30
BIOLOGY – 1 ST SEMESTER TYPE OF LAB - MICROSCOPY INTRODUCTION TO MICROSCOPY Lab Format: This lab is a remote lab activity Microscopy. Relationship to Theory: In this lab you will learn the underlying principles that allow a microscope to function and you will learn to operate a microscope. Instructions for Instructors: This protocol is written under an open source CC BY license. You may use the procedure as is or modify as necessary for your class. Be sure to let your students know if they should complete optional exercises in this lab procedure as lab technicians will not know if you want your students to complete optional exercise. Remote Resources: Primary - Microscope, Secondary – introduction to Microscopy slide set. Instructions for Students: Read the complete laboratory procedure before coming to lab. Under the experimental sections, complete all pre-lab materials before logging on to the remote lab, complete data collection sections during your on-line period, and answer questions in analysis sections after your on-line period. Your instructor will let you know if you are required to complete any optional exercises in this lab. Contents Learning Objectives...........................................2 Background Information........................................2 Equipment.....................................................5 Preparing to Use the Remote Web-based Science Lab (RWSL)......5 Introduction to the Remote Equipment and Control Panel........7 Experimental Procedure:.......................................7 Pre-Lab Exercise 1: The Microscope............................7 Exercise 2: Operating a Compound microscope...................8 Creative Commons Attribution 3.0 United States License 1

Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

  • Upload
    dokhue

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

INTRODUCTION TO MICROSCOPY

Lab Format: This lab is a remote lab activity Microscopy.

Relationship to Theory: In this lab you will learn the underlying principles that allow a microscope to function and you will learn to operate a microscope.

Instructions for Instructors: This protocol is written under an open source CC BY license. You may use the procedure as is or modify as necessary for your class. Be sure to let your students know if they should complete optional exercises in this lab procedure as lab technicians will not know if you want your students to complete optional exercise.

Remote Resources: Primary - Microscope, Secondary – introduction to Microscopy slide set.

Instructions for Students: Read the complete laboratory procedure before coming to lab. Under the experimental sections, complete all pre-lab materials before logging on to the remote lab, complete data collection sections during your on-line period, and answer questions in analysis sections after your on-line period. Your instructor will let you know if you are required to complete any optional exercises in this lab.

ContentsLearning Objectives......................................................................................................2Background Information...............................................................................................2Equipment....................................................................................................................5Preparing to Use the Remote Web-based Science Lab (RWSL).................................5Introduction to the Remote Equipment and Control Panel...........................................7Experimental Procedure:..............................................................................................7Pre-Lab Exercise 1: The Microscope............................................................................7Exercise 2: Operating a Compound microscope..........................................................8Pre-Lab Exercise 3: Field of View and Depth of Field of a Compound Microscope. . .11Exercise 3: Field of View and Depth of Field of a Compound Microscope.................11Pre-Lab Exercise 4: Observation of Cells...................................................................12Exercise 4: Observation of Cells.................................................................................12Summary Questions: Introduction to Microscopy.......................................................13Appendix A - Introduction to the RWSL Microscope...................................................15Appendix B – Loading Slides......................................................................................16Appendix C - Microscope Control...............................................................................17Appendix D – Manipulating the Microscope Image....................................................18

Creative Commons Attribution 3.0 United States License 1

Page 2: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

Appendix E – Capturing and Saving a Microscope Image.........................................20Appendix F - Camera Controls...................................................................................22

LEARNING OBJECTIVES

After completing this laboratory experiment, you should be able to do the following things:

1. Identify the parts of a compound microscope and operate it effectively.2. Understand the basic differences between Dissecting, Compound, and Electron

microscopes.3. Demonstrate competency with the focus and operation of a microscope.4. Use a microscope to capture images and turn them into figures.

BACKGROUND INFORMATION

There are few things that have impacted the development of modern biology more than the development of the microscope. Not only did the microscope open up a whole new world of observation, which directly led to the discovery of microorganisms, cells, and some cellular components. The microscope affected the thought process and conduct of biological research. As Sachs wrote in History of Botany “… the use of the magnifying glass brought an advantage with it of a different kind - it taught those who use them to see scientifically and exactly.” (Julius Sachs, 1890) Additionally, 3 Nobel prizes have been awarded for the development of microscopes; the ultramicroscope won the award for Chemistry in 1923, phase contrast microscopy won the award for Physics in 1953, and electron and force microscopes won the award for physics in 1986 (Nobel Organization). Since the microscope is such an important instrument not only for scientific observation but for the development of the field of biology we will spend a little time on the history and development of the instrument.

Humans have had at least a basic understanding of lenses for a long time. The existence of “burning glasses” and “magnifying globs” (hollow glass spheres filled with water) can be traced back almost 2000 years if not more(Singer, 1914). However, it was not until the 1300s, around the time we begin to see lenses used for eye glasses, that magnification started to be used by biologists(Singer, 1914). These earliest devices were single lens microscopes and had limited magnification compared to modern scopes. The pinnacle of this type of microscope was Leeuwenhoek’s discovery of “bacteria” in 1673(Mazzarello, 1999).

During the 1600s we begin to see the creation of the compound microscope, which is a microscope with multiple lenses. The earliest of these microscopes were very similar, if not identical, to telescopes, being simple tubes with two or more lenses. The first practically used compound microscope was invented by the Janssens in 1590(Singer, 1914). The compound microscope provided a much

Creative Commons Attribution 3.0 United States License 2

Page 3: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

higher degree of magnification than the earliest scopes, however at cost in clarity due to chromatic aberration and image distortion at higher magnification. This area of microscope development is most notably remembered for Hook’s detailed analysis published in his Micrographia in 1665(Mazzarello, 1999) this is the work that coined the term “cells.”

The time period starting in the early 1800s to present has been predominantly focused on eliminating distortions and aberrations so that compound microscopes could be pushed to their absolute resolution limit(Singer, 1914). We will return to a discussion of the resolution limit of a compound microscope later. The first optical aberration we will discuss is chromatic aberration. This type of defect is caused because white light is actually composed of many different colors of light. As an example consider a prism. On one side white light goes in and on the other a rainbow comes out (Figure 1). This is because the degree of refraction (the bending of the light) is dependent on the wavelengths of the light, the shorter wavelengths are refracted less than the longer wavelengths. In this case the prism is a basic lens. Therefore in a compound microscope that uses white light, the different wavelengths that compose this light would focus at different points because they are each refracted a different amount. This produces a color blur around objects (chromatic aberration). Over many years this problem was fixed with the development of compound lenses, which are composed of multiple lenses. In this case each of the sub-lenses has a different refractive index. This brings the focal point of the different wavelengths of light back together(Ernst, 1900). These are called achromatic or apochromatic lenses.

The other type of distortion is curvilinear distortion which is the tendency to bend straight lines into curves. An example that you are likely familiar with is the fisheye effects seen in wide angle photography. The reason for the distortion is that light bends as it strikes a lens at a non-perpendicular angle. In order to get the high degree of magnification needed in early compound microscopes, the single lenses that were used had very curved surfaces. This meant that the light at the edge of the lens was bent much more than the light from the center of the lens. To correct this, microscope builders again used compound lenses. In this case, the sub-lenses have different shapes(Ernst, 1900). The different shapes will affect the bending of the light rays so that the light rays are brought back perpendicular to each other. Since the shape of a lens changes its effect on light, multiple lenses can be used to shape light in many different ways; Figure 2 shows the effect of different lenses on light rays.

Creative Commons Attribution 3.0 United States License 3

Page 4: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

Over the last several decades the development of modern microscopes has begun to be focused on the resolution limit. The resolution of a microscope is defined as the ability of the observer (person or camera) to distinguish between two objects that are close together. In 1873 Ernst Abbe showed that the theoretical resolution limit of a diffraction microscope was half the wavelength of the light being used(Lipson, 2011). Therefore the resolution limit of an optical microscope is about 190 – 350 nm (the human eye responds to light with wavelengths of 390 – 700 nm). To get better resolution than is possible with a compound microscope, scientist started using electron beams with scanning and tunneling electron microscopes that have wavelengths 100,000 times smaller than visible light(Scherzer, 1949). Recently, work using lasers and quantum mechanics has begun to develop microscopes that “break” the resolution limit of optical microscopes, however, we will not discuss these types of microscopes further in this protocol.

Since the resolving power of a microscope also indicates how much magnification you theoretically have, the type of microscope you use depends on the type of observations you are conducting. We will now briefly cover the other types of microscopes you should be familiar with. In addition to the compound microscope, you should be familiar with the dissecting microscope and electron microscopes.

Of the three types of microscope, the dissecting microscope has the lowest magnification. The magnification range of a dissecting microscope is 10x to 40x. It provides a view of a fairly large sample for the purposes of detailed examination and/or dissection. Typical subjects might be small animals, whole flowers, or organ parts. Dissecting microscopes are used to magnify specimens of sizes 10 m to 0.1 m. If a dissecting microscope has two ocular lenses on separate body tubes, it is aμ stereoscope dissecting microscope. The dissecting microscope uses visible light which is brought in from the side of the sample.

The compound light microscope has a magnification range that place it between the dissecting microscope and the electron microscopes. The magnification range is 40x to 2000x. Typical subjects might be cells, large cellular organelles, and bacteria. Compound microscopes are used to magnify specimens of sizes 200 nm to 5 mm. The compound microscope uses visible light which is brought in from below the sample. Since the light must shine through the specimens, it must be small or thinly sliced to obtain a good image. Since you will be using this type microscope exclusively in this lab we will also discuss the components and parts of this microscope. In a modern compound microscope there are three main optical components (Figure 3). They are the condenser (Figure 3a), objective (Figure 3b) and the eye piece (Figure 3c). The condenser focuses the light from the light source onto the underside of the sample. The objective

Creative Commons Attribution 3.0 United States License 4

Page 5: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

contains a complex series of lenses that correct chromatic aberration and image distortion. The objective also gives part of the microscope’s total magnification. The objectives are mounted into a wheel that allows the user to select which objective they wish to use. The length of the objective is often related to its magnification with longer objectives having higher magnifications. One of the reasons that the objectives are different lengths is so that the microscope will be par-focal at all magnifications, which means that the object that is in focus at 10X will also be in focus at 20X, 40X, 60X etc. The eye piece gives the final part of the magnification such that the total magnification of a microscope is determined by multiplying the objective by the eye piece. As an example if you’re using a 10X eyepiece and 20X objective your total magnification will be 10 x 20 = 200X.

The electron microscopes have the highest effective magnification of the microscopes we are discussing. Electron microscopes come in two types The scanning electron microscope (SEM) and the transmission electron microscope (TEM) each type employs electron bombardment to image very small specimens. In the SEM the electrons pass through a three dimensional specimen and are “read” using a detection device. A computer reconstructs the specimen image from the information gathered by the scanning process. The magnification range of an SEM can reach 200,000X, and provide great detail. With the TEM you can allows internal investigations the internal structure of prepared specimens. The TEM has a higher magnification range than the SEM, up to 50,000,000X. Electron microscopes are used to image samples that range from 1 nm to 100 m in size.μ References:Ernst, H.C. (1900). THE DEVELOPMENT OF THE MICROSCOPE. J. Boston Soc. Med. Sci. 4, 148–152.1.Julius Sachs, I.B.B. (1890). History of Botany (1530-1860) (Clarendon press).Lipson, A. (2011). Optical physics (Cambridge ; New York: Cambridge University Press).Mazzarello, P. (1999). A unifying concept: the history of cell theory. Nat. Cell Biol. 1, E13–E15.Organization, N.P. Microscopes: Time Line.Scherzer, O. (1949). The Theoretical Resolution Limit of the Electron Microscope. J. Appl. Phys. 20, 20–29.Singer, C. (1914). Notes on the Early History of Microscopy. Proc. R. Soc. Med. 7, 247–279.

EQUIPMENT Paper Pencil/pen Slides

o Letter ”e”, Whole Mounto Colored Threads, Whole Mounto Stage Micrometero Elodea Leaf, Whole Mounto Hydra, Longitudinal Sectiono Mixed Protozoa, Whole Mount

Computer with Internet access (for the remote laboratory and for data analysis)

PREPARING TO USE THE REMOTE WEB-BASED SCIENCE LAB (RWSL)

Creative Commons Attribution 3.0 United States License 5

Page 6: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

Click on this link to access the Install guide for the RWSL: http://denverlabinfo.nanslo.org

Follow all the directions on this webpage to get your computer ready for connecting to the remote lab.

Creative Commons Attribution 3.0 United States License 6

Page 7: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

INTRODUCTION TO THE REMOTE EQUIPMENT AND CONTROL PANEL

Watch this short tutorial video to see how to use the RWSL control panel: http://denverlabinfo.nanslo.org/video/microscope.html For a more in-depth description of all the functions of the control panel:https://www.youtube.com/watch?v=yW_HtlJONoI

There are appendices at the end of this document that you can refer to during your lab if you need to remind yourself how to accomplish some of the tasks using the RWSL control panel.

EXPERIMENTAL PROCEDURE:

Once you have logged on to the microscope you will perform the following Laboratory procedures:

PRE-LAB EXERCISE 1: THE MICROSCOPE

There are many types of microscopes available for biologist to use in this day and age. The functionality of these microscopes is dependent on many factors. Which type of microscope you use is dependent on the particular task you are trying to accomplish.

Pre-lab Questions:

1. One of the most common types of microscope in use today is the compound light microscope. What property of this microscope’s construction gives it the name “compound microscope”?

2. Complete the following table of magnificationsObjective 10X Eye Piece 20X Eye Piece Total Magnification4X10X20X40X60X

Use the microscope types in the following list to answer the following questions. The names may be used more than once.

Dissection MicroscopeCompound Microscope

Scanning Electron microscopeTransmission Electron Microscope

3. The _________________ microscope has the highest magnification.

Creative Commons Attribution 3.0 United States License 7

Page 8: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

4. The _________________ microscope is used to examine a whole organ.5. The _________________ microscope has two or more sets of lenses.6. The _________________ microscope uses light from the side to illuminate its sample.7. The _________________ microscope can generate magnifications of 200,000X.8. The _________________ microscope used to look at whole cells or large cellular organelles.

9. Label the parts on the following diagram of a compound microscope.

10. You are trying to build a light microscope with the best resolution possible. To do this your light source is going to be a single wavelength of visible light. You have single wavelength light-emitting diodes in Infrared, Red, Orange, Green, Blue, and Violet. Which one will you use as your light source and why?

EXERCISE 2: OPERATING A COMPOUND MICROSCOPE

In this exercise you will learn how to operate a compound light microscope. When the exercise is over you will understand how to position a sample, focus the microscope, and change the magnification.

Data Collection:

1. Select the letter e slide from the microscope interface.2. Place the letter e in the center of the field of view and Focus on it with the 10X objective.

First, we are going to examine the effects of magnification.3. In the space below is a diagram of the slide as it is currently loaded on the microscope

(Figure 4 a). In box (Figure 4 b) draw the letter e as you see it in the microscope.

Creative Commons Attribution 3.0 United States License 8

Page 9: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

4. What are the differences between the observed letter e and the letter e mounted on the microscope? (hint there are two differences)

5. Change to the 20X objective and capture an image of the letter e. Paste that image below.6. Change to the 60X objective and capture an image of the letter e. Paste that image below.

Second, we are going to examine microscope movement.7. Change back to 10X objective.8. Now using the microscope controls, click on the top button which moves the stage in

(towards the body of the microscope) so that the e moves slightly. How does the e move with respect to the direction the stage moves?

9. This time, press the left stage control button this will move the stage to the left (towards the slide loader) so that the e moves slightly. How does the e move with respect to the direction the stage moves?

Analysis:

10. Describe the difference in your observations of the black lines that make up the letter e using the 20X and 60X objectives.

11. In the three diagrams below assume that each dashed line represents the distance the stage will move with each click of the control buttons. Using the sequence of buttons draw where the e will be after the button clicks.

Creative Commons Attribution 3.0 United States License 9

Page 10: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

Creative Commons Attribution 3.0 United States License 10

Page 11: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

PRE-LAB EXERCISE 3: FIELD OF VIEW AND DEPTH OF FIELD OF A COMPOUND MICROSCOPE

When you are examining a sample under the microscope you need to know both how much of the sample and what part of it you are viewing. We determine how much of the sample we are viewing based on the amount visible to the ocular or the camera, this area is called the field of view. The field of view is a plane parallel to the slide and can be easily quantified using a ruler. While you are viewing a sample the part you see is the part of the sample that is in the focal point. There may be parts of the sample either above or below the focal point that you cannot see. The distance that is in focal point is called the depth of field. The depth of field is perpendicular to the field of view. However depth of field is much harder to measure then field of view and we will only be dealing with depth of field qualitatively in this lab. Both field of view and depth of field are related to and affected by the magnification of the objectives. In this section you will explore the relationship between the objective magnification and the field of view and depth of field.

Pre-lab Questions

1. How do you think the depth of field and field of view will change as magnification increases.

Scientist utilize a specific methodology when conducting experiments, this process is called the scientific method. Vary simple in the scientific method you ask a question, make a prediction, test that prediction, and then revise your prediction if necessary. Your answer to question one in this exercise is a prediction and the reaming parts of this exercise will allow you to test and revise your prediction. However, scientists craft their predictions in a specific form called a hypothesis. In order for a hypothesis to a scientific hypothesis it must be both logically valid and testable. One way to write a hypothesis is to use an If … Then … statement, an example of which would be If the field of view decreases in diameter Then the depth of field will increase in size. Using this information complete the next pre-lab question.

2. Rewrite you your answer to the previous question into an If … Then … hypothesis.

EXERCISE 3: FIELD OF VIEW AND DEPTH OF FIELD OF A COMPOUND MICROSCOPE

Data Collection:

First, we are going to examine the depth of field.3. Select the Overlapping Threads slide from the microscope interface.4. Examine the slide with the 10X objective and describe what you see.5. How many of the threads can you get in focus using the 10X objective? Which of the threads

is on top, in the middle, and on the bottom? Capture and image and, using your word processor, label the top middle and bottom thread. Paste it below

6. Change to the 20X objective, how many of the threads can you get in focus simultaneously?7. Change to the 40X objective, how many of the threads can you get in focus simultaneously?8. Change to the 60X objective, how many of the threads can you get in focus simultaneously?

Capture and image and paste it below.

Creative Commons Attribution 3.0 United States License 11

Page 12: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

Second we will examine the field of view.9. Select the Stage Micrometer slide from the microscope interface. A stage micrometer is a

microscope slide that has a small ruler drawn on it. In this case the ruler is 1mm in total length with 100 divisions.

10. What is the length of one division on the stage micrometer?11. Next you are going to measure the diameter of the field of view for each of the 5 objectives

the microscope has. Create a table to record the diameter of the field of view for each of the objectives.

12. Select each objective in turn and measure the diameter across the middle of the visible space, each group member should collect a set of data. Paste your table with all the groups data below.

Analysis:

13. What happens to the depth of field as the magnification increases? 14. Take the table you created in question 11 and add two columns to it. In the first column

average the diameter measurements for all your groups’ data. In the second column convert the mm lengths into µm lengths.

15. What happens to the field of view as the magnification increases?16. Refer back to the If … Then … hypothesis you created in Pre-Lab Exercise 3, question 2. Was

your prediction correct? Explain why or why not.17. Rewrite your hypothesis in light of the information you learned performing this experiment.

PRE-LAB EXERCISE 4: OBSERVATION OF CELLS

In the next exercise we will look at actual biological samples. The slides we will use are: Elodea Leaf, Hydra, and Mixed Protozoa. We will use these samples to make observations using the microscope and examine the differences between different types of cells.

Pre-lab Questions:

1. Do you expect to see any differences between the cells in the Elodea Leaf and the Hydra? What differences do you expect to see?

2. Rewrite your answer to question 1 in the format of an If … Than … hypothesis.3. Do you think the Protozoa will be more like plants or animals? Why?4. Rewrite your answer to question 3 in the format of an If … Than … hypothesis

EXERCISE 4: OBSERVATION OF CELLS Data Collection:

5. Select the Elodea Leaf from the microscope interface.6. Center and focus the sample in the field of view. Change to the 40X or 60X objective.

Capture an image of the leaf cells. Paste the image below.

Creative Commons Attribution 3.0 United States License 12

Page 13: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

In the previous exercise we determined the diameter of your field of view. We will use this information to determine the size of the Elodea cells.

7. Change your objective to 40x and select an area on the slide so that the leaf cells completely fill the field of view. Create a table to record your data.

8. Position the slide so that the bottom edge of a cell is at the bottom edge of your field of view. Count how many cells are present in the cell column to reach the top edge of your field of view.

9. Repeat step 8 three more times with different columns of cells. Paste your table below.

10. Select the Hydra slide from the microscope interface.11. Center and focus the sample in the field of view. Change to the 40X or 60X objectives.

Capture an image of the Hydra cells. Paste the image below.12. Select the Mixed Protozoa slide from the microscope interface.13. Find some protozoa on the slide. Center and focus the sample in the field of view. Change to

the 40X or 60X objective. Capture an image of the protozoa. Paste the image below.

Analysis:

14. Using your word processor and the image you captured in step 6, label all the structures you can identify in a leaf cell (examples: nucleus, cell membrane, cytoplasm, cell wall etc.). Paste the image below.

15. Next we are going to determine the size of the leaf cells. Start by averaging the number of cells it takes to fill your field of view from top to bottom. Insert that number below.

16. Next divide the diameter of your field of view by the average number of cells. This will give you the size of your cell. Insert that number below (make sure to include your units).

17. Using your word processor and the image you captured in step 11, label all the structures you can identify in a Hydra cell (examples: nucleus, cell membrane, cytoplasm, cell wall etc.). Paste the image below.

18. Did you identify any differences between plant and animal cells? How do these differences compare to your hypothesis?

19. Using your word processor and the image you captured in step 13 label all the structures you can identify in a protozoa cell (examples, nucleus, cell membrane, cytoplasm, cell wall etc.). Past the image below.

20. Based on your observation about the protozoa, are protozoa cells more like plants or animal cells? Explain.

Until fairly recently all organisms were classified into one of the five kingdoms of life (Monera, Fungi, Protista, Plantae, and Animalia). This classification system was based on physical appearance and in some cases physiology. More recent studies using DNA sequence comparison has shown that all living organisms belong to three Domains of life Bactria, Archaea, and Eukaryota. In this system the it was realized that Plants, animals, and Protista all belong to the Eukaryota domain.

21. In light of the idea that Plants, animals, and Protista are all separate groups of the Eukaryota domain does your observations about the protistas make more sense? Why?

Creative Commons Attribution 3.0 United States License 13

Page 14: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

SUMMARY QUESTIONS: INTRODUCTION TO MICROSCOPY

1. You are looking at a sample at 10X when you increase the magnification to 40X the sample is no longer in the field of view. Why might this happen and how would you correct it?

2. If the compound microscope is par-focal explain why sometimes when you go from the 10X or 20X object to the 60X object is the sample not in focus.

3. If an electron microscope has the highest resolution and magnification why do we still use dissecting and compound microscopes?

4. Why does an electron microscope have a higher magnification and resolution than a compound light microscope?

5. Given the following slide draw how the sample would appear while looking through the microscope.

6. It is important to understand how light moves through a microscope. Complete the diagrams in figure 7 to show the light path, in figure 7a draw the mirror that is needed to direct light to the ocular instead of the camera. In figure 7b draw the path that the light takes to reach the ocular. In figure 7c draw the path the light takes to reach the camera.

Creative Commons Attribution 3.0 United States License 14

Page 15: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

Creative Commons Attribution 3.0 United States License 15

Page 16: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

APPENDIX A - INTRODUCTION TO THE RWSL MICROSCOPE

The RWSL microscope is a high-quality digital microscope located in the remote lab facility. You will be controlling it using a control panel that is designed to give you complete control over every function of the microscope, just as if you were sitting in front of it.

You must call into a voice conference to communicate with your lab partners and with the Lab Technicians. This is very important because only one person can be in control of the equipment at any one time, so you will need to coordinate and collaborate with your lab partners.

You take control of the equipment by right-clicking anywhere on the screen and selecting Request Control. You release control by right-clicking too.

Creative Commons Attribution 3.0 United States License 16

Page 17: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

APPENDIX B – LOADING SLIDES

Clicking on the Slide Loader tab at the top of the screen will display the controls for the Slide Loader robot. There can be up to four cassettes available on the Slide Loader, and each cassette can hold up to 50 slides. There will be a drop-down list for each cassette that is available. In the above example, only cassette #1 is available on the Slide Loader. You can click on it to select a specific slide to be loaded, as in the image below:

Once you select the slide you want to load on the microscope, click the Load button to the right of the drop-down list. You will see a message telling you that the slide is loading. You can also watch this happening using the picture-in-picture (PIP) camera (see Appendix F - Camera Controls).

Notice that when a slide is actually on the microscope (or when it is being loaded or unloaded), the cassette controls will be

grayed out so you cannot load a second slide until the first is removed.

Once the slide is on the microscope, it will be listed in the “Current Slide on Stage” box,

Creative Commons Attribution 3.0 United States License 17

Page 18: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

and the only thing that the Slide Loader robot can do is return it to the cassette when you click the “Return Slide to Cassette” button.

To move the slide around while it is on the microscope stage, you must return to the Microscope tab to see those controls.

APPENDIX C - MICROSCOPE CONTROL

The microscope stage controls are boxed in red in the above image. The allow you to move the microscope stage (which holds the specimen slide) left, right, forward or backward. You can also focus by moving the stage up and down.

Creative Commons Attribution 3.0 United States License 18

Page 19: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

You can change the objective, which gives you increased or decreased magnification, by clicking the buttons under Objective Selection.

The Condenser control controls whether or not the Condenser lens is in the light beam. You want to have the condenser OUT for the 4x objective, but IN for all the others.

APPENDIX D – MANIPULATING THE MICROSCOPE IMAGE

You can manipulate the microscope image by using the controls in the red boxed area above. The White Balance should be used only if the image appears to be brown or gray and you think you might need to adjust it (although it won’t hurt anything to click this button).

The Normal, Negative, etc, control buttons in this area are used to display the image slightly differently in order to highlight certain features. Here is some information from the Nikon website (http://www.microscopyu.com/articles/digitalimaging/digitalsight/correctingimages.html) about these settings and when they might be used:

Normal: In this mode, the image is displayed in the natural color scheme that is observed in the microscope eyepieces (Figure 3). For the majority of images captured with the Digital Sight system, the normal color output is the most effective mode for accurate and effective reproduction of all specimen details.

Creative Commons Attribution 3.0 United States License 19

Page 20: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPYNegative: The  Negative effect displays a brightness- and color-inverted form of the image, where red, green, and blue values are converted into their complementary colors (Figure 4). The technique is useful with specimens for which color inversion can be of benefit in exposing subtle details, or in quantitative analysis of specimens.Blue Black: This mode represents the black portions of the Negative image in blue, and is often useful to reveal details in specimens having a high degree of contrast. As a special effect, the Blue Black mode can be beneficial as a presentation tool.Black & White: This mode displays a grayscale form of the image (Figure 6). It can be effectively used for monochromatic images such as those acquired with differential interference contrast or phase contrast techniques. In many cases, digital images destined for publication in scientific journals must first be converted into black & white renditions of those captured in full color. The B & W filter can often aid the microscopist in preparing images for publication or oral presentation.Sepia: This effect is essentially a monochrome image version displayed in sepia (brownish) tones instead of grayscale (Figure 7). The Sepia mode is more likely to be utilized in general photographic applications than in microscopy, although the effect may enhance the visibility of specimen detail in certain instances.

Auto Exposure is normally turned on, but you can turn it off if you want to play around with the brightness of the light source and not have the microscope camera automatically adjust, though it’s usually best to leave it turned on.

If you turn off the Auto Exposure, then some new controls appear that let you turn the LED off or on, and also adjust the intensity of the light source. The intensity of the light source can be increased or decreased manually with the dial that now appears next to the Objective control.

Creative Commons Attribution 3.0 United States License 20

Page 21: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

APPENDIX E – CAPTURING AND SAVING A MICROSCOPE IMAGE

You can capture a high-resolution image of what is currently in the field of view of the objective by clicking the Capture Image button, which will turn bright green while it is capturing the image. When the Capture Image light turns off, the image has been successfully captured. After the image is captured, click View Captured Image to see the high-resolution image (below).

After opening this image, right click on it and select “Copy”. Then paste it into a document so you can use it later in your lab report. This is illustrated below.

Creative Commons Attribution 3.0 United States License 21

1

2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Page 22: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

After right-clicking and selecting Copy, just open a document and right-click and select Paste. You can either paste it directly into your lab report document or into another one for safe-keeping until you use it later.

You can use drawing tools in your editor to annotate this image so you can show your instructor that you knew what you were supposed to be looking for!

Creative Commons Attribution 3.0 United States License 22

Page 23: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

APPENDIX F - CAMERA CONTROLS

Clicking the Picture-in-Picture button will open a window that shows the view from a camera placed directly in front of the microscope. The arrow buttons allow you to swivel the camera around so you can see whatever you want to look at in the lab. The Camera Preset Position buttons are programmed to show you particular portions of the apparatus. If you hover the mouse over them, a box will pop up that lists what each position will show you (see below).

Creative Commons Attribution 3.0 United States License 23

Page 24: Learning Objectives - CDLteachingcommons.cdl.edu/virtuallabs/_media/document…  · Web viewWatch this short tutorial video to see how to use the RWSL control panel: ... In box (Figure

BIOLOGY – 1ST SEMESTER

TYPE OF LAB - MICROSCOPY

Creative Commons Attribution 3.0 United States License 24