39
Lattice simulations and extensions of the standard model with strong interactions Georg Bergner FSU Jena SIFT 2017: Jena 23. 11. 2017

Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Lattice simulations and extensions of thestandard model with strong interactions

Georg BergnerFSU Jena

SIFT 2017: Jena 23. 11. 2017

Page 2: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

1 Strong interactions

2 Supersymmetric Yang-Mills theory on the lattice

3 Adjoint QCD and Technicolour theories

4 Conclusions and outlook

in collaboration with P. Giudice, S. Kuberski, G. Munster, I. Montvay,

S. Piemonte, S. Ali, H. Gerber, P. Scior, C. Lopez

2

Page 3: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Strong interactionsFeatures of strong interactions:

formations of bound states of hadronsand nuclear matter

create most of the mass of the bayonicmatter in the universe

dynamical scale generation

gu

uQ >> ΛQCD Q << ΛQCD

u d

uu

d

ggg

u + u + d −→ uu

d

3× 5 MeV 1000 MeV ∝ ΛQCD

3

Page 4: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

The extension/completion/explanation of the StandardModel

Why extend the standard model of particle physics:

add missing explanation for Dark Matter

solve hierarchy problem and explain small Higgsmass

explain standard model parameters: flavour,mass parameters / Yukawa couplings

may other motivations: neutrino physics,quantum gravity, unification of forces

dark energy

dark matter

SM matter

4

Page 5: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

The extension/completion/explanation of the StandardModel

General paradigms for the introduction of new physics:

1 new physics means new parameters and scales,less “explanation”

2 new physics adds natural explanation of scales by dynamics orsymmetry

3 scales and parameters are explained by unknown quantumgravity

5

Page 6: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Strong interactions: dynamic scale generationMassless QCD has no free parameters:

hadronic bound states are dynamical generated

scale of the masses not a free parameter of the theory

theory explains, not parametrizes, the masses

generates naturally large scale separationmassless pions (Goldstone bosons),massive bound states

[B. Lucini]

6

Page 7: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Specific extensions of the Standard Model

Composite or Technicolour models:

new strong dynamics beyond the standard model

Higgs generated as bound state, natural due to scale ofadditional strong interactions

Supersymmetry:

natural explanation by symmetry

Higgs mass corrections canceled by fermionic partners

interesting theoretical concept

7

Page 8: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

The old idea of Technicolour

QCD + weak interactions without Higgs

QCD corrections to W and Z propagators

dominant contribution in massless limit: pion propagator

effectively generates mass for W and Z bosons

QCD

W W W π W m2W = 1

4gf2π

W mass correction by pion decay constant [Weinberg ’76],[Susskind ’79]

SU(NTC )× SU(3)× SU(2)L × UY

Two TC flavours: π±T ,π0T become longitudinal part of W , Z

8

Page 9: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

The new idea of Technicolour or Composite models

Problems:

Higgs particle observed

Higgs generates fermion masses via Yukawa interactions

Requirements:

need light Higgs particle, large scale separation to other states

need effective interactions with via Extended Technicolour

Approaches:

1 Walking Technicolour approach

2 Composite models

3 Partial compositeness

9

Page 10: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

The challenges for the constructions of Technicolour orComposite models

You have to explain:

fermion mass generation

electroweak precision data

flavour

Higgs mass

. . .

Since everything should be naturally generated by stronginteractions you have to explain everything at once . . . May be thisis not a good idea.

10

Page 11: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Supersymmetry

only possible non-trivial extension of the space-timesymmmetries (Coleman-Mandula theorem)

supersymmetry: every bosonic particle has fermionic partnerwith same mass

Where are the partner particles?

supersymmetry must be broken at lower scales

without knowledge of breaking mechanism: many possiblebreaking terms and parameters, less predictive

11

Page 12: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Strong interactions from lattice simulations

still no analytic method to compute low energy features ofstrongly interacting theories

first principles method: Lattice simulations

Well established method for the investigations of QCD, but can weapply it to other theories?

QCD: we have a good feeling about parameters anduncertainties

BSM: we need to redo and even re-think the analysis

12

Page 13: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Why needs Supersymmetry non-perturbative methods?

Two main motivations:

1 Supersymmetric particle physics requires breaking terms basedon an unknown non-perturbative mechanism.⇒ need to understand non-perturbative SUSY

2 Supersymmetry as theoretical concept: (Extended) SUSYsimplifies theoretical analysis and leads to newnon-perturbative approaches.

⇒ need to bridge the gap between “beauty” and

13

Page 14: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

The challenges for supersymmetry on the lattice

discretize, cutoff in momentum space

(controlled) breaking of space-time symmetries⇒ uncontrolled SUSY breaking

derivative operators replaced by difference operators with noLeibniz rule⇒ breaks SUSY

fermonic doubling problem, Wilson mass term

Nielsen-Ninomiya theorem:No-Go for (naive) lattice chiral symmetry⇒ breaks SUSY

gauge fields represented as link variables⇒ different for fermions and bosons

[G.B., S. Catterall, arXiv:1603.04478]

14

Page 15: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

The challenges for supersymmetry on the lattice

discretize, cutoff in momentum space

(controlled) breaking of space-time symmetries⇒ uncontrolled SUSY breaking

derivative operators replaced by difference operators with noLeibniz rule⇒ breaks SUSY

fermonic doubling problem, Wilson mass term

Nielsen-Ninomiya theorem:No-Go for (naive) lattice chiral symmetry⇒ breaks SUSY

gauge fields represented as link variables⇒ different for fermions and bosons

[G.B., S. Catterall, arXiv:1603.04478]

14

Page 16: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

N =1 supersymmetric Yang-Mills theory

Supersymmetric Yang-Mills theory:

L = Tr

[−1

4FµνF

µν +i

2λ /Dλ−mg

2λλ

]

supersymmetric counterpart of Yang-Mills theory;but in several respects similar to QCD

λ Majorana fermion in the adjoint representation

15

Page 17: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Supersymmetric Yang-Mills theory:Symmetries

SUSY

gluino mass term mg ⇒ soft SUSY breaking

UR(1) symmetry, “chiral symmetry”: λ→ e−iθγ5λ

UR(1) anomaly: θ = kπNc

, UR(1)→ Z2Nc

UR(1) spontaneous breaking: Z2Nc

〈λλ〉6=0→ Z2

16

Page 18: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Supersymmetric Yang-Mills theory:effective actions

symmetries + confinement → low energy effective theory

low energy effective actions:1. multiplet1:mesons : a− f0 and a− η′fermionic gluino-glue2. multiplet2:glueballs: 0++ and 0−+

fermionic gluino-glue

Supersymmetry

All particles of a multi-plet must have the samemass.

1[Veneziano, Yankielowicz, Phys.Lett.B113 (1982)]

2[Farrar, Gabadadze, Schwetz, Phys.Rev. D58 (1998)]

17

Page 19: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Supersymmetric Yang-Mills theory on the latticeLattice action:

SL = β∑P

(1− 1

Nc<UP

)+

1

2

∑xy

λx (Dw (mg ))xy λy

Wilson fermions:

Dw = 1− κ4∑

µ=1

[(1− γµ)α,βTµ + (1 + γµ)α,βT

†µ

]gauge invariant transport: Tµλ(x) = Vµλ(x + µ);

κ =1

2(mg + 4)

links in adjoint representation: (Vµ)ab = 2Tr[U†µT aUµTb]

of SU(2), SU(3)

18

Page 20: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Recovering symmetry

Fine-tuning (Veneziano, Curci)1:

chiral limit = SUSY limit +O(a), obtained at critical κ(mg )

Wilson fermions:

explicit breaking of symmetries: chiral Sym. (UR(1)), SUSY

restored in chiral continuum limit

practical determination of critical κ:

limit of zero mass of adjoint pion (a− π)

⇒ definition of gluino mass: ∝ (ma−π)2

1[Veneziano, Curci, Nucl.Phys.B292 (1987)]

19

Page 21: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Supersymmetric Yang-Mills theory: Scale and massdetermination

scale setting:parameters: r0, w0

can be used for comparison to Yang-Mills theory, QCD

meson states (singlet)a–f0 (λλ), a–η′ (λγ5λ)methods for disconnected contributions [PoS LATTICE 2011]

glueballs

spin-1/2 state (gluino-glue)∑µ,ν

σµνtr [Fµνλ]

Technical challenge: Unfortunately all states are quite challengingto determine!

20

Page 22: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

The particle masses ofN = 1 SU(3) supersymmetric Yang-Mills theory

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

am

(amπ)2

gluino-glueglueball 0++

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

am

(amπ)2

glueball 0++

a-η′a-f0

situation similar to the SU(2) case with comparable latticespacing

indication for a multiplet formation and restored SUSY inchiral limit

21

Page 23: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

The status of the project

verification of VC scenario: chiral symmetry breaking andsupersymmetric Ward identities

multiplet formation found in the continuum limit of SU(2)SYM [JHEP 1603, 080 (2016)]

SYM thermodynamics: coincidence of chiral anddeconfinement transition [JHEP 1411, 049 (2014)]

SYM compactification: Witten index and absence ofdeconfinement [JHEP 1412, 133 (2014)]

first indication of multiplet formation in the excited states

first SU(3) results with clover improved Wilson fermions

SU(3) very similar to SU(2) case: Multiplet formation.

22

Page 24: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Walking Technicolour and the conformal windowWalking Technicolour scenario:

near conformal running of the gauge coupling toaccommodate fermion mass generation and absence of FCNCapproximate conformal symmetry might also lead to naturallight scalar particle (Higgs)

Interesting general question:

conformal window, strong dynamics different from QCDconformal mass spectrum: M ∼ m1/(1+γm) characterised byconstant mass ratios

α∗ conformal

Nf & 12

QCD

Q

α

23

Page 25: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Conformal window for adjoint QCD

Gauge theories in higher representation:

smaller number of fermions needed

here: conformal window for adjointrepresentation

mass anomalous dimension γ∗(Nf )

[Dietrich, Sannino,hep-ph/0611341]

24

Page 26: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Adjoint QCDadjoint Nf flavour QCD:

L = Tr

[−1

4FµνF

µν +

Nf∑i

ψi ( /D + m)ψi

]

Dµψ = ∂µψ + ig [Aµ, ψ]

ψ Dirac-Fermion in the adjoint representation

adjoint representation allows Majorana condition ψ = C ψT

⇒ half integer values of Nf : 2Nf Majorana flavours

Chiral symmetry breaking:

Z2Nc × SU(2Nf )→ Z2 × SO(2Nf )

25

Page 27: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Particle states and lattice action

Lattice action

Wilson fermion action + stout smearing

tree level Symanzik improved gauge action

some results: clover improvement

Particle states

triplet mesons mPS, mS, mV, mPV

glueball 0++

spin-1/2 mixed fermion-gluon state∑µ,ν

σµνtr [Fµνλ]

singlet mesons ma–f0 , ma–η′

26

Page 28: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Nf = 2 AdjQCD, Minimal Walking Technicolour

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.05 0.1 0.15 0.2 0.25 0.3 0.35

M/m

PS

amPCAC

√σ/mPS

mV/mPSmspin− 1

2/mPS

m0++/mPSFπ/mPSmS/mPS

mPV/mPS323 × 64483 × 64643 × 64

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

M/m

PS

amPCAC

√σ/mPS

mV/mPSmspin− 1

2/mPS

m0++/mPSFπ/mPSmS/mPS

mPV/mPS

Expected behaviour of a (near) conformal theory:

constant mass ratioslight scalar (0++)no light Goldstone (mPS)

Well established results: [Debbio, Lucini, Patella, Pica, 2016],[GB, Giudice, Munster, Montvay, Piemonte, 2017]

27

Page 29: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Results for Nf = 1 adjoint QCD

0

1

2

3

4

5

6

7

8

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

mState / σ

a mPCAC

2⁺ scalar baryon

2⁻ pseudoscalar baryon

2⁻ vector baryon

Spin-½ state

0

1

2

3

4

5

6

7

8

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

mState / σ

a mPCAC

0⁺ scalar meson

0⁻ pseudoscalar meson

0⁺ axial vector meson

0⁻ vector meson

0⁺ glueball

[Athenodorou, Bennett, GB, Lucini, arXiv:1412.5994]

28

Page 30: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Results for Nf = 3/2 adjoint QCD

0

0.5

1

1.5

2

2.5

3

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

M/m

PS

amPCAC

323 × 64243 × 48√σ/mPS

mV/mPSmspin− 1

2/mPS

m0++/mPSmS/mPS

mPV/mPS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.06 0.08 0.1 0.12 0.14 0.16 0.18

M/m

PS

amPCAC

323 × 64243 × 48483 × 96

Nf Dirac fermions → 2Nf Majorana fermions

with our experience of supersymmetric Yang-Mills theory, wecan simulate half integer fermion numbers

requires the Pfaffian sign

29

Page 31: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Pfaffian in Nf = 3/2 adjoint QCD

−4

−3

−2

−1

0

1

2

3

4

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

N1.4

sℑλ

N1.4s ℜλ

even at the critical parameters: no sign fluctuations of Pfaffian

30

Page 32: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Mass anomalous dimension for Minimal WalkingTechnicolour: Methods

Methods for determination of γ∗:scaling of mass spectrummode number (integrated spectral density of D†D )

Methods for mode number determination:

Chebyshev expansion of the spectral densityconsistency with [Giusti, Luscher, 0812.3638] checked

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

-0.010

0.010.020.030.040.050.060.070.080.090.1

0.10.150.20.250.30.350.40.450.5

Chebyshev expansiondiagonalisation

projection

-16

-14

-12

-10

-8

-6

-4

-2 -1.5 -1 -0.5 0

Chebyshev expansionprojection

31

Page 33: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Mass anomalous dimension for Nf = 3/2

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

γ

Ωmin

κ = 0.1340κ = 0.1320κ = 0.1322

ν(Ω) = 2

∫ √Ω2−m2

0ρH(λ)dλ ; ν(Ω) = ν0 + a1(Ω2 − a2

2)2

1+γ

mass anomalous dimension around 0.38(2)

32

Page 34: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Mass anomalous dimension for Nf = 3/2

0

5

10

15

20

25

30

3 4 5 6 7 8 9 10

LM

(L/a)(amPCAC)1/(1+0.5)

323 × 64243 × 48163 × 32LmPSL√σ

LmV

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

LM

(L/a)(amPCAC)1/(1+0.38)

323 × 64243 × 48163 × 32483 × 96LmPSL√σ

LmV

check with the hyperscaling of the spectrum

33

Page 35: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Comparison with Nf = 1 and Nf = 1/2

Theory scalar particle γ∗ small β γ∗ larger βNf = 1/2 SYM part of multiplet – –Nf = 1 adj QCD light 0.92(1) 0.75(4)∗

Nf = 3/2 adj QCD light 0.50(5)∗ 0.38(2)∗

Nf = 2 adj QCD light 0.376(3) 0.274(10)(∗ preliminary)

remnant β dependence: γ∗ not real IR fixed point values

final results require inclusion of scaling corrections

investigation of (near) conformal theory requires carefulconsideration of lattice artefacts and finite size effects

34

Page 36: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

What can we learn for realistic models?

Next to Minimal Walking Technicolour: Nf = 2 in sextetrepresentation [Bergner, Ryttov, Sannino, 1510.01763]

conformal window for adjoint fermions approximatelyindependent of Nc

large Nc up to factor 2 equivalence between symmetric,adjoint, and antisymmetric representation

small Nc = 2 equivalence between symmetric and adjointrepresentation

conformal behaviour of Nf = 1 indicates conformality ofNMWT

35

Page 37: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Towards more realistic theories: Ultra Minimal WalkingTechnicolour

mass anomalous dimension too small in MWT to be a realisticcandidate

Nf = 1 has large mass anomalous dimension, but not therequired particle content

Nf = 1 in adjoint + Nf = 2 in fundamental representation ofSU(2) has been conjectured to be ideal candidate (UMWT)

Nf = 1/2 adjoint + Nf = 2 in fundamental might also beclose enough to conformality

interesting also for further investigations: SQCD withoutscalar fields

test of mixed representation setup for partial compositenessmodels

36

Page 38: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

First investigations in mixed representation setup

difficult tuning: two bare mass parameters have to be tuned

one-loop clover improved action with Wilson fermions infundamental and adjoint representations

investigate the influence of the adjoint fermions onfundamental sector

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

w0mV

(amπ)2

0

0.2

0.4

0.6

0.8

1

6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8

m2 π

1/κ

κfκfκaκa

37

Page 39: Lattice simulations and extensions of the standard model …gbergner/SIFT2017/talks/bergner.pdf1 Strong interactions 2 Supersymmetric Yang-Mills theory on the lattice 3 Adjoint QCD

Conclusions and outlook

interesting strongly interacting extensions of the StandardModel with dynamics different from QCD

close connection between the investigations of conformal, ornear conformal models and supersymmetric theories

N = 1 SU(3) supersymmetric Yang-Mills theory showssupersymmetric particle spectrum

interesting new investigations: adjoint+fundamental SU(2),adjoint Nf = 1 coupled to scalar

38