Lect- 8-9 Uncertainity Analysis

Embed Size (px)

Citation preview

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    1/47

    Error

    The difference between the measured value and truevalue is called “Error”

    Hence, it is important to know how close the measured

    value is to the true value.

    True value Measured value Errors= ±

    Systematic Errors:

    These errors have some

    identifiable source and may becorrected by calibration. Likezero drift, sensitivity drift, etc.

    Random Errors:

    These errors can not be sourced out and

    hence can not be corrected.Due to temperature change, humidity,wind, vibrations, electromagnetic field,etc.

    Since, this error arises from a multiplesources, it is impossible to quantify.

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    2/47

    Uncertainty Analysis

    Since the total error includes random error, which

    are uncertain, errors are usually referred to as

    uncertainties.

    For any experimental study, uncertainties analysismust be performed and reported along with the

    measurements.

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    3/47

    Estimation of Random Errors

    Since random errors are not deterministic, a

    probabilistic approach is used.

    Probabilistic approach involve a probabilitydistribution

    Gaussian or Normal distribution is commonly used

    The function is constructed by taking several samples

    of a certain measurement and constructing a

    frequency distribution function

    Counting the number of occurrences of a certain

    value in an interval.

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    4/47

    Propagation of Uncertainties

    Consider the measurement of an effective resistance of

    a circuit comprising three resistors in series

    So, R1, R2 and R3, have to be measured.

    There would be uncertainties in the measurement of each of

    these resistances, which will affect the Reff  .

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    5/47

    Kline & McClintock’ Method, 1953.

    Consider a variable N (dependent) which is calculated from

    various measurements such as u1, u2, u3,u4…….un and

    governed by the function

    The total uncertainty (in N) ∆n would include uncertaintiesof ui ; ie ∆u1, ∆u2,∆u3,∆u4, ∆un

    Therefore;

    1 1 2 2( , ,......, )

    n n N N f u u u u u u+ ∆ = + ∆ + ∆ + ∆

    1 2 3( , , ,....., )n N f u u u u=

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    6/47

    Expand f(u1, u2, u3…un) by Taylor’s series;

    Ignoring second and higher derivatives;

    1 1 2 2

    1 2 1 2

    1 2

    2 31 1

    ( , ,....., )

    ( , ,..., ) ....

    ( ) ( )

    n n

    n

    n

    n

     f u u u u u u

     f f  f u u u u u

    u u

     f  u O u O uu

    + ∆ + ∆ + ∆ =

    ∂ ∂+ ∆ + ∆ +

    ∂ ∂

    ∂+ ∆ + ∆ + ∆∂

    1 2

    1 2

    .... nn

     f f f  N u u u

    u u u

    ∂ ∂ ∂∆ = ∆ + ∆ + + ∆

    ∂ ∂ ∂

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    7/47

    Overall error is given by

    Sometimes the estimated error may be wrong . Some time

    systematic errors may have equal magnitude in OPPOSITE

    sign; they may tend to cancel out each other. So, a

    reasonable estimate would be the Residual Sum of Squareserror or root-sum-square (RSS) given by;

    22 2

    1 2

    1 2

    ... nn

     f f f  N u u u

    u u u

    ∂ ∂ ∂∆ = ∆ + ∆ + + ∆

    ∂ ∂ ∂  

    RMS: Measure of the magnitude of a varying quantity

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    8/47

    In statistics, the residual sum of squares (RSS) is the sum of  

    squares of residuals. It is also known as the sum of squared

    residuals (SSR) or the sum of squared errors of prediction (SSE). It

    is a measure of the discrepancy between the data and an estimationmodel. A small RSS indicates a tight fit of the model to the data.

    In general, total sum of squares = explained sum of squares +

    residual sum of squares

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    9/47

    Example problem

    Calculate the uncertainty in head loss hl expressed as2

    2

    l

     flV h

    gd 

    =

    Given uncertainties in l,v and d are 2%, 4% and 1%. Ignore

    the uncertainties in f and g

    2 2   2

    l ll

    h h   f h l v d  

    l v d 

    ∂ ∂   ∂   ∆ = ∆ + ∆ + ∆   ∂ ∂ ∂

    Solution

    2

    ;2

    l lh h fv

    wherel gd l

    ∂= =

    2

    2 2

    l lh h fvl

    v gd v

    ∂= =

    2

    22

    l lh h fv l

    d gd d  

    −∂= = −

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    10/47

    1/ 22 2 2

    1

    4l l

    l v d h h

    l v d 

    ∆ ∆ ∆ ∆ = + +

    [ ] [ ] [ ]

    1/ 22 2 21

    0.02 0.04 0.014l lh h

      ∆ = + +

    [ ] [ ] [ ]

    1/ 2

    2 2 210.02 0.04 0.01 0.034

    l

    l

    hh

      = + + =

    Total Error = 3 %

    2

    ;

    2

    l lh h fv

    l gd l

    ∂= =

    2

    2 2

    l lh h fvl

    v gd v

    ∂= =

    2

    22

    l lh h fv l

    d gd d  

    −∂= = −

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    11/47

    Points to be noted:

    In many mechanical problems, we assume the value

    of g is 9.8.

    However, in reality; there is an uncertainty in the

    value of g, which has to be accounted where the

    situation arises.

    So, expect for universal constants, all other

    parameters used for estimating a quantity to be

    considered while calculating the total uncertainties.

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    12/47

    Find uncertainties is the following calculated quantities

    Flow rate in fully developed laminar region

    4

    128

     pd Q

    l

    π ∆=

    Grashof Number; Gr

    2 3

    2

    ( )s

    g T T lG

      ρ β 

     µ 

    ∞−

    =

    Given uncertainties in ∆∆∆∆p, d, µµµµ, l, ρρρρ, ββββ and T are 4%, 2%,3%, 2%, 4%, 5% and ±2 °°°°C

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    13/47

    Airflow rate of 17m3/h through a pipe of 60 mm ID at 20oC is measuredusing a square edged orifice (ββββ = 0.4). A pressure drop observed is

    157.85 N/m2 with ±±±± 0.4%. If the area of orifice is maintained within 0.2 %,estimate the design stage uncertainty in the flow rate. Assumeaccuracies of Cd and ρρρρ are ±±±± 0.5%. Estimate the total error in themeasurement for Cd = 0.63 and P = 0.97 bar abs and R= 287 J/kg K.

    For an orifice, Q = CdA(2∆p/ ρ)1/2Solution

    1/ 2

    2 2 2 2( ) ( ) ( ) ( )

    2 2

    d C Q p A

    uu uuu

    Q C A p

     ρ 

     ρ 

    = ± + + +

    ; ; ;2 2d d 

    Q Q Q Q Q Q Q Q

    C C A A p p   ρ ρ 

    ∂ ∂ ∂ ∂= = = = −

    ∂ ∂ ∂ ∆ ∆ ∂

    2   22 2

    ( )d d 

    Q Q Q Q

    Q C A PC A P  ρ  ρ 

      ∂ ∂ ∂ ∂ ∆ = ∆ + ∆ + ∆ ∆ + ∆   ∂ ∂ ∂∆ ∂  

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    14/47

    0.005 ; 0.002

    0.004 ; 0.005

    C    A

    C A

     p

     p

     ρ 

     ρ 

    ∆   ∆= =

    ∆∆ ∆= =

    1/ 2

    2 2 2 2( ) ( ) ( ) ( )2 2

    d C Q p A

    uu uuu

    Q C A p

     ρ 

     ρ 

    = ± + + + ∆

    Total uncertainty

    1/ 22 2 2 2(0.005) (0.002) (0.5 0.005) (0.5 0.004)

    Qu

     X X Q

    = ± + + +

    0.63%Q

    u

    Q

    = ±

    3

    95000

    287 2931.13 /  

    P

     RT 

     X 

    kg m

     ρ 

     ρ 

    =

      ⇒=

    =

    Total Error

    2 32 2 157.850.63 (0.06) 0.03 /  4 1.13d 

    PQ C A m hr  

    π 

     ρ 

    ∆ ×= = × =

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    15/47

    Properties of the Normal or

    Gaussian Function The area under the Gaussian Curve is 1, hence the

    maximum probability is 1. i.e., the probability of any real

    value to lie between -∞∞∞∞ to + ∞∞∞∞ is 1.

    The area lies under [-σσσσ, +σσσσ] is 68%: the change that ameasurement will be out of the given limits is 1 in 3 times

    The area lies under [-2σσσσ, +2σσσσ] is 95.4% ; in every 20measurements, one may fall out of the given limits

    The area lies under [-3σσσσ, +3σσσσ] is 99.7% ; onemeasurement in every 300 measurements may fall outside

    of the limits

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    16/47

    Gaussian function narrows with decreasing σσσσ

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    17/47

    Procedure for expressing experimental uncertainty

    Step 1 : Take sufficient large number of samples x

    Step 2 : Obtain mean xm, and standard deviation σσσσStep 3 : Express measurement as x = xm ±±±± n σσσσ

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    18/47

    Graphical Presentation of Data

    1. Graph usually serves to communicate knowledge from the

    author to the readers .

    2. Graphs plays a vital role in testing the theoretical calculations

    against real experiments results.

    3. There are some situation, where it is very difficult to conduct

    experiments through out the range of parameters. Hence,

    graphs are highly useful to interpolate / extrapolate the

    output in the missed regions ( where the exact details of out

    put is not known).

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    19/47

    General rules for plotting graphs

    1. The graphs should be plotted in such a way that the reader shouldunderstand the conveyed information with out any difficulties.

    2. The axes should have clear labels i.e. name of quantities, units, andtheir symbol if necessary

    3. Axes should be clearly numbered and should have clear tick markswith significant numerical divisions (Sub division also should beclearly mentioned)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0 2 4 6 8 10 12

    Number of cycles

    Absorption temperature = 27°C

    Absorption pressure = 80 bar

    MmNi4.6Al0.4

    ma=0.4 kg

       H  y   d  r  o  g  e  n  s   t  o  r  a  g  e  c  a  p  a  c   i   t  y   (  w   t   %

       )

    Fig.1 Activation characteristics of MmNi4.6Al0.4

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    20/47

    4. Use scientific notation to avoid placing of too many digits on thegraph.

    5. When plotting on log coordinates, use real logarithmic axes. Logscales should have tick marks at powers of 10 .

    6. Choice of the scales in axes should be based on the relativeimportance of the variations shown in the results and the also based

    on the availability of data.

    Fig.2 Effect of delivery pressure on compressor volumetric efficiency

    y = -0.1827x2 + 11.864x - 173.56

    R2 = 1

    0

    5

    10

    15

    20

    25

    0 5 10 15 20 25 30 35 40 45

    Delivery pressure ( bar)

       C  o  m  p  r  e  s  s  o  r  w  o  r   k   (   k

       J   )

    Compressor work

    MmNi4.6Al0.4

    Tc = 20°C, Ps = 10 bar

    ma = 0.4 kg, Th = 85°C

    y = -0.1827x2 + 11.864x - 173.56

    R2 = 1

    8

    10

    12

    14

    16

    18

    20

    28 30 32 34 36 38 40 42

    Delivery pressure ( bar)

       C  o  m  p  r  e  s  s  o  r  w  o  r   k   (   k

       J   )

    Compressor work

    MmNi4.6Al0.4

    Tc = 20°C, Ps = 10 bar

    ma = 0.4 kg, Th = 85°C

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    21/47

    Fig. Stages of compression at supply pressure 15 bar

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    0 50 100 150 200 250 300 350 400 450 500

    Time (s)

       H  y   d  r  o  g  e  n  c  o  m  p  r  e  s  s  e   d   (  g   )

    0.001

    0.01

    0.1

    1

    10

    100

    75°C

    95°C

    85°C

    75°C

    95°C

    85°C

    Hydrogen compressed

    Hyderogen compression rate

    MmNi4.6Al0.4

    Tc = 20°C, Ps=5 bar

    ma = 0.4kg

       H  y   d  r

      o  g  e  n  c  o  m  p  r  e  s  s   i  o  n  r  a   t  e   L

      o  g   (  g   /  m   i  n .   )

    Fig. Stages of compression at supply pressure 15 bar

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    0 50 100 150 200 250 300 350 400 450 500

    Time (s)

       H  y   d  r  o  g

      e  n  c  o  m  p  r  e  s  s  e   d   (  g   )

    0

    1

    2

    3

    4

    5

    6

    7

    8

    75°C

    95°C

    85°C

    75°C

    95°C

    85°C

    Hydrogen compressed

    Hyderogen compression rate

    MmNi4.6Al0.4Tc = 20°C, Ps=5 bar

    ma = 0.4kg

       H  y   d  r  o  g  e  n  c  o

      m  p  r  e  s  s   i  o  n  r  a   t  e   (  g   /  m   i  n .   )

    Use of Logarithmic scale

    same data without Logarithmic

    scale

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    22/47

    7. Use specific symbols for the experimental data points.

    Analytical results are expressed by using straight lines.8. Indicate the maximum uncertainty of the estimated quantity.

    9. When the two different dependent variables are compared

    with a common parameter, a secondary Y axis should be used.10.When several curves are plotted on a single graph, use

    different pattern of line such as solid line, dotted line, dashedline etc. In case of experimental results use different legends

    for differentiating the curves.

    11.Other independent parameters should be specified in thegraphs. Lettering on the graphs should be clearly visible.

    12. Title of the graph should be placed at the bottom and the titlesshould be properly numbered. Choice of the scales in axesshould be based on the relative importance of the variationsshown in the results.

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    23/47

    Fig.20. Effects of hot fluid temperature and supply

    pressure on compressor efficiency

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    70 75 80 85 90 95 100Hot fluid / Heat source temperatures (°C)

       C  o  m  p  r  e  s  s  o  r  e

       f   f   i  c   i  e  n  c  y   (   %   )

    P = 5 Bar

    P = 10 BarP = 15 Bar

    MmNi4.6Al0.4

    Tc = 20°Cma = 0.4 kg

    Experimental valuesNumerical simulation

    s

    s

    s

    Representation of experimental and numerical simulation

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    24/47

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 0.2 0.4 0.6 0.8 1 1.2

    Concentration (H/M)

    =

    =

    =

    =

       E  q  u   i   l   i   b

      r   i  u  m  p  r  e  s  s  u  r  e   (   b  a  r   )

    10°C

    15°C

    20°C

    25°C

    MmNi4.6Fe0.4

    MmNi4.6Al0.4

    Fig.4. PCT characteristics of the two mischmetal based alloys

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    25/47

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0 200 400 600 800 1000 1200 1400 1600

    Time (s)

       H  y   d  r  o  g  e  n  s   t  o  r  a  g  e  p  r  e  s  s  u

      r  e   (   b  a  r   )

    0

    2

    4

    6

    8

    10

    12

    14

    16

       C  o  m  p  r  e  s  s   i  o  n  r  a   t  e   (  g   /  m   i  n   )

    MmNi4.6Al0.4

    U = 1000 W/m2K

    Tc = 20°C

    Ps = 10 bar

    Th = 85°C

    Vs = 3.8 litre

    Fig. Cyclic performance of hydrogen compressor (Storage volume 3.8 l)

    Hydrogen storage pressure

    Compression rate

    Use of secondary Y axis

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    26/47

    Choosing X –Y Coordinates

    Linear - Linear

    Liner – Logarithmic ( Semi log )

    Logarithmic – Logarithmic (Full log)

    Polar coordinates ( Quantities varies with an angle)

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    27/47

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    28/47

    Selection of axis

    Semi log Scale

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    29/47

    2 1   residual

    total

    SS  R

    SS 

    = −

    ( )2

    1

    n

    residual i iiSS E P

    == −∑

    ( )  2

    1totalSS n   σ = − ×

    ( )2

    12

    n

    ii E E 

    n

    σ   =

      −

    = ∑

    σ  = standard deviation

     E i= Experimental value

    Pi= Predicted value

    n = total numberof data

    Correlation coefficient = R and

    Coefficient of determination = R2

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    30/47

    METHOD OF LEAST SQUARESMethod of obtaining the correlation between the quantity to be

    measured (y) and the variable by graphical analysis.

     y ax b= +   ( )  2

    1

     n

    i iiS y ax b

    == − + ∑

    For the best accuracy of fit, S should tend to zero

    Goodness of the fit is revealed by correlation coefficient, r.

    2

    ,

    21

      y x

     y

     rσ σσ σ 

    σ σσ σ 

    = −

    [ ]1/2

    2

    1,   ;

    2

     n

    i ici y x

     y y

     nσ σσ σ    = − =

    − ∑   [ ]

    1/22

    1

    1

     n

    i mi y

     y y

     nσ σσ σ    = − =

    − ∑

     yi are actual values

     yic are computed from correlation equation

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    31/47

    Vertical least squares fitting proceeds by finding the sum of the squares of thevertical deviations of a set of data points . The error E  is defined as

    ( , ) f a b a bx= +

    2 2

    1

    ( , ) [ ( )]n

    i

    i

     E a b y a bx=

    = − +∑

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    32/47

    2

    1

    ( )2 [ ( )] 0

    n

    i i

    i

     E  y a bx

    a   =

    ∂= − − + =

    ∂  ∑

    2

    1

    ( )2 [ ( )] 0

    n

    i i i

    i

     E  y a bx x

    b   =

    ∂= − − + =

    ∂  ∑

    1 1

    n n

    i i

    i i

    na b x y= =

    + =∑ ∑

    2

    1 1 1

    n n n

    i i i i

    i i i

    a x b x x y− = =

    + =∑ ∑ ∑

    11

    2

    1

    1 1

    nn

    iiii

    n nn

    i   i ii

    i i

    n x ya

    b x x   x y

    ==

    =

    = =

      =  

    ∑   ∑

    ∑ ∑   ∑

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    33/47

    1

    11

    2

    1

    1 1

    n

    niiii

    n nn

    i   i ii

    i i

    n x  ya

    b  x x   x y

    ==

    == =

    =   

    ∑   ∑∑ ∑   ∑

    (   )

    2

    1 1 1 1

    22

    1 1 11 1

    1n n n n

    i i i i ii i i i

    n n nn n

    i i i ii i ii ii i

     y x x x ya

    b n x y x yn x x

    = = = =

    = = == =

    − =   −−

    ∑ ∑ ∑ ∑∑ ∑ ∑∑ ∑

    The 2x2 matrix is of the form

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    34/47

    Observation

    1. For a perfect fit  σσσσy,x = 0; here r = 1. There is no variationbetween the estimated values and the values obtained from

    the correlation.

    2. r = 0 indicates a poor fit or the values are widely scattered

    around a straight line. Hence, the value of r should be closer

    to 1 for a good fit.

    3. It is necessary to observe the behavior of the fit and also

    their range of scatter. If the data scatter but still appear to

    follow a liner relationship, then a fit is also said to be poor

    one.

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    35/47

    1  exp n

      Q A

     RT ε σ ε σ ε σ ε σ 

      = −

    1ln ln ln  Q A n

     RT ε σ ε σ ε σ ε σ = + −

    1ln ln lniQ

     E A n  RT ε σ ε σ ε σ ε σ = − + +

    The minimization of the error is carried out by finding the

    partial derivatives of w.r.t   ln(A1 ),   n and   Q/R andsetting them equal to zero, where   N  is the number of  

    observations. Taking the partial derivatives, the following

    equations are obtained

    2

    1

     N 

    ii =∑

    ---------(1)

    Example

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    36/47

    ( )11 1 1 1ln ln ln ln n n n n

    i i i i

    Q A n

     RT σ ε σ ε σ ε σ ε 

    = = = =+ − =∑ ∑ ∑ ∑  

    ( ) ( ) ( )( )2

    11 1 1 1

    lnln ln ln ln ln ln

     n n n n

    i i i i

    Q A n

     RT 

    σ σσ σ σ σ σ ε  σ σ σ ε  σ σ σ ε  σ σ σ ε  = = = =

    + − = ∑ ∑ ∑ ∑  

    ( )1

    21 1 1 1

    lnln   ln n n n ni i i i

     A   n Q

    T T RT T  

    ε εε ε σ σσ σ = = = =

    − − + = −∑ ∑ ∑ ∑ 

    In the matrix form, this can be written in the form

    ( )1 1

    1

    12

    1 1 1 1

    121 1 1

    1ln

    lnln

    lnln (ln ) ln ln

    ln1 ln 1

     N N 

     N i i

    i

     N N N N 

    i i i i

     N  N N N 

    ii i i

     N T   A

     nT 

    Q

     R   T T T T 

    σ σσ σ ε εε ε 

    σ σσ σ σ σ σ ε  σ σ σ ε  σ σ σ ε  σ σ σ ε  

    ε εε ε σ σσ σ 

    = =

    =

    = = = =

    =− = =

    − − =  − −

    ∑ ∑ ∑

    ∑ ∑ ∑ ∑

    ∑∑ ∑ ∑

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    37/47

    the matrix form,

    ( )1 1

    11

    2

    1 1 1 1

    121 1 1

    1

    ln lnln

    lnln (ln ) ln ln

    ln1 ln 1

     N N 

     N i i mi

     N N N N 

     mi i i i

     N   m N N N 

    ii i i

     N  T   A

     nT 

    Q

     R   T T T T 

    σ σσ σ  ε εε ε 

    σ σσ σ σ σ σ ε  σ σ σ ε  σ σ σ ε  σ σ σ ε  

    ε εε ε σ σσ σ 

    = =

    =

    = = = =

    =− = =

    −   − =  − −    

    ∑ ∑ ∑∑ ∑ ∑ ∑

    ∑∑ ∑ ∑

    This is of the form [A][x] = [b]

    where the elements of [A] and [b] are obtained from the experimental

    data. The three unknown parameters , lnA1 , n and Q1 /R of equationare determined by solving

    [ ] [ ] [ ]1

     x A b−

    =

    1   exp n   Q A

     RT ε σ ε σ ε σ ε σ 

      = −

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    38/47

    y = 12.804x - 51.611

    R2 = 1

    0

    50

    100

    150

    200

    250

    0 5 10 15 20 25Milliampere (mA)

    Applied pressure vs milliampere

    Linear (Applied pressure vs milliampere)

     Trendline

       A

      p  p   l   i  e   d   P  r  e  s  s  u

      r  e   (   b  a  r   )

    Range 0-200 bar

    Fig. Calibration of pressure transducer

    20

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    39/47

    y = -0.0457x2 + 2.2782x - 9.35

    R2 = 1

    6

    8

    10

    12

    14

    16

    18

    15 20 25 30 35 40 45

    Delivery pressure ( bar)

       C  o  m  p  r  e  s  s  o  r  w  o  r   k   (   k   J   )

    Compressor work

    MmNi4.6Al0.4

    Tc = 20°C, Ps = 10 bar

    ma = 0.4 kg, Th = 85°C

    y = 41.718e-0.0362x

    R2 = 0.7532

    6

    8

    10

    12

    14

    16

    18

    20

    22

    15 20 25 30 35 40 45

    Delivery pressure ( bar)

       C  o  m  p  r  e  s  s

      o  r  w  o  r   k   (   k   J   )

    Compressor work

    MmNi4.6Al0.4

    Tc = 20°C, Ps = 10 bar

    ma = 0.4 kg, Th = 85°C

    Different

    Patterns of fit

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    40/47

    Different pattern

    of fits

    Reference:

    J.P.Holman

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    41/47

    Different pattern

    of fits

    Reference:J.P.Holman

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    42/47

    General Considerations in Data Analysis

    Elimination of inconsistent data: Analysis the data

    carefully. Try to eliminate the inconsistent data or the error

    data. Suppose the measurement itself consists of many

    inconsistent data, the entire experiments may be repeated.

    Estimate the Uncertainty : Detailed uncertainty analysis

    should be performed before doing the data analysis.

    Anticipate the results from the theory : Before trying toobtain the correlations of the experimental data, investigators

    should carefully review the theoretical background of the

    estimated quantity. This may be useful for determining the

    graphical formats, etc. e.g. First order instrument

    Correlate the data: Critical review of the results.

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    43/47

    Kline & McClintock’ Method, 1953.

    Consider a variable N,

    The total uncertainty (in N), ∆N was defined by root sum squares

    1 2 3( , , ,....., )n N f u u u u=

    22 2

    1 2

    1 2

    ...n

    n

     f f f  N u u u

    u u u

    ∂ ∂ ∂∆ = ∆ + ∆ + + ∆

    ∂ ∂ ∂  

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    44/47

    a. Uncertainties for product functions

    In cases where the result function takes the form of the product

    of respective primary variables raised to exponent expressed as

    1 2 3

    1 2 3

    1 2 3 1

    1 2 3

    ( .......... )

    ( )..........−

    =

    ∂=

    a a a an

    n

    a a a ai an

    i i n

    i

     N f u u u u

     N u u u a u u

    u

    The partial differentiation results

    Dividing by N,1 i

    i i

     N 

     N u u

    ∂=

    ∂Inserting in the equation for  ∆ N 

    1/22

    i i

    i

     a u N 

     N x

    ∆∆ =   ∑

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    45/47

    b. Uncertainties for addition function

    When the result function has an additive form, N will

    be expressed as

    1 1 2 2   . . . . . . . . . .= + + + =

    ∂=

    ∑n n i i

    i

    i

     N a u a u a u a u

     N a

    u

    ( ) ( )

    1/22

    1/22 2.

    ∂ ∆ = ∆ = ∆ ∂

    ∑ ∑i i ii

     N  N u a uu

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    46/47

    Practical use of uncertainty analysis

    1. For revealing the confidence level in the results.

    2. For selection of measurement method

    3. For instrument selection

  • 8/17/2019 Lect- 8-9 Uncertainity Analysis

    47/47

    1. The resistance of a copper wire is given as R = R0[1+α(T-20)].Where Ro = 6Ω ± 0.3% is the resistance at 20°C.

    α = 0.004°C ± 1%, T = 30 ± 1°C.

    Calculate the uncurtaining in the resistance of the wire.

    2. A resistor has an nominal stated value of 10 Ω ± 1%. A voltage isimpressed on the resistor and the power dissipation is to be

    calculated in two different ways. (i) Only voltage is measured (ii)

    both Voltage and current will be measured. Calculate the uncertainty

    in power for each case when the measured values of E and I are

    E = 100V ± 1% (for both case and I= 10A ±1%.

    Sample Problems