28
Lecture 1. Supersymmetry: Introduction Howard Baer Florida State University ? Outline Briefly, the Standard Model What is supersymmetry (SUSY)? Motivations for SUSY The Wess-Zumino model SUSY gauge theories SUSY breaking H. Baer, SUSY: Introduction, August 7, 2006 1

Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Lecture 1. Supersymmetry: Introduction

Howard Baer

Florida State University

? Outline

• Briefly, the Standard Model

• What is supersymmetry (SUSY)?

• Motivations for SUSY

• The Wess-Zumino model

• SUSY gauge theories

• SUSY breaking

H. Baer, SUSY: Introduction, August 7, 2006 1

Page 2: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

The Standard Model of Particle Physics

? gauge symmetry: SU(3)C × SU(2)L × U(1)Y ⇒ gµA, Wµi, Bµ

? matter content: 3 generations quarks and leptons

u

d

L

uR, dR;

ν

e

L

, eR (1)

? Higgs sector ⇒ spontaneous electroweak symmetry breaking:

φ =

φ+

φ0

(2)

? ⇒ massive W±, Z0, massless γ, massive quarks and leptons

? L = Lgauge + Lmatter + LY uk. + LHiggs: 19 parameters

? good-to-excellent description of (almost) all accelerator data!

H. Baer, SUSY: Introduction, August 7, 2006 2

Page 3: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Shortcomings of SM

Data

? neutrino masses and mixing

? baryogenesis (matter anti-matter asymmetry)

? cold dark matter

? dark energy

Theory

? quadratic divergences in scalar sector ⇒ fine-tuning

? origin of generations

? explanation of masses

? origin of gauge symmetry/ quantum numbers

? unification with gravity

H. Baer, SUSY: Introduction, August 7, 2006 3

Page 4: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Problem of scalar quadratic divergences

? Structure of scalar self energies

+

• δm2HSM

= 〈HSM| g2m2

HSM

32M2

W

H4SM|HSM〉 = 12

g2m2

HSM

32M2

W

d4k(2π)4

ik2−m2

HSM

=12g2m2

HSM

32M2

W

116π2

(

Λ2 −m2HSM

ln Λ2

m2

HSM

+ O( 1Λ2 )

)

• m2HSM

(phys) ' m2HSM

+ c16π2 Λ2

• If Λ ∼ 1016 GeV, then fine-tuning to 1 part in 1026 needed

• Alternatively, if Λ ∼ 1 TeV, then no fine-tuning, but then SM is valid only

below 1 TeV scale

H. Baer, SUSY: Introduction, August 7, 2006 4

Page 5: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Supersymmetry

? Supersymmetry (SUSY) is a spacetime symmetry

• most general extension of Poincare group

• a quantum symmetry- no classical analogue

• introduce spinorial generators Q

• relates fermions to bosons: Q|B〉 = |F 〉• SUSY is a “square-root” of a translation

? discovered gradually from ∼ 1968 to 1974

• introduce fermions into string theory

• non-linear realizations

• Wess-Zumino 1974: first 4-d SUSY QFT

H. Baer, SUSY: Introduction, August 7, 2006 5

Page 6: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Supersymmetry motivations (theory)

• Aesthetics

– nature likely to use most general extension of Poincare group at some level

• ultra-violet behavior and fine-tuning: mSUSY ∼ 1 TeV!

• connection to gravity: local SUSY = supergravity

• ultraviolet completeness: desert all the way to MGUT ?

• connection to strings: world-sheet SUSY vs. space-time SUSY

H. Baer, SUSY: Introduction, August 7, 2006 6

Page 7: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Supersymmetry motivations (experiment)

• gauge coupling unification: connection to GUTs

H. Baer, SUSY: Introduction, August 7, 2006 7

Page 8: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Gauge coupling evolution

H. Baer, SUSY: Introduction, August 7, 2006 8

Page 9: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Supersymmetry motivations (experiment)

• gauge coupling unification: connection to GUTs

• cold dark matter

H. Baer, SUSY: Introduction, August 7, 2006 9

Page 10: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Dark matter versus dark energy

H. Baer, SUSY: Introduction, August 7, 2006 10

Page 11: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Supersymmetry motivations (experiment)

• gauge coupling unification: connection to GUTs

• cold dark matter

• radiative breakdown of EW symmetry (if mt ∼ 100 − 200 GeV)

H. Baer, SUSY: Introduction, August 7, 2006 11

Page 12: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Soft term evolution and radiative EWSB

H. Baer, SUSY: Introduction, August 7, 2006 12

Page 13: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Supersymmetry motivations (experiment)

• gauge coupling unification: connection to GUTs

• cold dark matter

• radiative breakdown of EW symmetry (if mt ∼ 100 − 200 GeV)

• decoupling in SUSY theories: tiny radiative corrections if mSUSY>∼ 100 GeV

• mass of the Higgs boson: MSSM ⇒ mh<∼ 135 GeV

H. Baer, SUSY: Introduction, August 7, 2006 13

Page 14: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Likelihood distribution of Higgs mass

0

1

2

3

4

5

6

10030 300

mH [GeV]

∆χ2

Excluded Preliminary

∆αhad =∆α(5)

0.02758±0.00035

0.02749±0.00012

incl. low Q2 data

Theory uncertainty

H. Baer, SUSY: Introduction, August 7, 2006 14

Page 15: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Supersymmetry motivations (experiment)

• gauge coupling unification: connection to GUTs

• cold dark matter

• radiative breakdown of EW symmetry (if mt ∼ 100 − 200 GeV)

• decoupling in SUSY theories: tiny radiative corrections if mSUSY>∼ 100 GeV

• mass of the Higgs boson: MSSM ⇒ mh<∼ 135 GeV

• mechanisms for baryogenesis: EW, leptogenesis, Affleck-Dine

• neutrino mass: stabilize see-saw scale; GUTs

H. Baer, SUSY: Introduction, August 7, 2006 15

Page 16: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Focus of these lectures is on supersymmetry

“if we consider the main classes of new physics that are currently

being contemplated· · ·, it is clear that (supersymmetry) is the most

directly related to GUTs. SUSY offers a well defined model computable

up to the GUT scale and is actually supported by the quantitative

success of coupling unification in SUSY GUTs.For the other examples· · ·,all contact with GUTs is lost or at least is much more remote. · · · the

SUSY picture· · · remains the standard way beyond the Standard Model”

G. Altarelli and F. Feruglio, hep-ph/0306265

H. Baer, SUSY: Introduction, August 7, 2006 16

Page 17: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Wess-Zumino toy SUSY model: 1974

• L = Lkin. + Lmass

– Lkin. = 12 (∂µA)2 + 1

2 (∂µB)2 + i2ψ 6∂ψ + 1

2 (F 2 +G2)

– Lmass = −m[ 12 ψψ −GA− FB]

• A and B and real scalar fields with [A] = [B] = 1

• ψ is a Majorana spinor with ψ = CψT and [ψ] = 32

• F and G are auxiliary (non-propagating) fields with [F ] = [G] = 2

– can be eliminated by E-L equations: F = −mB, G = −mA

H. Baer, SUSY: Introduction, August 7, 2006 17

Page 18: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

SUSY transformation in WZ model

• A→ A+ δA with δA = iαγ5ψ

• δB = −αψ,• δψ = −Fα+ iGγ5α+ 6∂γ5Aα+ i 6∂Bα,• δF = iα 6∂ψ,• G = αγ5 6∂ψ

Using Majorana bilinear re-arrangements (e.g. ψχ = −χψ) and product rule

∂µ(f · g) = ∂µf · g + f · ∂µg and algebra, can show that L → L + δL with

• δLkin = ∂µ(− 12 αγµ 6∂Bψ + i

2 αγ5γµ 6∂Aψ + i2Fαγµψ + 1

2Gαγ5γµψ),

• δLmass = ∂µ(mAαγ5γµψ + imBαγµψ)

Since Lagrangian changes by a total derivation, the action S =∫

Ld4x is

invariant! (owing to Gauss’ law in 4-d)∫

Vd4x∂µΛµ =

∂VdσΛµnµ Thus, WZ

transformation is a symmetry of the action!

H. Baer, SUSY: Introduction, August 7, 2006 18

Page 19: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Aspects of the WZ model:

• Can add interactions:

• Lint = − g√2Aψψ + ig√

2Bψγ5ψ + g√

2(A2 −B2)G+ g

√2ABF

• Difficult calculation, but can show δL → total derivative

• Also, can show: quadratic divergences all cancel!

• If SUSY transformations expressed as

S → S ′ = eiαQSe−iαQ ≈ S + [iαQ,S] = S + δS ≡ (1 − iαQ)S, then can

show that the generator Q obeys

• {Qa, Qb} = 2(γµ)abPµ

• SUSY is spacetime symmetry! (super-Poincare algebra)

H. Baer, SUSY: Introduction, August 7, 2006 19

Page 20: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Weak Scale Supersymmetry

HB and X. Tata

Spring, 2006; Cambridge University Press

? Part 1: superfields/Lagrangians

– 4-component spinor notation for exp’ts

– master Lagrangian for SUSY gauge theories

? Part 2: models/implications

– MSSM, SUGRA, GMSB, AMSB, · · ·

? Part 3: SUSY at colliders

– production/decay/event generation

– collider signatures

– R-parity violation

H. Baer, SUSY: Introduction, August 7, 2006 20

Page 21: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Constructing supersymmetric models

• While the WZ model is interesting, it was essentially “taken out of a hat”,

without rules of how to construct SUSY models in general

• Shortly after WZ model appeared in 1974, Salam and Strathdee developed

superfield formalism, which does allow one to construct SUSY models in

general.

• How does one combine scalar and spinor fields into a single entity?

• introduce superspace xµ → (xµ, θa) where θa (a = 1 − 4) are four

anti-commuting dimensions arranged as a Majorana spinor

H. Baer, SUSY: Introduction, August 7, 2006 21

Page 22: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Some types of superfields

• general superfield:

Φ(x, θ) = S − i√

2θγ5ψ − i2 (θγ5θ)M + 1

2 (θθ)N + 12 (θγ5γµθ)V

µ

+ i(θγ5θ)[θ(λ+ i√26∂ψ)] − 1

4 (θγ5θ)2[D − 1

22S]

• left chiral scalar superfield: SL(x, θ) = S(x) + i√

2θψL(x) + iθθLF(x) where

xµ = xµ + i2 θγ5γµθ

• right chiral scalar superfield: SR(x, θ) = S(x†) − i√

2θψR(x†) − iθθRF(x†)

• multiplication rules

– LCSSF× LCSSF= LCSSF

– RCSSF× RCSSF = RCSSF

– LCSSF× RCSSF = general superfield

• D-term of general SF transforms to total derivative

• F -term of LCSSF or RCSSF transforms into total derivative

H. Baer, SUSY: Introduction, August 7, 2006 22

Page 23: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Supersymmetric Lagrangians

• Since D and F terms transform into total derivatives, they are candidates for

SUSY Lagrangians!

• The superpotential f is a function of LCSSFs only. Hence it is itself a

LCSSF, and its F term is a candidate Lagrangian

• The Kahler potential K is a function of LCSSFs times RCSSFs. Hence it is a

general superfield and its D term is a candidate Lagrangian

• Augmenting the superfields with gauge superfields

ΦA = 12 (θγ5γµθ)V

µA + iθγ5θ · θλA − 1

4 (θγ5θ)2DA (in WZ gauge) or

WA(x, θ) = λLA(x) + 12γ

µγνFµνA(x)θL − iθθL(6DλR)A − iDA(x)θL allows

one to write a Master formula for supersymmetric gauge theories!

H. Baer, SUSY: Introduction, August 7, 2006 23

Page 24: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Master formula for SUSY gauge theories

L =∑

i

(DµSi)†(DµSi) +

i

2

i

ψi 6Dψi +∑

α,A

[

i

2λαA(6Dλ)αA − 1

4FµναAF

µναA

]

−√

2∑

i,α,A

(

S†i gαtαAλαA

1 − γ5

2ψi + h.c.

)

− 1

2

α,A

[

i

S†i gαtαASi + ξαA

]2

−∑

i

∂f

∂Si

2

S=S

− 1

2

i,j

ψi

(

∂2f

∂Si∂Sj

)

S=S

1 − γ5

2+

(

∂2f

∂Si∂Sj

)†

S=S

1 + γ5

2

ψj ,

where the covariant derivatives are given by,

DµS = ∂µS + i∑

α,A

gαtαAVµαAS,

H. Baer, SUSY: Introduction, August 7, 2006 24

Page 25: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Dµψ = ∂µψ + i∑

α,A

gα(tαAVµαA)ψL

−i∑

α,A

gα(t∗αAVµαA)ψR,

(6Dλ)αA = 6∂λαA + igα

(

tadjαB 6VαB

)

ACλαC ,

FµναA = ∂µVναA − ∂νVµαA − gαfαABCVµαBVναC .

H. Baer, SUSY: Introduction, August 7, 2006 25

Page 26: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Supersymmetry breaking

• Spontaneous breaking of global SUSY is possible:

〈0|Fi|0〉 6= 0 or 〈0|DA|0〉 6= 0 (F or D type breaking)

• May also explicitly break SUSY by adding soft SUSY breaking terms to L:

– linear terms in the scalar field Si (relevant only for singlets of all

symmetries),

– scalar masses,

– and bilinear or trilinear operators of the form SiSj or SiSjSk (where SiSj

and SiSj Sk occur in the superpotential),

– and finally, in gauge theories, gaugino masses, one for each factor of the

gauge group,

H. Baer, SUSY: Introduction, August 7, 2006 26

Page 27: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Recipe for SUSY model building

• Choose the gauge symmetry (adopting appropriate gauge superfields for each

gauge symmetry)

• Choose matter and Higgs representations included as LCSSFs

• Choose the superpotential f as a gauge invariant analytic function of

LCSSFs; degree is ≤ 3 for renormalizable theory

• Adopt all allowed gauge invariant soft SUSY breaking terms; these are

generally chosen to parametrize our ignorance of the mechanism of SUSY

breaking

• The Master formula, augmented by the soft SUSY breaking terms, gives the

final Lagrangian of the theory.

H. Baer, SUSY: Introduction, August 7, 2006 27

Page 28: Lecture 1. Supersymmetry: Introductionekpdeboer/html/Lehre/Susy/Baer_china_1.pdf · H. Baer, SUSY: Introduction, August 7, 2006 4. Supersymmetry? Supersymmetry (SUSY) is a spacetime

Next lecture:

• Using the Master formula, we may write down the MSSM

• MSSM includes the SM as a sub-theory, but much more

• Since quadratic divergences cancel, MSSM may be a theory valid e.g. from

Mweak to MGUT

• RGEs, gauge coupling evolution, REWSB, spectrum calculation

• supergravity

• Grand unified theories:

– SU(5)

– SO(10)

H. Baer, SUSY: Introduction, August 7, 2006 28