16
10/17/2006 Digital I/Q Transceiver Constellation Diagram • SNR Eye Diagram Lab 5 • Transmitter Analog Receiver Digital Receiver Lecture 10 Digital I/Q Transceiver

Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

10/17/2006

Digital I/Q Transceiver• Constellation Diagram• SNR• Eye DiagramLab 5• Transmitter• Analog Receiver • Digital Receiver

Lecture 10Digital I/Q Transceiver

Page 2: Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

L10/17/2006 2Lecture 10 Fall 2006

Digital Modulation

• I/Q signals take on discrete values at discrete time instants corresponding to digital data– Receiver samples I/Q channels

• Uses decision boundaries to evaluate value of data at each time instant

• I/Q signals may be binary or multi-bit– Multi-bit shown above

Receiver Output

2cos(2πf1t)2sin(2πf1t)

Lowpassir(t)

Lowpassqr(t)

it(t)

qt(t)

2cos(2πf1t)2sin(2πf1t)

t

t

t

Baseband Input

tDecisionBoundaries Sample

Times

Page 3: Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

L10/17/2006 3Lecture 10 Fall 2006

Constellation Diagram-16QAM

• We can view I/Q values at sample instants on a two-dimensional coordinate system

• Decision boundaries mark up regions corresponding to different data values

• Gray coding used to minimize number of bit errors that occur if wrong decisions made due to noise

DecisionBoundaries I

Q

DecisionBoundaries

00 01 11 10

00

01

11

10

Receiver Output

t

tSampleTimes

Page 4: Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

L10/17/2006 4Lecture 10 Fall 2006

Impact of Noise on Constellation Diagram

Low PowerHigh Power

• Sampled data values no longer land in exact same location across all sample instants while decision boundaries remain fixed

• Significant noise causes bit errors to be made• Increasing signal power increases distance between decision boundaries

i.e., increased SNR

Page 5: Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

L10/17/2006 5Lecture 10 Fall 2006

Transition Behavior Between Constellation Points

• Constellation diagrams provide us with a snapshot of I/Q signals at sample instants

• Transition behavior between sample points depends on modulation scheme and transmit filter

DecisionBoundaries I

Q

DecisionBoundaries

00 01 11 10

00

01

11

10

Page 6: Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

L10/17/2006 6Lecture 10 Fall 2006

Need for Transmit Filter

• Steps in waveform x(t) have high frequency components. (Recall Fourier Series applet)

• We want spectral efficiency (i.e. narrow bandwidth signals) to conserve spectrum

t

Td

data(t)

t

x(t)

O-Order

Track & Hold

Page 7: Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

L10/17/2006 7Lecture 10 Fall 2006

Transmit Filter

• Special low pass filtering (e.g. raised cosine filter) removes high-frequency content but preserves signal levels as sampling points.

• Trade-off bandwidth and signal integrity

t

Td

data(t)

t

x(t)|P(f)|2

f1/(2Td)0

Page 8: Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

L10/17/2006 8Lecture 10 Fall 2006

Lab 5 Transmitter Block

Page 9: Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

L10/17/2006 9Lecture 10 Fall 2006

Σ−Δ Modulator Pushes Quantization Noise to High Frequency

• Allows music to be encoded digitally• LPF at receiver is used to remove quantization noise while

preserving the signal. Tradeoff is noise vs. signal integrity

Time Domain Frequency Domain

Page 10: Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

L10/17/2006 10Lecture 10 Fall 2006

Lab 5 Analog Receiver Block Diagram

Neglecting higher frequency termsrxa = it (t)cos Δω ct + φOFF (t)[ ]

Difference between transmitter and receiver modulation frequency

Difference in phase between transmitter and receiver. It is a function of time.

Where Δω c :φOFF (t) :

rxb = qt (t)cos Δω ct +φOFF (t)[ ]If we can measure Δωc and φOFF(t) we can remove both frequency and phase offset.

rx = rxa + jrxb

Page 11: Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

L10/17/2006 11Lecture 10 Fall 2006

Complex ModulationWrite

in exponential form

rx = rxa + jrxb where rxa = RE rx( ); rxb = IM rx( )

rx = [it (t)+ jqt (t)]ej Δωct+θOFF (t )( )

rx by e− j Δωct+φOFF (t )( )

I = ir (t)Q = qr (t)

× ××××

Σ

Σ

I

Q

cos ω ct( )rxa

sin ω ct( )rxb

cos( )

sin( )

cos( )

+−

+ +

Where ( ) = Δω ct + φOFF (t)

Multiply

Page 12: Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

L10/17/2006 12Lecture 10 Fall 2006

Lab 5 Digital Receiver Block Diagram

USRP

Receiverx_a (I)

rx_b (Q)

250 kSample/s

Complex

Mixer

250 kSample/s

cos(ωct)

sin(ωct)

rx_a (I)

rx_b (Q)

in

ωc = 2π(vco_freq + dco_freq)

freq

offset

phase

offset I

Q

listen to

song I

listen to

song Q

analog extract filter

analog extract filter

matchedfilter

matchedfilter

Digital

receiver

operations

i_sliced_data

q_sliced_data

i_raw

q_raw

Output i_raw & q_raw

Page 13: Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

L10/17/2006 13Lecture 10 Fall 2006

Eye Diagram for 1 Gb/s Data Rate [2-level -it(t)]

• Wrap signal back onto itself every 2*Td seconds– Same as an oscilloscope would do

• Allows immediate assessment of the quality of the signal at the receiver (look at eye opening)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10−9

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (seconds)

out

Eye Diagram

0 0.5 1 1.5 2 2.5

x 10−8

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

out

TIME

Snapshot in Time

Page 14: Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

L10/17/2006 14Lecture 10 Fall 2006

Relationship of Eye to Sampling Time and Slice Level

• Horizontal portion of eye indicates sensitivity to timing jitter

• Vertical portion of eye indicates sensitivity to additional noise

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 109

0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (seconds)

out

Eye Diagram

SliceLevel

SamplingInstant

Page 15: Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

L10/17/2006 15Lecture 10 Fall 2006

Realistic Eye Diagram

• Eye more closed due to amplitude noise and timing variation

• Line denotes best time to sample

0 2 4 6 8

x 10−11

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (seconds)

out

Eye Diagram

Page 16: Lecture 10 Digital I/Q Transceiverweb.mit.edu/6.02/www/f2006/handouts/Lec10.pdf · 10/17/2006 L Lecture 10 Fall 2006 2 Digital Modulation • I/Q signals take on discrete values at

L10/17/2006 16Lecture 10 Fall 2006

Multi-Level Signaling• Increase spectral efficiency by sending more than one bit

during a symbol interval• Example: 4-Level PAM on each channel I and Q

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x 10−10

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (seconds)

out

Eye Diagram