33
1 Lecture 10 ! Variance ! Property of Variances ! The variances of Bernoulli, Binomial and Poisson Distributions ! The Exponential Distribution

Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

1

Lecture 10! Variance

! Property of Variances

! The variances of Bernoulli, Binomial and Poisson Distributions

! The Exponential Distribution

Page 2: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

2

Variance (Measures of Dispersion)Example 1:甲乙两个女声小合唱队(chorus team)都由五名队员组成,她们的身高为:

甲队:160cm, 162cm, 159cm, 160cm, 159cm乙队:180cm, 160cm, 150cm, 150cm, 160cm

两队的身高的mean=160cm.

Which one would you choose?

Page 3: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

3

Variance (Measures of Dispersion)

Example 2:The number of working days required to fill orders from two suppliers.

9 10 11

Number of Working Days

Rel

ativ

e Fr

eque

ncy

0

.1

.2

.3

.4

.5

Dawson Supply, Inc.

7 8 9 10 11 12 13 14 15

Number of Working Days

Rel

ativ

e Fr

eque

ncy

0

.1

.2

.3

.4

.5

J.C. Clark Distributors

Mean=10.3

Which one would you choose?

Page 4: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

4

最重要的变异程度的度量,反映了关于平均值的变异程度

方差(Variance)

标准差(Stand. Dev.)

变异程度的度量: 方差和标准差

( )22 , iX

s µ-

=å 其中, 是均值。

2s s=

Page 5: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

5

1 2 3 4

[ ] 4 ), 44 1, 2, 3, 4

Nx x x x

=

= = = =

例1设一个总体,含有 个元素(个体 即总体个数 。

个个体分别为 。

( ) ( ) ( ) ( ) ( )2 2 2 2 22 1 2.5 2 2.5 3 2.5 4 2.5= = 1.25

4xNµ

s- - + - + - + -

总体方差的两种算法:

(1)观察到总体中所有的元素

( )( )( ) ( )

( ) ( ) ( ) ( )

2

2

2

2 2 2 2

2

=1 1 1 1= 1 2.5 + 2 2.5 + 3 2.5 + 4 2.54 4 4 4

=1.25

Var X

E X

x f x

s

µ

µ

=

= -

-

- ´ - ´ - ´ - ´

å

( )知道总体分布

( )=2.5E Xµ =

总体的方差的两种算法

Page 6: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

6

另一个例子

1 2 3 4

4 ), 44 1, 2, 2, 3

Nx x x x

=

= = = =

设一个总体,含有 个元素(个体 即总体个数 。 个个体分别为 。请问:总

体的方差是多少?

Page 7: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

7

! The variance is the average of the squared deviations(the difference between data value and the mean).Formally, suppose X has mean . The varianceof X, is defined as:

• It follows that• If the possible values of X are bounded, then

Var(X) must exist.• The variance provides a measure of the spread or

dispersion of the distribution around its mean.• The variance can be affected greatly by extreme

values.

)(XE=µ

])[()( 2µ-= XEXVar0)( ³XVar

Page 8: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

8

• The standard deviation is defined to be thenonnegative square root of the variance.

• Generally, the standard deviation of a givenrandom variable is denoted by , and the varianceis denoted by .

s2s

Page 9: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

9

Properties of Variance

Theorem. The variance of a constant is 0.

Page 10: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

10

Theorem. For any constants a and b,

)()( 2 XVarabaXVar =+

Page 11: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

11

Proof. If E(X)=µ, then E(aX+b)=aµ+b. So

Note: Var(X+b)=Var(X)Var(-X)=Var(X)

)(])[(])[(

])[()(

2

22

2

2

XVaraXEaaaXE

babaXEbaXVar

=

-=

-=

--+=+

µ

µ

µ

Page 12: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

12

Theorem. For any random variable X,

22 )]([)()( XEXEXVar -=

Page 13: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

13

Proof. Let E(X)=µ. Then

22

22

22

2

)()(2)()2(

)][()(

µ

µµ

µµ

µ

-=

+-=

+-=

-=

XEXEXE

XXEXEXVar

Page 14: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

14

Theorem. If X1,...,Xn are independent random variables, then

1 1( ... ) ( ) ... ( ).n nVar X X Var X Var X+ + = + +

Page 15: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

15

Proof. Suppose first n=2. If E(X1)=µ1, E(X2)=µ2then E(X1+X2)= µ1+µ2So

The theorem can be established for any positive number n by an induction argument.

21 2 1 2 1 2

2 21 1 2 2 1 1 2 2

1 2 1 1 2 2

1 2 1 2

( ) ( )

( ) ( ) 2( )( )

( ) ( ) 2 ( ) ( )( ) ( ) 2 0 ( ) ( )

Var X X E X X

E X X X X

Var X Var X E X E XVar X Var X Var X Var X

µ µ

µ µ µ µ

µ µ

é ù+ = + - -ë ûé ù= - + - + - -ë û

= + + - -= + + × = +

Page 16: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

16

! Corollary. If X1,...,Xn are independent randomvariables and if a1,...,an and b are arbitraryconstants, then

2 21 1 1 1( ) ( ) ( )n n n nVar a X a X b a Var X a Var X+ + + = + +L L

Page 17: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

17

Example! Suppose X can take each of the five values –2,

0, 1, 3, and 4 with equal probability. What is the standard deviation of Y=4X-7?

Page 18: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

18

Solution! X can take each of the five values –2, 0, 1, 3,

and 4 with equal probability. What is the standard deviation of Y=4X-7?• E(X)=(1/5)*(-2+0+1+3+4)=1.2• E( )=• Var(X)= =4.56• Var(Y)=16Var(X)=72.96• The standard deviation of Y is

2X 2 2 2 2 21/ 5 [( 2) 0 1 3 4 ] 6´ - + + + + =( )

54.896.72 ==s

22 )]([)( XEXE -

Page 19: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

19

Variance of The Bernoulli Distribution

! A random variable X has a Bernoullidistribution with parameter p if X can take onlythe values 0 and 1 with probabilities:

Pr(X=1)=p and Pr(X=0)=q=1-p.

! The p.f. of X can be written as:

! E(X)=p! Var(X)=?

îíì =

=-

otherwise0,1,0for

)|(1 xqp

pxfxx

Page 20: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

20

Variance of The Binomial Distribution! If the random variables X1,...,Xn form n Bernoulli

trials with parameter p, and if X= X1+…+Xn, then Xhas a Binomial distribution with parameters n and p.

! The p.f. for a random variable having binomialdistribution with parameters n and p is

! E(X)=np! Var(X)=?

ïî

ïíì

=÷÷ø

öççè

æ=

-

otherwise

for

0

n,,1,0xqpxn

)p,n|x(fxnx

!

Page 21: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

21

Variance of The Poisson Distribution! A nonnegative random variable X has a

Poisson distribution with mean l (l>0) if the p.f. of X is as follows:

Note:

ïî

ïíì

==

-

otherwise0

,2,1,0for!)|( !xx

exf

xll

l

1!

)|(00

=== -¥

=

=åå lll ll eex

exfx

x

x

Page 22: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

22

Example! We are interested in the number of people

who buy McDonald’s food in any 15 minutesin the morning of Sundays. Using historicaldata, we know that averagely there are 10people buying McDonald’s food in 15minutes.

! Here we can assume the number of peoplefollows a Poisson(10) distribution.

Page 23: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

23

Page 24: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

24

l

ll

llllll

ll

llllll

ll

lll

lll

=-=

+=+-=

==-

=-=

-=-=-

==-

==

==

ååå

åå

ååå

åå

¥

=

=

--¥

=

-

¥

=

¥

=

¥

=

=

--¥

=

-

¥

=

¥

=

22

22

2

0

2

2

22

2

20

01

1

1

10

)]([)()()()]1([)(

!)!2(!)1(

)|()1()|()1()]1([

!)!1(!

)|()|()(

XEXEXVarXEXXEXE

ye

xe

xexx

xfxxxfxxXXE

ye

xe

xex

xxfxxfXE

y

y

x

x

x

xxx

y

y

x

x

x

xxx

Variance of The Poisson Distribution

Page 25: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

25

The Exponential Distribution! A random variable X has an exponential

distribution with parameter b (b>0) if X has acontinuous distribution with p.d.f.

îíì >

=-

otherwisexfore

xfx

00

)|(bb

b

2( ) 1/ ( ) 1/E X Var Xb b= =

Page 26: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

26

The Rate Parameter b

1=b

2=b

3=b

Page 27: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

27

Memoryless Property! If X has an exponential distribution with

parameter b, then for any number t>0,

For t>0 and any other number h>0,t

t

x edxetX bbb -¥ - ==³ ò)Pr(

Pr( | )X t h X t³ + ³ =?

Page 28: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

28

Memoryless Property! If X has an exponential distribution with

parameter b, then for any number t>0,

For t>0 and any other number h>0,

• Regardless of the length of time that has elapsedwithout the occurrence of the event, theprobability that the event will occur during thenext h minutes always has the same value.

t

t

x edxetX bbb -¥ - ==³ ò)Pr(

)Pr(

)Pr()Pr()|Pr(

)(

hXeee

tXhtXtXhtX

ht

ht

³===

³+³

=³+³

--

+-b

b

b

Page 29: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

29

Application ----- Reliability

The exponential distribution is often used in reliability studies as

the model for the time until failure of a device.

For example, the lifetime of a semiconductor chip might bemodeled as an exponential random variable with a mean of40,000 hours. The lack of memory property of the exponentialdistribution implies that the device does not wear out. Thelifetime of a device with failures caused by random shocksmight be appropriately modeled as an exponential randomvariable.

However, the lifetime of a device that suffers slow mechanical

wear is better modeled by a distribution that does not lack

memory.

Page 30: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

30

Life Tests

! n light bulbs are burning simultaneously in a test todetermine the lengths of their lives. Let Xi denote thelifetime of bulb i, i=1,...,n.

! Assume that X1,...,Xn are independent and identicallydistributed.

! Xi has an exponential distribution with parameter b.

! What is the distribution of the length of time Y1 untilone of the n bulbs fails?

Page 31: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

31

• Y1=min{X1,...,Xn}.• For any number t>0,

The distribution of Y1 must be an exponentialdistribution with parameter nb.

1 1

1

1 1

Pr( ) Pr( , , )Pr( ) Pr( )

Then, Pr( ) 1 Pr( ) 1

, 0Thus, ( ) .

0, otherwise

n

nt t n t

n t

n t

Y t X t X tX t X t

e e eY t Y t e

n e tf t

b b b

b

bb

- - -

-

-

> = > >

= > >

= =

£ = - > = -

ì >= íî

LL

L

Page 32: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

32

! What is the distribution of the length of timeY2 after one bulb has failed until a second bulbfails?• After one bulb has failed, n-1 bulbs remain burning.• Regardless of the time at which the first bulb failed,

the distribution of the remaining lifetime of each ofthe n-1 bulbs is still an exponential distributionwith parameter b.

• Y2 will be equal to the smallest of n-1 i.i.d. randomvariables, each of which has an exponentialdistribution with parameter b.

• It follows that Y2 will have an exponentialdistribution with parameter (n-1)b.

Page 33: Lecture 10 - PKUmwfy.gsm.pku.edu.cn/miao_files/ProbStat/lecture10.pdf · 2020-03-23 · Lecture 10!Variance!Property of Variances!The variances of Bernoulli, Binomial and Poisson

33

• Similarly, the distribution of the length of time Y3

after two bulbs have failed until a third bulb failswill be an exponential distribution with parameter(n-2)b.

• ...• After all but one of the bulbs have failed, the

distribution of the additional length of time untilthe final bulb fails will be an exponentialdistribuition with parameter b.