39
Lawrence Livermore National Laboratory LLNL-PRES-582253 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development Daniel Flowers (PI), William Pitz (PI), Matthew McNenly (PI), Salvador Aceves, Mark Havstad, Nick Killingsworth, Marco Mehl, Thomas Piggott, Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012

Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

Lawrence Livermore National Laboratory

LLNL-PRES-582253

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development

Daniel Flowers (PI), William Pitz (PI), Matthew McNenly (PI), Salvador

Aceves, Mark Havstad, Nick Killingsworth, Marco Mehl, Thomas Piggott, Mani Sarathy, Charlie Westbrook, Russell Whitesides

DEER 2012

Page 2: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

2 Lawrence Livermore National Laboratory LLNL-PRES-582253

Acknowledgements

U.S. DOE, Office of Vehicle Technologies Program Team Leader: Gurpreet Singh

Page 3: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

3 Lawrence Livermore National Laboratory LLNL-PRES-582253

LLNL combustion program encompasses a range of activities in simulations and experiments

Detailed chemical kinetics mechanism development (Pitz)

Advanced numerics for detailed chemical kinetics (McNenly)

Large scale engine simulation with CFD and detailed chemical kinetics (Flowers)

Detailed speciation using GC/MS (Davisson) and C14 analysis (Buchholz)

0.08 0.12 0.16 0.20 0.24 0.280

20

40

60

80

100

Measured Calculated

ISO

-OCT

ANE,

g/k

gFue

lic8

h18

Equivalence Ratio

Page 4: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

4 Lawrence Livermore National Laboratory LLNL-PRES-582253

Development of chemical kinetic model for larger aromatics

Determined effect of branching for alkanes on ignition under engine conditions

Validated approach and mechanism for gasoline surrogate fuels

RCM

Shock tube

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0.7 1.2

Igni

tion

Del

ay T

ime

(s)

1000/T (1/K)

Octane isomers phi=1, 20 atm, in air

2mhp

nc8

3mhp

0.1

1

10

100

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Current WorkRCM SimulationGauthier et al. (2004)Constant Volume Simulation

Tota

l Ign

ition

Del

ay (m

s)

1000/TC (K-1)

(b) φ=1.0, PC=40 bar

Developing reduced chemical kinetic model for diesel for engine combustion network (ECN)

0

200

400

600

800

1000

1200

550 600 650 700 750 800 850

Temperature [K]

CO

[ppm

]

Flow Reactor Data8 bar

Ф = 0.23(23% m-xylene /

77% n-dodecane)

We continue to develop and validate chemical reaction mechanisms for gasoline and Diesel components

Page 5: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

5 Lawrence Livermore National Laboratory LLNL-PRES-582253

Surrogates are chemical reaction mechanisms that contain classes of compounds representative of Diesel or Gasoline combustion

n-alkanes

branched alkanes

cycloalkanes

aromatics

Example diesel fuel palette:

Recent Mechanisms: • 4-component gas surrogate • m-xylene/n-dodecane • n-propylbenzene/n-heptane • 2-methylalkanes (up to C20) • 3-methylalkanes (up to C20)

Current Development: • α-methylnaphthalene • methylcyclohexane • di-methylalkanes

Thousands of species Tens of thousands of reactions

Page 6: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

6 Lawrence Livermore National Laboratory LLNL-PRES-582253

Jet Stirred Reactors

• Idealized chemical reactors with/without simplified transport phenomenon

Non Premixed Flames

Premixed Laminar Flames

Engine Combustion

Combustion Parameters

Temperature

Pressure

Mixture fraction (air-fuel ratio)

Mixing of fuel and air

Mechanism development is tied closely to validation with a wide range of experiments

Shock tube

Electric ResistanceHeater

Evaporator

Fuel Inlet

Slide Table

Oxidizer Injector

Optical Access Ports

Sample ProbeWall Heaters

High pressure flow reactors

Rapid Compression Machine

Page 7: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

7 Lawrence Livermore National Laboratory LLNL-PRES-582253

Modeling of 3-methylheptane Ignition

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0.7 0.9 1.1 1.3 1.5

Igni

tion

Del

ay T

ime

(s)

1000/T (1/K)

3-methylheptane 20 atm, in air

3mhp phi=0.53mhp3mhp phi=1.03mhp3mhp phi=23mhp

Model is generally within a factor of 1.5-2 of the experimental data.

Model slightly faster than shock tube data in the NTC region

φ=0.5 φ=1

φ=2

Shock tube

W. Wang, Li, Oehlschlaeger, Healy, Curran, Sarathy, Mehl, Pitz, Westbrook, Proc. Combust. Inst. (2012).

Page 8: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

8 Lawrence Livermore National Laboratory LLNL-PRES-582253

Modeling the effect of branching on ignition

-19.0

21.7

36.8

RON

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0.7 0.9 1.1 1.3 1.5

Igni

tion

Del

ay T

ime

(s)

1000/T (1/K)

Octane isomers phi=1, 20 atm, in air

2mhp

nc8

3mhp

iso-octane

100

iso-octane

3-methylheptane

n-octane

2-methylheptane

Shock tube

W. Wang, Li, Oehlschlaeger, Healy, Curran, Sarathy, Mehl, Pitz, Westbrook, Proc. Combust. Inst. (2012).

Page 9: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

9 Lawrence Livermore National Laboratory LLNL-PRES-582253

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

1.4E-03

500 700 900 1100

Mol

e Fr

actio

n

Temperature (K)

JSR 3-Methylheptane Results

Good prediction of low T and high T reactivity

Fuel

C2H4

H2

φ = 1 10 atm

Dagaut et al. CNRS (2010)

Experiments performed at CNRS, Orleans (F. Karzenty, C. Togbe G. Dayma, P. Dagaut)

Lines: LLNL model

Curves: CNRS experiments

τ = 0.7 sec

Page 10: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

10 Lawrence Livermore National Laboratory LLNL-PRES-582253

Larger aromatics: Shock tube ignition of n-butyl benzene at high pressure

n-butylbenzene

Experiments: Tobin,Yasunaga and Curran, NUIG, Ireland (Combust. Flame 2011)

1E-05

0.0001

0.001

0.01

0.6 0.7 0.8 0.9 1.0 1.1

Igni

tion

dela

y tim

e [m

s]

1000 K / T

1 atm 10 atm

30 atm

φ=0.5

Curves: NUIG-LLNL model

Symbols: NUIG experiments

Shock tube

Page 11: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

11 Lawrence Livermore National Laboratory LLNL-PRES-582253

Mechanisms are available on LLNL website and by email

http://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion

Page 12: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

12 Lawrence Livermore National Laboratory LLNL-PRES-582253

Challenge: new HECC modes require computationally expensive models fully coupling detailed kinetics with CFD

Detailed Chemistry Mechanisms for large fuel molecules contain +7000 species (e.g. LLNL 2-methyl and 3-methyl-alkane mechanisms)

3D Fluid dynamics 1M – 10 M fluid cells for well-resolved engineering mixing and turbulence model (Enaux et al.)

+

= 300,000 Pflop/s (chem-only), roughly a decade on current 12-core workstations = Not available

for design

Page 13: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

13 Lawrence Livermore National Laboratory LLNL-PRES-582253

Approach: Collaborate with industry, academia and national labs in the development of analysis tools leading to clean, efficient engines

Gain fundamental and practical insight into High Efficiency Clean Combustion regimes through numerical simulations and experiments

Develop and apply numerical tools to simulate HECC by combining

multidimensional fluid mechanics with chemical kinetics

Reduce computational expense for HECC simulations

Democratize simulation: bring chemical kinetics-fluid mechanics computational tools to the desktop PC

Page 14: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

14 Lawrence Livermore National Laboratory LLNL-PRES-582253

For combustion chemistry, implicit solvers allow for much larger time steps to resolve ignition

Explicit: directly solve differential equations (easy but many steps)

Implicit: Invert a matrix (hard but fewer steps)

=

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

N

NNN

N

N

xf

xf

xf

xf

xf

xf

xf

xf

xf

J

21

2

2

2

1

2

1

2

1

1

1

During ignition: ∆t (explicit) = 10-12 to 10-15 seconds ∆t (implicit) = 10-6 to 10-8 seconds

Explicit timestep

Spe

cies

co

mpo

sitio

n

Time

Implicit timestep

).,,,(

),,,(

),,,(

1

122

111

NNN

N

N

xxtft

x

xxtft

x

xxtftx

=∂

=∂

=∂∂

Page 15: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

15 Lawrence Livermore National Laboratory LLNL-PRES-582253

Opportunities for 1000x speedup in computational chemistry cost through applied mathematics

Multi-zone ODE

system

Eigen-structure Analysis

Mode Splitting

Pre-conditioners

Sparse Solvers

Jacobian Reuse

Adaptive Sampling

Perturbation methods

Page 16: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

16 Lawrence Livermore National Laboratory LLNL-PRES-582253

Using the default stiff-ODE integrator options for large mechanisms is computationally expensive even for single cell (WSR) ignition

hydrogen 10 species 42 steps

propane 53 species 634 steps

n-hexadecane 2115 species 13868 steps iso-octane

874 species 6934 steps 2-methylnonadecane

7172 species 52980 steps

methyl decanoate 2878 species 16831 steps

Page 17: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

17 Lawrence Livermore National Laboratory LLNL-PRES-582253

We have developed solvers that reduce chemistry simulation time by orders of magnitude

Commercial solver (7 min)

LLNL Adaptively Preconditioned Solver (30 sec)

Standard method (>1 day)

Page 18: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

18 Lawrence Livermore National Laboratory LLNL-PRES-582253

The LLNL CFD/multi-zone solves flow in XYZ space and chemistry in temperature-chemistry space

Chemistry can be solved with 100s of reactors, independent of the CFD resolution

Page 19: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

19 Lawrence Livermore National Laboratory LLNL-PRES-582253

The Combustion Simulation Group combines detailed kinetics, CFD, and solvers for engine simulation

5.88 mm(0.2314 in)

5.23 mm(0.206 in)

9.01 mm(0.355 in)

0.305 mm(0.0120 in)

102 mm(4.02 in)

Experiments by partners (e.g. Sandia, Oak Ridge)

Kinetics from LLNL (Pitz) and others

Kinetics Solvers from LLNL (McNenly)

Engine CFD (Converge, OpenFOAM)

Multizone from LLNL (Flowers)

Page 20: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

20 Lawrence Livermore National Laboratory LLNL-PRES-582253

This work is further enabled by LLNL large-scale computing resources (multiple TFLOPs available to us)

5.88 mm(0.2314 in)

5.23 mm(0.206 in)

9.01 mm(0.355 in)

0.305 mm(0.0120 in)

102 mm(4.02 in)

Experiments by partners (e.g. Sandia, Oak Ridge)

Kinetics from LLNL (Pitz) and others

Kinetics Solvers from LLNL (McNenly)

Engine CFD (Converge, OpenFOAM)

Multizone from LLNL (Flowers)

Page 21: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

21 Lawrence Livermore National Laboratory LLNL-PRES-582253

Converge is widely used in industry for engine simulation

Convergent Sciences Inc. licensed LLNL multi-zone model for their CONVERGE engine CFD simulation software

every cell multi-zone (map 1) multi-zone (map 2)

In-cylinder pressure predicted by CONVERGE for every-cell and multi-zone model

Bore x stroke (mm) 137.2 x 165.1 Compression ratio 16:1 Engine speed (rev/min) 1600

Start of injection (oATDC) -9

Temperature at IVC (K) 355

Pressure at IVC (bar) 2 EGR (% by mass) 0%

SCOTE Direct Injection Test Case

Page 22: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

22 Lawrence Livermore National Laboratory LLNL-PRES-582253

-5 0ATDC

0 0ATDC

15 0ATDC

SAGE Map - I Map - II

(K)

Multi-zone model in CONVERGE shows very good agreement between spatial and temporal temperature evolution

Page 23: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

23 Lawrence Livermore National Laboratory LLNL-PRES-582253

Similarly, CONVERGE predicted carbon monoxide evolution compares well between multi-zone and every-cell

0 0ATDC

15 0ATDC

SAGE Map - I Map - II

Page 24: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

24 Lawrence Livermore National Laboratory LLNL-PRES-582253

Predictions are very consistent between CONVERGE every-cell and multi-zone simulations

Rate of heat release CO2, CO and OH Fuel, C7H16, and NO

every cell multi-zone (map 1) multi-zone (map 2)

Page 25: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

25 Lawrence Livermore National Laboratory LLNL-PRES-582253

Converge multi-zone provides the same accuracy while reducing the simulation time by a factor of 10

Page 26: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

26 Lawrence Livermore National Laboratory LLNL-PRES-582253

We are doing a systematic study of using the Converge multi-zone for investigating Early-DI PCCI

Sandia (Dec) isooctane data

Converge spray models (RT/KH)

LLNL multi-zone and AP solver

874 species ic8h18 mechanism

Closed cycle 45 degree sector 200K cells (at BDC) Low load (phi=0.12

overall)

Page 27: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

27 Lawrence Livermore National Laboratory LLNL-PRES-582253

Fuel concentration is highest near bowl with some fuel entering the ring crevice

Page 28: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

28 Lawrence Livermore National Laboratory LLNL-PRES-582253

Fuel distribution in cylinder just before significant conversion occurs

Page 29: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

29 Lawrence Livermore National Laboratory LLNL-PRES-582253

CO is not fully converted away from the central core of the combustion chamber

Page 30: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

30 Lawrence Livermore National Laboratory LLNL-PRES-582253

CO2 shows regions of more complete combustion

Page 31: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

31 Lawrence Livermore National Laboratory LLNL-PRES-582253

Temperatures exceed 1400K in the complete combustion region

Page 32: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

32 Lawrence Livermore National Laboratory LLNL-PRES-582253

OH production hindered by low local temperatures

Page 33: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

33 Lawrence Livermore National Laboratory LLNL-PRES-582253

Full conversion of fuel occurs in the center of the combustion chamber, partial reaction in “squish” region

Page 34: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

34 Lawrence Livermore National Laboratory LLNL-PRES-582253

Very good agreement on in-cylinder pressure without tuning modeling parameters

Mesh refinement and multi-zone parameter refinement studied to achieve “grid” independence

Page 35: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

35 Lawrence Livermore National Laboratory LLNL-PRES-582253

Converge multi-zone predicted emissions compare very well with experiment

Page 36: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

36 Lawrence Livermore National Laboratory LLNL-PRES-582253

HCCI Engine Simulation Cummins B-series geometry

Homogeneous iso-octane/air mixture

Equivalence ratio ~0.2

Multi-zone T-Φ bins:

ΔT = 10 K

ΔΦ = 0.1

~250,000 cells at BDC

Max num. zones = 122

857 species LLNL iso-octane mechanism

24 processor MPI run

Total Simulation Time (wall clock): CMZCC = 15.66 hrs LLNL = 10.2 hrs

Chemistry Time* (avg. per proc.): CMZCC = 5.26 hrs LLNL = 0.2 hrs *includes zoning time

Adaptive preconditioned solver dramatically reduces chemistry time for converge multi-zone

Converge Multi-zone with SAGE

Converge Multi-zone with LLNL AP Solver

Page 37: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

37 Lawrence Livermore National Laboratory LLNL-PRES-582253

We use OpenFOAM as our platform for model development

Modular

General CFD Engines

Page 38: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

38 Lawrence Livermore National Laboratory LLNL-PRES-582253

We are incorporating advanced solvers into our Parallel CFD multi-zone model and benchmarking performance

Page 39: Lawrence Livermore National Laboratory · 2014-03-03 · Mani Sarathy, Charlie Westbrook, Russell Whitesides DEER 2012 . Lawrence Livermore National Laboratory 2 LLNL-PRES-582253

39 Lawrence Livermore National Laboratory LLNL-PRES-582253

New chemical kinetic mechanisms Large alkyl aromatics larger n-alkanes (above C16)(important to get end of distillation curve) Improved gasoline and Diesel surrogates

Improved detailed chemical kinetics solvers Larger average timesteps per species Adaptive preconditioning scheme for GPU Extended error control schemes

CFD/Kinetics simulation tools Integrator based remap Reactor initialization estimator Convergence and validation with HPC

Ongoing and Future Work