63
Lecture 14: Game Theory // Nash equilibrium Mauricio Romero

Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Lecture 14: Game Theory // Nash equilibrium

Mauricio Romero

Page 2: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Lecture 14: Game Theory // Nash equilibrium

Mixed strategies

Examples

Page 3: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Lecture 14: Game Theory // Nash equilibrium

Mixed strategies

Examples

Page 4: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Mixed strategies

Consider rock/paper/scissors

Rock Paper Scissors

Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0

I This game is entirely stochastic (ability has nothing to do with your chances ofwinning)

I The probability of winning with every strategy is the same

I Thus, people tend choose randomly which of the three options to play

I We would like the concept of Nash equilibrium to reflect this

Page 5: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Mixed strategies

Consider rock/paper/scissors

Rock Paper Scissors

Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0

I This game is entirely stochastic (ability has nothing to do with your chances ofwinning)

I The probability of winning with every strategy is the same

I Thus, people tend choose randomly which of the three options to play

I We would like the concept of Nash equilibrium to reflect this

Page 6: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Mixed strategies

Consider rock/paper/scissors

Rock Paper Scissors

Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0

I This game is entirely stochastic (ability has nothing to do with your chances ofwinning)

I The probability of winning with every strategy is the same

I Thus, people tend choose randomly which of the three options to play

I We would like the concept of Nash equilibrium to reflect this

Page 7: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Mixed strategies

Consider rock/paper/scissors

Rock Paper Scissors

Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0

I This game is entirely stochastic (ability has nothing to do with your chances ofwinning)

I The probability of winning with every strategy is the same

I Thus, people tend choose randomly which of the three options to play

I We would like the concept of Nash equilibrium to reflect this

Page 8: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Mixed strategies

DefinitionA mixed strategy σi is a function σi : Si → [0, 1] such that∑

si∈Si

σi (si ) = 1.

I σi (si ) represents the probability with which player i plays si

I A pure strategy is simply a mixed strategy σi that plays some strategy si ∈ Siwith probability one

I We will denote the set of all mixed strategies of player i by Σi

Page 9: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Mixed strategies

DefinitionA mixed strategy σi is a function σi : Si → [0, 1] such that∑

si∈Si

σi (si ) = 1.

I σi (si ) represents the probability with which player i plays si

I A pure strategy is simply a mixed strategy σi that plays some strategy si ∈ Siwith probability one

I We will denote the set of all mixed strategies of player i by Σi

Page 10: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Mixed strategies

DefinitionA mixed strategy σi is a function σi : Si → [0, 1] such that∑

si∈Si

σi (si ) = 1.

I σi (si ) represents the probability with which player i plays si

I A pure strategy is simply a mixed strategy σi that plays some strategy si ∈ Siwith probability one

I We will denote the set of all mixed strategies of player i by Σi

Page 11: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Mixed strategies

I Given a mixed strategy profile (σ1, σ2, . . . , σn), we need a way to define howplayers evaluate payoffs of mixed strategy profiles

Iu1(σ1, σ2, . . . , σn) =

∑s∈S

u1(s1, s2, . . . , sn)σ1(s1)σ2(s2) · · ·σn(sn).

I For instance, assume my opponent is playing randomizing over paper and scissorswith probability 1

2 (i.e., σ−i = (0, 12 ,12))

I The expected utility of playing “rock” is

E (Ui (rock, σ−i )) = −11

2+ 1

1

2= 0

I If I’m randomizing over rock and scissors (i.e., σi = (12 , 0,12)) then

E(Ui (σ, σ−i )) = −11

4︸ ︷︷ ︸rock vs paper

+ 11

4︸︷︷︸rock vs scissors

+ 11

4︸︷︷︸scissors vs paper

+ 01

4︸︷︷︸scissors vs scissors

=1

4

Page 12: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Mixed strategies

I Given a mixed strategy profile (σ1, σ2, . . . , σn), we need a way to define howplayers evaluate payoffs of mixed strategy profiles

Iu1(σ1, σ2, . . . , σn) =

∑s∈S

u1(s1, s2, . . . , sn)σ1(s1)σ2(s2) · · ·σn(sn).

I For instance, assume my opponent is playing randomizing over paper and scissorswith probability 1

2 (i.e., σ−i = (0, 12 ,12))

I The expected utility of playing “rock” is

E (Ui (rock, σ−i )) = −11

2+ 1

1

2= 0

I If I’m randomizing over rock and scissors (i.e., σi = (12 , 0,12)) then

E(Ui (σ, σ−i )) = −11

4︸ ︷︷ ︸rock vs paper

+ 11

4︸︷︷︸rock vs scissors

+ 11

4︸︷︷︸scissors vs paper

+ 01

4︸︷︷︸scissors vs scissors

=1

4

Page 13: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Mixed strategies

I Given a mixed strategy profile (σ1, σ2, . . . , σn), we need a way to define howplayers evaluate payoffs of mixed strategy profiles

Iu1(σ1, σ2, . . . , σn) =

∑s∈S

u1(s1, s2, . . . , sn)σ1(s1)σ2(s2) · · ·σn(sn).

I For instance, assume my opponent is playing randomizing over paper and scissorswith probability 1

2 (i.e., σ−i = (0, 12 ,12))

I The expected utility of playing “rock” is

E (Ui (rock, σ−i )) = −11

2+ 1

1

2= 0

I If I’m randomizing over rock and scissors (i.e., σi = (12 , 0,12)) then

E(Ui (σ, σ−i )) = −11

4︸ ︷︷ ︸rock vs paper

+ 11

4︸︷︷︸rock vs scissors

+ 11

4︸︷︷︸scissors vs paper

+ 01

4︸︷︷︸scissors vs scissors

=1

4

Page 14: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Mixed strategies

I Given a mixed strategy profile (σ1, σ2, . . . , σn), we need a way to define howplayers evaluate payoffs of mixed strategy profiles

Iu1(σ1, σ2, . . . , σn) =

∑s∈S

u1(s1, s2, . . . , sn)σ1(s1)σ2(s2) · · ·σn(sn).

I For instance, assume my opponent is playing randomizing over paper and scissorswith probability 1

2 (i.e., σ−i = (0, 12 ,12))

I The expected utility of playing “rock” is

E (Ui (rock, σ−i )) = −11

2+ 1

1

2= 0

I If I’m randomizing over rock and scissors (i.e., σi = (12 , 0,12)) then

E(Ui (σ, σ−i )) = −11

4︸ ︷︷ ︸rock vs paper

+ 11

4︸︷︷︸rock vs scissors

+ 11

4︸︷︷︸scissors vs paper

+ 01

4︸︷︷︸scissors vs scissors

=1

4

Page 15: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Mixed strategies

I Given a mixed strategy profile (σ1, σ2, . . . , σn), we need a way to define howplayers evaluate payoffs of mixed strategy profiles

Iu1(σ1, σ2, . . . , σn) =

∑s∈S

u1(s1, s2, . . . , sn)σ1(s1)σ2(s2) · · ·σn(sn).

I For instance, assume my opponent is playing randomizing over paper and scissorswith probability 1

2 (i.e., σ−i = (0, 12 ,12))

I The expected utility of playing “rock” is

E (Ui (rock, σ−i )) = −11

2+ 1

1

2= 0

I If I’m randomizing over rock and scissors (i.e., σi = (12 , 0,12)) then

E(Ui (σ, σ−i )) = −11

4︸ ︷︷ ︸rock vs paper

+ 11

4︸︷︷︸rock vs scissors

+ 11

4︸︷︷︸scissors vs paper

+ 01

4︸︷︷︸scissors vs scissors

=1

4

Page 16: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Mixed strategies

DefinitionA (possibly mixed) strategy profile (σ∗1, σ

∗2, . . . , σn)∗ is a Nash equilibrium if and only if

for every i ,ui (σ

∗i , σ∗−i ) ≥ ui (σi , σ

∗−i )

for all σi ∈ Σi .

Page 17: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Mixed strategies

Definition (Mixed Strategy Dominance Definition A)

Let σi , σ′i be two mixed strategies of player i . Then σi strictly dominates σ′i if for all

mixed strategies of the opponents, σ−i ,

ui (σi , σ−i ) > ui (σ′i , σ−i ).

Page 18: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Mixed strategies

If σi is better than σ′i no matter what pure strategy opponents play, then σi is alsostrictly better than σ′i no matter what mixed strategies opponents play

TheoremLet σi and σ

′i be two mixed strategies of player i . Then σi strictly dominates σ′i if and

only if for all s−i ∈ S−i ,ui (σi , s−i ) > ui (σ

′i , s−i ).

Page 19: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Proof- Part 1

I Since S−i ⊆ Σ−i , if σi strictly dominates σ′i

I Then for all s−i ∈ S−i ,ui (σi , s−i ) > ui (σ

′i , s−i ).

Page 20: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Proof- Part 1

I Since S−i ⊆ Σ−i , if σi strictly dominates σ′i

I Then for all s−i ∈ S−i ,ui (σi , s−i ) > ui (σ

′i , s−i ).

Page 21: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Proof - Part 2

I To prove the other direction, suppose that for all s−i ∈ S−i ,

ui (σi , s−i ) > ui (σ′i , s−i ).

I For any σ−i ,

ui (σi , σ−i ) =∑si∈Si

∑s−i∈S−i

σi (si )σ−i (s−i )ui (si , s−i )

=∑

s−i∈S−i

σ−i (s−i )∑si∈Si

σi (si )ui (si , s−i )

=∑

s−i∈S−i

σ−i (s−i )ui (σi , s−i )

I Soui (σi , σ−i ) =

∑s−i∈S−i

σ−i (s−i )ui (σi , s−i ) >∑

s−i∈S−i

σ−i (s−i )ui (σ′i , s−i ) = ui (σ

′i , σ−i )

Page 22: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Proof - Part 2

I To prove the other direction, suppose that for all s−i ∈ S−i ,

ui (σi , s−i ) > ui (σ′i , s−i ).

I For any σ−i ,

ui (σi , σ−i ) =∑si∈Si

∑s−i∈S−i

σi (si )σ−i (s−i )ui (si , s−i )

=∑

s−i∈S−i

σ−i (s−i )∑si∈Si

σi (si )ui (si , s−i )

=∑

s−i∈S−i

σ−i (s−i )ui (σi , s−i )

I Soui (σi , σ−i ) =

∑s−i∈S−i

σ−i (s−i )ui (σi , s−i ) >∑

s−i∈S−i

σ−i (s−i )ui (σ′i , s−i ) = ui (σ

′i , σ−i )

Page 23: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Proof - Part 2

I To prove the other direction, suppose that for all s−i ∈ S−i ,

ui (σi , s−i ) > ui (σ′i , s−i ).

I For any σ−i ,

ui (σi , σ−i ) =∑si∈Si

∑s−i∈S−i

σi (si )σ−i (s−i )ui (si , s−i )

=∑

s−i∈S−i

σ−i (s−i )∑si∈Si

σi (si )ui (si , s−i )

=∑

s−i∈S−i

σ−i (s−i )ui (σi , s−i )

I Soui (σi , σ−i ) =

∑s−i∈S−i

σ−i (s−i )ui (σi , s−i ) >∑

s−i∈S−i

σ−i (s−i )ui (σ′i , s−i ) = ui (σ

′i , σ−i )

Page 24: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Mixed strategies

Definition (Mixed Strategy Dominance Definition B)

Let σi , σ′i be two mixed strategies of player i . Then σi strictly dominates σ′i if for all

pure strategies of the opponents, s−i ∈ S−i ,

ui (σi , s−i ) > ui (σ′i , s−i ).

Page 25: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Lecture 14: Game Theory // Nash equilibrium

Mixed strategies

Examples

Page 26: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Lecture 14: Game Theory // Nash equilibrium

Mixed strategies

Examples

Page 27: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Battle of the sexes

G P

G 2,1 0,0

P 0,0 1,2

Page 28: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Battle of the sexes

G P

G 2,1 0,0

P 0,0 1,2

I There are two pure strategy equilibria (G ,G ) and (P,P)

I We now look for Nash equilibria that involve randomizationby the players

Page 29: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Battle of the sexes

G P

G 2,1 0,0

P 0,0 1,2

I There are two pure strategy equilibria (G ,G ) and (P,P)

I We now look for Nash equilibria that involve randomizationby the players

Page 30: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Battle of the sexes

I Let λ be the probability with which player 1 chooses G and q be the probabilitywith which player 2 plays G

Iu1(λ, q) = 2λq + (1− λ)(1− q).

I Case 1: If q > 1/3, then 2q > 2/3 > 1− q and therefore, the best response isλ = 1

I Case 2: if q = 1/3, then 2q = 2/3 = 1− q and therefore, the best response isλ ∈ [0, 1]

I Case 3: If q < 1/3, then 2q < 2/3 < 1− q and therefore the best response isλ = 0

I Thus, the best response function is given by:

BR1(q) =

1 if q > 1/3

[0, 1] if q = 1/3

0 if q < 1/3.

Page 31: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Battle of the sexes

I Let λ be the probability with which player 1 chooses G and q be the probabilitywith which player 2 plays G

Iu1(λ, q) = 2λq + (1− λ)(1− q).

I Case 1: If q > 1/3, then 2q > 2/3 > 1− q and therefore, the best response isλ = 1

I Case 2: if q = 1/3, then 2q = 2/3 = 1− q and therefore, the best response isλ ∈ [0, 1]

I Case 3: If q < 1/3, then 2q < 2/3 < 1− q and therefore the best response isλ = 0

I Thus, the best response function is given by:

BR1(q) =

1 if q > 1/3

[0, 1] if q = 1/3

0 if q < 1/3.

Page 32: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Battle of the sexes

I Let λ be the probability with which player 1 chooses G and q be the probabilitywith which player 2 plays G

Iu1(λ, q) = 2λq + (1− λ)(1− q).

I Case 1: If q > 1/3, then 2q > 2/3 > 1− q and therefore, the best response isλ = 1

I Case 2: if q = 1/3, then 2q = 2/3 = 1− q and therefore, the best response isλ ∈ [0, 1]

I Case 3: If q < 1/3, then 2q < 2/3 < 1− q and therefore the best response isλ = 0

I Thus, the best response function is given by:

BR1(q) =

1 if q > 1/3

[0, 1] if q = 1/3

0 if q < 1/3.

Page 33: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Battle of the sexes

I Let λ be the probability with which player 1 chooses G and q be the probabilitywith which player 2 plays G

Iu1(λ, q) = 2λq + (1− λ)(1− q).

I Case 1: If q > 1/3, then 2q > 2/3 > 1− q and therefore, the best response isλ = 1

I Case 2: if q = 1/3, then 2q = 2/3 = 1− q and therefore, the best response isλ ∈ [0, 1]

I Case 3: If q < 1/3, then 2q < 2/3 < 1− q and therefore the best response isλ = 0

I Thus, the best response function is given by:

BR1(q) =

1 if q > 1/3

[0, 1] if q = 1/3

0 if q < 1/3.

Page 34: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Battle of the sexes

I Let λ be the probability with which player 1 chooses G and q be the probabilitywith which player 2 plays G

Iu1(λ, q) = 2λq + (1− λ)(1− q).

I Case 1: If q > 1/3, then 2q > 2/3 > 1− q and therefore, the best response isλ = 1

I Case 2: if q = 1/3, then 2q = 2/3 = 1− q and therefore, the best response isλ ∈ [0, 1]

I Case 3: If q < 1/3, then 2q < 2/3 < 1− q and therefore the best response isλ = 0

I Thus, the best response function is given by:

BR1(q) =

1 if q > 1/3

[0, 1] if q = 1/3

0 if q < 1/3.

Page 35: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Battle of the sexes

I Let λ be the probability with which player 1 chooses G and q be the probabilitywith which player 2 plays G

Iu1(λ, q) = 2λq + (1− λ)(1− q).

I Case 1: If q > 1/3, then 2q > 2/3 > 1− q and therefore, the best response isλ = 1

I Case 2: if q = 1/3, then 2q = 2/3 = 1− q and therefore, the best response isλ ∈ [0, 1]

I Case 3: If q < 1/3, then 2q < 2/3 < 1− q and therefore the best response isλ = 0

I Thus, the best response function is given by:

BR1(q) =

1 if q > 1/3

[0, 1] if q = 1/3

0 if q < 1/3.

Page 36: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Battle of the sexes

Similarly we can calculate the best response function for player 2 and we get:

BR2(λ) =

1 if λ > 2/3

[0, 1] if λ = 2/3

0 if λ < 2/3.

Page 37: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Battle of the sexes

q

λO

beta2(λ)

betal(q)

1

l

I There are three points where the best response curves cross: (1, 1), (0, 0, ), (23 ,13)

I First two are the pure strategy NE we had found before

I Last is a strictly mixed NE: both players randomize

Page 38: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Battle of the sexes

q

λO

beta2(λ)

betal(q)

1

l

I There are three points where the best response curves cross: (1, 1), (0, 0, ), (23 ,13)

I First two are the pure strategy NE we had found before

I Last is a strictly mixed NE: both players randomize

Page 39: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Battle of the sexes

q

λO

beta2(λ)

betal(q)

1

l

I There are three points where the best response curves cross: (1, 1), (0, 0, ), (23 ,13)

I First two are the pure strategy NE we had found before

I Last is a strictly mixed NE: both players randomize

Page 40: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Consider the following game

E F G

A 5, 10 5, 3 3, 4

B 1, 4 7, 2 7, 6

C 4, 2 8, 4 3, 8

D 2, 4 1, 3 8, 4

Page 41: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Consider σ1 = (13 ,14 ,

14 ,

16)

I EU(E , σ1) = 1013 + 41

4 + 214 + 41

6 = 5.5

I EU(F , σ1) = 313 + 21

4 + 414 + 31

6 = 3

I EU(G , σ1) = 413 + 61

4 + 814 + 41

6 = 5.5

I Then BR2(σ1) = {(p, 0, 1− p), p ∈ [0, 1]}

Page 42: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Consider σ1 = (13 ,14 ,

14 ,

16)

I EU(E , σ1) = 1013 + 41

4 + 214 + 41

6 = 5.5

I EU(F , σ1) = 313 + 21

4 + 414 + 31

6 = 3

I EU(G , σ1) = 413 + 61

4 + 814 + 41

6 = 5.5

I Then BR2(σ1) = {(p, 0, 1− p), p ∈ [0, 1]}

Page 43: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Consider σ1 = (13 ,14 ,

14 ,

16)

I EU(E , σ1) = 1013 + 41

4 + 214 + 41

6 = 5.5

I EU(F , σ1) = 313 + 21

4 + 414 + 31

6 = 3

I EU(G , σ1) = 413 + 61

4 + 814 + 41

6 = 5.5

I Then BR2(σ1) = {(p, 0, 1− p), p ∈ [0, 1]}

Page 44: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Consider σ1 = (13 ,14 ,

14 ,

16)

I EU(E , σ1) = 1013 + 41

4 + 214 + 41

6 = 5.5

I EU(F , σ1) = 313 + 21

4 + 414 + 31

6 = 3

I EU(G , σ1) = 413 + 61

4 + 814 + 41

6 = 5.5

I Then BR2(σ1) = {(p, 0, 1− p), p ∈ [0, 1]}

Page 45: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Consider σ1 = (13 ,14 ,

14 ,

16)

I EU(E , σ1) = 1013 + 41

4 + 214 + 41

6 = 5.5

I EU(F , σ1) = 313 + 21

4 + 414 + 31

6 = 3

I EU(G , σ1) = 413 + 61

4 + 814 + 41

6 = 5.5

I Then BR2(σ1) = {(p, 0, 1− p), p ∈ [0, 1]}

Page 46: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I G dominates F (player 2)

I D dominates B (player 1)

Page 47: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I G dominates F (player 2)

I D dominates B (player 1)

Page 48: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Reduced game

E G

A 5, 10 3, 4

C 4, 2 3, 8

D 2, 4 8, 4

Page 49: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Note that σ1 = (p, 0, 1− p) with p > 23 dominates C

I EU(σ1,E ) = 5p + 2(1− p) = 3p + 2

I EU(σ1,G ) = 3p + 8(1− p) = 8− 5p

I

EU(σ1,E ) > U(C ,E )

3p + 2 > 4

p >2

3

EU(σ1,G ) > EU(C ,G )

8− 5p > 3

p <5

5= 1

Page 50: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Reduced game

E G

A 5, 10 3, 4

D 2, 4 8, 4

Page 51: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Lets find BR1(σ2 = (q, 1− q))

I EU(A, σ2) = 5q + 3(1− q) = 2q + 3

I EU(D, σ2) = 2q + 8(1− q) = 8− 6q

I 8− 6q > 2q + 3 if 58 > q

I 8− 6q < 2q + 3 if 58 < q

I Thus

BR1(q, 1− q) =

σ1 = (0, 1) if 0 ≤ q < 5

8

σ1 = (1, 0) if 58 < q ≤ 1

σ1 = (p, 1− p) if 58 = q

Page 52: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Lets find BR1(σ2 = (q, 1− q))

I EU(A, σ2) = 5q + 3(1− q) = 2q + 3

I EU(D, σ2) = 2q + 8(1− q) = 8− 6q

I 8− 6q > 2q + 3 if 58 > q

I 8− 6q < 2q + 3 if 58 < q

I Thus

BR1(q, 1− q) =

σ1 = (0, 1) if 0 ≤ q < 5

8

σ1 = (1, 0) if 58 < q ≤ 1

σ1 = (p, 1− p) if 58 = q

Page 53: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Lets find BR1(σ2 = (q, 1− q))

I EU(A, σ2) = 5q + 3(1− q) = 2q + 3

I EU(D, σ2) = 2q + 8(1− q) = 8− 6q

I 8− 6q > 2q + 3 if 58 > q

I 8− 6q < 2q + 3 if 58 < q

I Thus

BR1(q, 1− q) =

σ1 = (0, 1) if 0 ≤ q < 5

8

σ1 = (1, 0) if 58 < q ≤ 1

σ1 = (p, 1− p) if 58 = q

Page 54: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Lets find BR1(σ2 = (q, 1− q))

I EU(A, σ2) = 5q + 3(1− q) = 2q + 3

I EU(D, σ2) = 2q + 8(1− q) = 8− 6q

I 8− 6q > 2q + 3 if 58 > q

I 8− 6q < 2q + 3 if 58 < q

I Thus

BR1(q, 1− q) =

σ1 = (0, 1) if 0 ≤ q < 5

8

σ1 = (1, 0) if 58 < q ≤ 1

σ1 = (p, 1− p) if 58 = q

Page 55: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Lets find BR1(σ2 = (q, 1− q))

I EU(A, σ2) = 5q + 3(1− q) = 2q + 3

I EU(D, σ2) = 2q + 8(1− q) = 8− 6q

I 8− 6q > 2q + 3 if 58 > q

I 8− 6q < 2q + 3 if 58 < q

I Thus

BR1(q, 1− q) =

σ1 = (0, 1) if 0 ≤ q < 5

8

σ1 = (1, 0) if 58 < q ≤ 1

σ1 = (p, 1− p) if 58 = q

Page 56: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Lets find BR1(σ2 = (q, 1− q))

I EU(A, σ2) = 5q + 3(1− q) = 2q + 3

I EU(D, σ2) = 2q + 8(1− q) = 8− 6q

I 8− 6q > 2q + 3 if 58 > q

I 8− 6q < 2q + 3 if 58 < q

I Thus

BR1(q, 1− q) =

σ1 = (0, 1) if 0 ≤ q < 5

8

σ1 = (1, 0) if 58 < q ≤ 1

σ1 = (p, 1− p) if 58 = q

Page 57: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Lets find BR2(σ1 = (p, 1− p))

I EU(σ1,E ) = 10p + 4(1− p) = 6p + 4

I EU(σ1,G ) = 4p + 4(1− p) = 4

I 6p + 4 > 4 if p > 0

I 6p + 4 < 4 if p < 0.

I Thus

BR2(p, 1− p) =

{σ2 = (1, 0) if p > 0

σ2 = (q, 1− q) if p = 0

Page 58: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Lets find BR2(σ1 = (p, 1− p))

I EU(σ1,E ) = 10p + 4(1− p) = 6p + 4

I EU(σ1,G ) = 4p + 4(1− p) = 4

I 6p + 4 > 4 if p > 0

I 6p + 4 < 4 if p < 0.

I Thus

BR2(p, 1− p) =

{σ2 = (1, 0) if p > 0

σ2 = (q, 1− q) if p = 0

Page 59: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Lets find BR2(σ1 = (p, 1− p))

I EU(σ1,E ) = 10p + 4(1− p) = 6p + 4

I EU(σ1,G ) = 4p + 4(1− p) = 4

I 6p + 4 > 4 if p > 0

I 6p + 4 < 4 if p < 0.

I Thus

BR2(p, 1− p) =

{σ2 = (1, 0) if p > 0

σ2 = (q, 1− q) if p = 0

Page 60: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Lets find BR2(σ1 = (p, 1− p))

I EU(σ1,E ) = 10p + 4(1− p) = 6p + 4

I EU(σ1,G ) = 4p + 4(1− p) = 4

I 6p + 4 > 4 if p > 0

I 6p + 4 < 4 if p < 0.

I Thus

BR2(p, 1− p) =

{σ2 = (1, 0) if p > 0

σ2 = (q, 1− q) if p = 0

Page 61: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Lets find BR2(σ1 = (p, 1− p))

I EU(σ1,E ) = 10p + 4(1− p) = 6p + 4

I EU(σ1,G ) = 4p + 4(1− p) = 4

I 6p + 4 > 4 if p > 0

I 6p + 4 < 4 if p < 0.

I Thus

BR2(p, 1− p) =

{σ2 = (1, 0) if p > 0

σ2 = (q, 1− q) if p = 0

Page 62: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

I Lets find BR2(σ1 = (p, 1− p))

I EU(σ1,E ) = 10p + 4(1− p) = 6p + 4

I EU(σ1,G ) = 4p + 4(1− p) = 4

I 6p + 4 > 4 if p > 0

I 6p + 4 < 4 if p < 0.

I Thus

BR2(p, 1− p) =

{σ2 = (1, 0) if p > 0

σ2 = (q, 1− q) if p = 0

Page 63: Lecture 14: Game Theory // Nash equilibriummauricio-romero.com/pdfs/EcoIV/20211/Lecture14.pdf · 2021. 1. 6. · Lecture 14: Game Theory // Nash equilibrium Mixed strategies Examples

Best responses

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p

q

BR_1BR_2

NE = {(A,E ), (D, σq2 )} where σq2 = (q, 1− q) and 0 ≤ q ≤ 58