Lecture 1, 2 - Neurons Ch 8 F08

Embed Size (px)

Citation preview

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    1/62

    Organization of the nervous system

    8-1

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    2/62

    Model neuron

    8-2

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    3/62

    Axonal transport

    8-4

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    4/62

    There are 3 functional classes of neurons

    8-3

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    5/62

    8-5

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    6/62

    The neuropil of the CNS

    8-6

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    7/62

    8-6

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    8/62

    Knowledge of the electrical properties of neurons is essential to

    understanding how the the nervous system works.

    5-37

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    9/62

    5-33

    Apparatus for intracellular recording of membrane potential

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    10/62

    The fluid mosaic model of membranes

    3-4r

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    11/62

    Leak conductance channels

    Ligand activated channels

    Voltage-gated channels

    Mechanically-gated

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    12/62

    The genesis of an equilibrium potential

    5-34

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    13/62

    5-34

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    14/62

    5-34

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    15/62

    5-35

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    16/62

    Eion = RTZF ln [ion]1

    [ion]2Nernst eqn.

    Eion = log [ion]1

    [ion]2

    61

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    17/62

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    18/62

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    19/62

    Fig 5-30

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    20/62

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    21/62

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    22/62

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    23/62

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    24/62

    Goldman, Hodgkin, Katz eqn.

    Em =61 log Pk [K]oPk [K]i

    PNa [Na]oPNa [Na]i

    ++

    PCl [Cl]iPCl [Cl]o

    ++

    The resting membrane potential of a cell that is

    permeable to multiple ionic species can be calculatedusing the Goldman, Hodgkin, Katz equation

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    25/62

    Passive spread of graded potentials

    8-7r

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    26/62

    Graded potentials can lead to the initiation of an action potential

    8-8

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    27/62

    8-8

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    28/62

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    29/62

    The generation of an Action Potential

    8-9

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    30/62

    The operation of a voltage-gated Na channel

    8-10

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    31/62

    Action potentials are regenerative events involving positive

    feedback in which membrane depolarization actives voltage-

    gated Na channels that depolarize the membrane

    8-11

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    32/62

    8-12

    Stimulus strength is encoded by receptor potential amplitude, action potential

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    33/62

    Stimulus strength is encoded by receptor potential amplitude, action potential

    frequency and the quantity of transmitter release

    8-13

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    34/62

    Mechanism of action potential propagation

    8-15

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    35/62

    8-15

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    36/62

    8-15

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    37/62

    8-16

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    38/62

    8-17

    Saltatory conduction along a myelinated nerve

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    39/62

    Saltatory conduction along a myelinated nerve

    8-18

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    40/62

    Electrolyte imbalance can disrupt electrical signaling

    8-19

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    41/62

    Ionic currents are

    measured using voltageclamp technology

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    42/62

    Patch clamp measurements

    of single voltage dependent

    sodium channels

    ensemble average curent

    single current traces

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    43/62

    Secondary structure of voltage-gated sodium channel

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    44/62

    Voltage sensor

    activation gate

    Families of voltage-gated channels

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    45/62

    Families of voltage-gated channels

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    46/62

    Mechanisms of synaptic transmission

    8-20

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    47/62

    8-21

    Synthesis and recycling of Ach at a synapse

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    48/62

    8-22

    Synthesis and recycling of Ach at a synapse

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    49/62

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    50/62

    Mechanisms for terminating the action of neurotransmitters

    8-24

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    51/62

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    52/62

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    53/62

    8-25

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    54/62

    8-25

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    55/62

    Neurons integrate the activity of

    many synaptic inputs

    8-26

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    56/62

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    57/62

    8-27

    Temporal summation

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    58/62

    Temporal summation

    8-28

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    59/62

    8-28

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    60/62

    8-29

    Long term potentiation involves the

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    61/62

    g p

    coordinated activities of two

    classes of glutamate receptors

    8-30

  • 8/8/2019 Lecture 1, 2 - Neurons Ch 8 F08

    62/62

    Peripheral nerves have a strong regenerative potential following injury

    ** CNS neurons also regenerate

    8 32