5
Lecture 18 In this Lecture we discuss how to use Mathematica in our studies of the expansion (to use in the solu- tion of differential equations) of non-integrable functions. The tool to be used here is the Laplace transform. This is effectively a Fourier transform (and inverse transform) continued into the complex plane, i.e., the path of the underlying integral is parallel to the imaginary axis instead of the real axis. Recall that we apply this transform to functions that are zero for arguments < 0, by assumption. We can start by considering some examples (See Eq. (18.4)) In[6]:= f1@t_D := UnitStep@tD In[7]:= LaplaceTransform@f1@tD, t, pD Out[7]= 1 p Note that Mathematica does not remind us of the constraints on the value of p, e.g., here that Re[p] > 0. Next consider powers In[8]:= f2@t_D := t^nUnitStep@tD In[9]:= LaplaceTransform@f2@tD,t,pD Out[9]= p -1-n Gamma@1 + nD where again we must really require that Re[p] > 0. Now exponentials In[10]:= f3@t_D := Exp@- atD UnitStep@tD In[11]:= LaplaceTransform@f3@tD,t,pD Out[11]= 1 a + p where Re[p+a] > 0 is required to make sense. In[12]:= f4@t_D := Sin@Β tD UnitStep@tD In[13]:= LaplaceTransform@f4@tD,t,pD Out[13]= Β p 2 2 In[14]:= f5@t_D := Cos@Β tD UnitStep@tD In[15]:= LaplaceTransform@f5@tD,t,pD Out[15]= p p 2 2 In[16]:= f6@t_D := Sinh@Γ tD UnitStep@tD

Lec18 228 09 - University of Washingtonstaff.washington.edu/sdellis/Phys2278/Lec18_228_09.pdf · 2014. 3. 3. · Lec18_228_09.nb 3. In[34]:= LaplaceTransform@x''@tD+2 x'@tD+x@tD,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Lecture 18

    In this Lecture we discuss how to use Mathematica in our studies of the expansion (to use in the solu-

    tion of differential equations) of non-integrable functions. The tool to be used here is the Laplace

    transform. This is effectively a Fourier transform (and inverse transform) continued into the complex

    plane, i.e., the path of the underlying integral is parallel to the imaginary axis instead of the real axis.

    Recall that we apply this transform to functions that are zero for arguments < 0, by assumption. We

    can start by considering some examples (See Eq. (18.4))

    In[6]:= f1@t_D := UnitStep@tD

    In[7]:= LaplaceTransform@f1@tD, t, pD

    Out[7]=

    1

    p

    Note that Mathematica does not remind us of the constraints on the value of p, e.g., here that Re[p] > 0.

    Next consider powers

    In[8]:= f2@t_D := t^n UnitStep@tD

    In[9]:= LaplaceTransform@f2@tD, t, pD

    Out[9]= p-1-n

    Gamma@1 + nDwhere again we must really require that Re[p] > 0. Now exponentials

    In[10]:= f3@t_D := Exp@-a tD UnitStep@tD

    In[11]:= LaplaceTransform@f3@tD, t, pD

    Out[11]=

    1

    a + p

    where Re[p+a] > 0 is required to make sense.

    In[12]:= f4@t_D := Sin@Β tD UnitStep@tD

    In[13]:= LaplaceTransform@f4@tD, t, pD

    Out[13]=

    Β

    p2 + Β2

    In[14]:= f5@t_D := Cos@Β tD UnitStep@tD

    In[15]:= LaplaceTransform@f5@tD, t, pD

    Out[15]=

    p

    p2 + Β2

    In[16]:= f6@t_D := Sinh@Γ tD UnitStep@tD

  • In[17]:= LaplaceTransform@f6@tD, t, pD

    Out[17]=

    Γ

    p2 - Γ2

    In[18]:= f7@t_D := Cosh@Γ tD UnitStep@tD

    In[19]:= LaplaceTransform@f7@tD, t, pD

    Out[19]=

    p

    p2 - Γ2

    Then we have the inverse transform (a defined function to use instead of the contour integrals dis-

    cussed in the Lecture)

    In[20]:= InverseLaplaceTransformB1

    p

    , p, tF

    Out[20]= 1

    In[21]:= InverseLaplaceTransformAp-1-n Gamma@1 + nD, p, tEOut[21]= t

    n

    Note that Mathematica does not explicitly return the implied theta function, UnitStep[t], which is explicit

    in the analytic approach.

    In[22]:= InverseLaplaceTransformB1

    a + p, p, tF

    Out[22]= ã-a t

    In[23]:= InverseLaplaceTransformBΒ

    p2 + Β2, p, tF

    Out[23]= Sin@t ΒD

    In[24]:= InverseLaplaceTransformBp

    p2 + Β2, p, tF

    Out[24]= Cos@t ΒD

    In[25]:= InverseLaplaceTransformBΓ

    p2 - Γ2, p, tF

    Out[25]=

    1

    2

    ã-t Γ I-1 + ã2 t ΓM

    Also known as Sinh[Γ t]

    In[26]:= InverseLaplaceTransformBp

    p2 - Γ2, p, tF

    Out[26]=

    1

    2

    ã-t Γ I1 + ã2 t ΓM

    Or Cosh[Γ t].

    2 Lec18_228_09.nb

  • For fun we can also try the inverse transform as the explicit (Bromwich) integral

    In[27]:=

    1

    2 Π äIntegrateB

    p

    p2 - Γ2Exp@p tD, 8p, Γ + 1 - ä ¥, Γ + 1 + ä ¥

  • In[34]:= LaplaceTransform@x''@tD + 2 x'@tD + x@tD, t, pDOut[34]= LaplaceTransform@x@tD, t, pD +

    2 p LaplaceTransform@x@tD, t, pD + p2 LaplaceTransform@x@tD, t, pDThen we can transform the differential equation and solve for the transform of the solution, which we

    identify in the function call

    In[35]:= Solve@LaplaceTransform@x''@tD + 2 x'@tD + x@tD, t, pD LaplaceTransform@t, t, pD,LaplaceTransform@x@tD, t, pDD

    Out[35]= ::LaplaceTransform@x@tD, t, pD ® 1p2 H1 + pL2 >>

    Thus we are back to where we were above and the transform back

    In[36]:= InverseLaplaceTransform@%, p, tD

    Out[36]= 99x@tD ® -2 + 2 ã-t + t + ã-t t==Alternatively we could include the initial conditions inside Solve

    In[37]:= Clear@xD

    In[38]:= Solve@8LaplaceTransform@x''@tD + 2 x'@tD + x@tD, t, pD LaplaceTransform@t, t, pD,x@0D == 0, x'@0D == 0

  • In[40]:= PlotA-2 + 2 ã-t + t + ã-t t, 8t, -1, 10