesoliddeckand(b)equivalentgrillageGrillage idealizationcanbesuitable forthepurposesofanalysisand the

    dispersedbendingandtorsionalstiffnessesineveryregionoftheslabare

    assumedtobeconcentratedinthenearestequivalentbeam.

    Ideally thebeam stiffness shouldbe such thatwhen theprototype slab

    and its equivalent grillage are subjected to identical loads the two

    structuresshoulddeflectidentically.

    4.3. BeamandSlabDeckBehaviourof a typicalbeamandslabdeckunder anaxle load is shown

    below:

    Oneofthedisadvantagesofthisdecktypeispoorloaddistributioninthe

    transversedirectionwhich iswhymost timestransversediaphragmsare

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    18/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    18| P a g e

    introducedatpointsalongthedeckspan.

    Forasinglespanrightdeckonsimplesupportswithdifferentstiffnessin

    two orthogonal directions, it ispossible,using classical plate theory, to

    determinetheloaddistributedforeachmember.Butgrillageidealization

    isfoundtobeeffectiveforthispurposeandiftheamountofloadcarried

    by the most heavily loaded member can be found then the bending

    momentcanbeeasilycalculated.

    Equivalentgrillageidealizationsareshownbelow:

    4.4. CellularDecksIt isoftenconvenientandacceptable tousecellularstructuresandbox

    sectiondeckswhichdistortsundershearand torsional loadingsand it is

    then necessary to take into account this distortion in the method of

    analysis.

    Thedisplacementof thisdeckcrosssectionunder loads fallsunder four

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    19/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    19| P a g e

    principalmodes.

    Longitudinalbending Transversebending Torsion Distortion

    The behaviour of cellular decks can be analysed with shearflexible

    grillage. The shear flexibility in the grillage idealization reproduces the

    distortionbehaviourofthecell.

    In flexible grillage, the deck is simulated by a grid of beamswhich are

    given high torsional stiffnesses of the cellular deck and the slope

    deflection equation takes into account the shear deformation in the

    beams.

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    20/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    20| P a g e

    4.5. BoxgirderDecksBoxgirderisverystiffinpuretorsionandmostofthetwistinthedeckis

    due to distortion unless the box is bracedwith diaphragm. The use of

    transverse bracing or framing provides a very effective method for

    stiffeningaboxgirderagainstdistortion.

    Figuresbelowillustratethebehaviourofboxsectiontoloads:

    (a)Plane, (b) section, (c) to (e) components of loads and (f) distortiondeflection

    Theamountofstiffeningisequallybeneficialtoeffectiveloaddistribution

    and distortional flexibilitywhich helps the structure to spread the load

    betweenthesupports.

    Grillagemethod can be used but the analysismay not give sufficient

    detailed picture of the flexural and membrane stresses in the plate

    elementandforthisadditional3dimenssionalanalysiswillbenecessary.

    Foldedplateanalysiswillprobablyprovidemostaccurate information if

    the deck crosssection is uniform from end to endwith few transverse

    diaphragms.

    For complicated variations in the deck section, finite element analysis

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    21/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    21| P a g e

    methodwillbenecessary.

    Belowisillustrationoftwodifferentanalysismethodsforboxgirderdeck:

    (a)Finiteelementmodeland(b)to(d)framemodelTypical comparison of result for frame and grillage analysismethods is

    illustratedinthefollowing:

    Resultfromspaceframeanalysisofaconcreteboxgirderdeck

  • 8/13/2019 Lecture 2- Bridge Superstructure (Deck Structural Forms & Behaviour)

    22/22

    ACEN3DAYTECHNICALTRAINING:INTRODUCTIONTOTHEDESIGNOFSHORTSPANBRIDGES

    22| P a g e

    Resultfromgrillageanalysisofaconcreteboxgirderdeck