14
1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1 Lecture 12: Quantum point contact Resistance is independent of length. d ~ l Fermi 2 12.5 2 quantum h R k e

Lecture 12: Quantum point contact · 1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1 Lecture 12: Quantum point contact Resistance is independent of

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 12: Quantum point contact · 1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1 Lecture 12: Quantum point contact Resistance is independent of

1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1

Lecture 12: Quantum point contact

Resistance is independent of length.

d ~ lFermi

212.5

2quantum

hR k

e

Page 2: Lecture 12: Quantum point contact · 1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1 Lecture 12: Quantum point contact Resistance is independent of

1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 2

Readings this lecture covers

Ferry pp. 124-139

Van Wees PRL (reading packet)

Marcus APL (reading packet)

Zhou APL (reading packet)

Page 3: Lecture 12: Quantum point contact · 1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1 Lecture 12: Quantum point contact Resistance is independent of

1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 3

Ballistic vs. diffusive transport

W

W

l

l

L

Ballistic

Diffusive

?R

2

LR

W

Page 4: Lecture 12: Quantum point contact · 1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1 Lecture 12: Quantum point contact Resistance is independent of

1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 4

1d system:22 22 2 2 2 2

2 2 2( )

2 2

x y zn n n

x y z

x y z

k k kE n n n

m m L L L

xL 0yL 0zL

E

kx=nx/Lx

22 22

2

2x

x y z

E nm L L L

22 22

2 222

x

x y z

E nm L L L

22 22

2 232

x

x y z

E nm L L L

Fermi energy

Page 5: Lecture 12: Quantum point contact · 1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1 Lecture 12: Quantum point contact Resistance is independent of

1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 5

Resistance quantumBallistic conductor

Right

contact

Left

contact

E

kx=2nx/Lx

eV

Fermi energy

225 quantum

hR k

e

212.5

2quantum

hR k

e

With spin:

22quantum

eG

h

22eG T

h

If injection from leads is not perfect:

T is the transmission probability.

Page 6: Lecture 12: Quantum point contact · 1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1 Lecture 12: Quantum point contact Resistance is independent of

1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 6

Variable width wire:

E

kx=nx/Lx

Fermi energy

Page 7: Lecture 12: Quantum point contact · 1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1 Lecture 12: Quantum point contact Resistance is independent of

1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 7

Landauer formula:

22eG n

h

If the leads are not perfect injectors into each “channel” then:

22n

eG T

h

Page 8: Lecture 12: Quantum point contact · 1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1 Lecture 12: Quantum point contact Resistance is independent of

1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 8

Experimental realizations:

Pinch-off gate in semiconductor 2DEG (QPC)

Break junction

Electrochemical addition of atoms

Scanning tunneling microscope

Page 9: Lecture 12: Quantum point contact · 1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1 Lecture 12: Quantum point contact Resistance is independent of

1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 9

Quantum point contact

Page 10: Lecture 12: Quantum point contact · 1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1 Lecture 12: Quantum point contact Resistance is independent of

1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 10

Quantum point contact

B.J. van Wees et al. (1988), Phys. Rev. Lett., 60, 848.

Page 11: Lecture 12: Quantum point contact · 1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1 Lecture 12: Quantum point contact Resistance is independent of

1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 11

0.7 anomaly

Page 12: Lecture 12: Quantum point contact · 1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1 Lecture 12: Quantum point contact Resistance is independent of

1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 12

Break junction

Page 13: Lecture 12: Quantum point contact · 1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1 Lecture 12: Quantum point contact Resistance is independent of

1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 13

Zhou, et al, Applied Physics Letters 67, 8 (1995) p. 1160.

Page 14: Lecture 12: Quantum point contact · 1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 1 Lecture 12: Quantum point contact Resistance is independent of

1/4/2016 EECS 277B Adv. Semiconductor Devices © 2013 P. Burke Lecture 11, p. 14

Electroplating

A.F.Morpurgo, C.M.Marcus and D. B. Robinson,

Controlled Fabrication of Metallic Electrodes with Atomic Separation, Appl. Phys. Lett. 74, 2084 (1999).