21
27/02/51 Lecture 12 Plane Waves in Conductor, Poynting Theorem, and Power Transmission ENE 325 Electromagnetic Fields and Waves

Lecture 12 Plane Waves in Conductor, Poynting Theorem, and Power Transmission

Embed Size (px)

DESCRIPTION

ENE 325 Electromagnetic Fields and Waves. Lecture 12 Plane Waves in Conductor, Poynting Theorem, and Power Transmission. Review (1). Wave equations Time-Harmonics equations where. Review (2). where This  term is called propagation constant or we can write  = +j - PowerPoint PPT Presentation

Citation preview

Page 1: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Lecture 12 Plane Waves in Conductor, Poynting Theorem, and Power Transmission

ENE 325Electromagnetic Fields and Waves

Page 2: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Review (1) Wave equations

Time-Harmonics equations

where

22

2

������������������������������������������ E EE

t t2

22

������������������������������������������ H HH

t t

2 2 0 ����������������������������

s sE E

2 2 0 ����������������������������

s sH H

( ) j j

Page 3: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Review (2)

where

This term is called propagation constant or we can write

= +j

where = attenuation constant (Np/m) = phase constant (rad/m)

( ).j j

Page 4: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Review (3) The instantaneous forms of the solutions

The phasor forms of the solutions

0 0cos( ) cos( )

��������������z z

x xE E e t z a E e t z a

0 0cos( ) cos( )z z

y yH H e t z a H e t z a ��������������

0 0

z j z z j zs x xE E e e a E e e a

��������������

0 0

z j z z j zs y yH H e e a H e e a

��������������

incident wave reflected wave

Page 5: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Attenuation constant Attenuation constant determines the penetration of the

wave into a medium

Attenuation constant are different for different applications

The penetration depth or skin depth, is the distance z that causes to reduce to

z = -1

z = -1/ = -.

E��������������

10E e

Page 6: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Good conductor

1 1

f

At high operation frequency, skin depth decreases

A magnetic material is not suitable for signal carrier

A high conductivity material has low skin depth

Page 7: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Currents in conductor

To understand a concept of sheet resistance

1L LR

A wt

1 LR

t w Rsheet () Lw

1sheetR

t sheet resistance

from

At high frequency, it will be adapted to skin effect resistance

Page 8: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Currents in conductor

0

0

zx x

zx x

E E e

J E e

Therefore the current that flows through the slab at t is

;xI J dS ds dydz

Page 9: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Currents in conductor

;xI J dS ds dydz

00 0

wz

xz y

I E e dydz

0

0

zxw E e

0 .xI w E A

From

Jx or current density decreases as the slab gets thicker

Page 10: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Currents in conductor

0xV E L

0

0

1xskin

x

E LV L LR R

I w E w w

For distance L in x-direction

For finite thickness,

R is called skin resistanceRskin is called skin-effect resistance

0 00 0

(1 )t w

z tx x

z y

I E e dydz w E e

/

1

(1 )skin tRe

Page 11: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Currents in conductor

Current is confined within a skin depth of the coaxial cable.

Page 12: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Ex1 A steel pipe is constructed of a material for which r = 180 and = 4106 S/m. The two radii are 5 and 7 mm, and the length is 75 m. If the total current I(t) carried by the pipe is 8cost A, where = 1200 rad/s, find:

a) skin depth

b) skin resistance

Page 13: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

c) dc resistance

Page 14: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

The Poynting theorem and power transmission

2 21 1( )

2 2E H d S J E dV E dV H dV

t t

����������������������������������������������������������������������

Poynting theorem

Total power leavingthe surface

Joule’s lawfor instantaneouspower dissipated per volume (dissi-pated by heat)

Rate of change of energy storedIn the fields

2W/mS E H ������������������������������������������

Instantaneous poynting vector

Page 15: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Example of Poynting theorem in DC case

2 21 1( )

2 2E H d S J E dV E dV H dV

t t

����������������������������������������������������������������������

Rate of change of energy storedIn the fields = 0

Page 16: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Example of Poynting theorem in DC case

2 z

IJ a

a

��������������

By using Ohm’s law,

From

2 z

J IE a

a ��������������

��������������

2 2

2 20 0 0( )

a LId d dz

a

2 22

1 LI I R

a

Page 17: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Example of Poynting theorem in DC case

E H d S������������������������������������������

From Ampère’s circuital law,

Verify with

H dl I����������������������������

2 aH I ��������������

2

IH a

a

��������������

Page 18: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Example of Poynting theorem in DC case

2

2 32

IS d S a d dz

a

����������������������������

2

2 2 32 2z

I I IS E H a a a

aa a

������������������������������������������

2 222

2 3 20 02

LI a I Ld dz I R

a a

Total power

W

Page 19: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Uniform plane wave (UPW) power transmission Time-averaged power density

1Re( )

2avgP E H

������������������������������������������

amount of power avgP P d S����������������������������

for lossless case, 00

12

j z j zxavg x yx

EP E e a e a

��������������

201

2x

avg zE

P a ��������������

W

W/m2

Page 20: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Uniform plane wave (UPW) power transmission

0

z j z jxxE E e e e a

��������������

intrinsic impedance for lossy medium nje

0

1 1 z j z jz xxH a E a E e e e a

����������������������������

0 njz j z jxy

Ee e e e a

for lossy medium, we can write

Page 21: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Uniform plane wave (UPW) power transmission

2

201Re

2jzx

zE

e e a

from1

Re( )2

avgP E H

������������������������������������������

2

201cos

2zx

zE

e a

W/m2

Question: Have you ever wondered why aluminum foil is not allowed inthe microwave oven?