16
1. Introduction This study aims to improve the temporal resolution of the established Plio-Pleistocene biostratigraphy of the Nordic Atlantic region, through multi-fossil calibra- tions to the standard geologic time scale with its Glob- al boundary Stratotype Section and Point (GSSP) def- initions in the Mediterranean. The definitions of the relevant Upper Cenozoic chronostratigraphic units, i. e. Gelasian Stage, Pleistocene Series, Neogene and Quaternary Systems follow Ogg et al. (in press); they are also available from the website of the Internation- al Commission on Stratigraphy (ICS) at www.strati- graphy.org. The orbitally tuned time scale is that of Lourens et al. (2004), which also re-calibrated the Berggren et al. (1995) biochronology. Newsletters on Stratigraphy © Gebrüder Borntraeger 2008 Vol. 43/1: 33–48, June 2008 Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D. Anthonissen 1 With 3 figures and 1 appendix Abstract. The lack of primary and secondary GSSP correlative markers in Plio-Pleistocene deposits of the North Sea, Nordic seas and northern North Atlantic creates a challenge for the biostratigrapher. This study highlights the closest biostratigraphic approximations in this region to the standard chronostratigraphic boundaries of the Gelasian Stage and Lower, Middle and Upper Pleistocene. Via correlations to key Ocean Drilling studies and unambiguous magnetostratigraphies in the region, the age of shallower deposits of the North Sea has been better constrained. The closest biostratigraphic approximations to these chronostrati- graphic boundaries in the region are presented, together with a framework of calibrated events according to sub-basin. The best approximating boundary events at any given location in this region depends upon both the paleoceanographic and paleobathymetric settings. In the Nordic Atlantic region only three GSSP correl- ative marker events have been identified in the 15 Ocean Drilling Program sites discussed. At lower neritic to bathyal water depths, the first common occurrence of Neogloboquadrina pachyderma (sinistrally-coiled morphotype) allows for direct correlation with the base Pleistocene GSSP in Italy. The occurrence of the ben- thic foraminifer Cibicides grossus appears to have been bathymetrically controlled, with a youngest strati- graphic occurrence at upper bathyal depths. At lower neritic depths in the central and northern North Sea the last occurrence of C. grossus coincides with the base of the Pleistocene. Diachroneity of a number of Nordic high-latitude bioevents may be primarily due to differences in surface water masses and paleobathymetry. Key words. North Sea, Norwegian Sea, Foraminifera, calibrations, Quaternary, Pliocene DOI: 10.1127/0078-0421/2008/0043-0033 0078-0421/08/0043-0001 $ 3.25 © 2008 Gebrüder Borntraeger, D-14129 Berlin · D-70176 Stuttgart Authorʼs address: 1 Erik D. Anthonissen (E-Mail: [email protected]), Natural History Museum, University of Oslo, P. O. Box 1172 Blindern, 0318 Oslo, Norway

Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

1. Introduction

This study aims to improve the temporal resolution ofthe established Plio-Pleistocene biostratigraphy of theNordic Atlantic region, through multi-fossil calibra-tions to the standard geologic time scale with its Glob-al boundary Stratotype Section and Point (GSSP) def-initions in the Mediterranean. The definitions of the

relevant Upper Cenozoic chronostratigraphic units,i. e. Gelasian Stage, Pleistocene Series, Neogene andQuaternary Systems follow Ogg et al. (in press); theyare also available from the website of the Internation-al Commission on Stratigraphy (ICS) at www.strati -graphy.org. The orbitally tuned time scale is that ofLourens et al. (2004), which also re-calibrated theBerggren et al. (1995) biochronology.

Newsletters on Stratigraphy © Gebrüder Borntraeger 2008Vol. 43/1: 33–48, June 2008

Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region

Erik D. Anthonissen1

With 3 figures and 1 appendix

Abstract. The lack of primary and secondary GSSP correlative markers in Plio-Pleistocene deposits of theNorth Sea, Nordic seas and northern North Atlantic creates a challenge for the biostratigrapher. This studyhighlights the closest biostratigraphic approximations in this region to the standard chronostratigraphicboundaries of the Gelasian Stage and Lower, Middle and Upper Pleistocene. Via correlations to key OceanDrilling studies and unambiguous magnetostratigraphies in the region, the age of shallower deposits of theNorth Sea has been better constrained. The closest biostratigraphic approximations to these chronostrati-graphic boundaries in the region are presented, together with a framework of calibrated events according tosub-basin. The best approximating boundary events at any given location in this region depends upon boththe paleoceanographic and paleobathymetric settings. In the Nordic Atlantic region only three GSSP correl-ative marker events have been identified in the 15 Ocean Drilling Program sites discussed. At lower neriticto bathyal water depths, the first common occurrence of Neogloboquadrina pachyderma (sinistrally-coiledmorphotype) allows for direct correlation with the base Pleistocene GSSP in Italy. The occurrence of the ben-thic foraminifer Cibicides grossus appears to have been bathymetrically controlled, with a youngest strati-graphic occurrence at upper bathyal depths. At lower neritic depths in the central and northern North Sea thelast occurrence of C. grossus coincides with the base of the Pleistocene. Diachroneity of a number of Nordichigh-latitude bioevents may be primarily due to differences in surface water masses and paleobathymetry.

Key words. North Sea, Norwegian Sea, Foraminifera, calibrations, Quaternary, Pliocene

DOI: 10.1127/0078-0421/2008/0043-0033 0078-0421/08/0043-0001 $ 3.25© 2008 Gebrüder Borntraeger, D-14129 Berlin · D-70176 Stuttgart

Authorʼs address:1 Erik D. Anthonissen (E-Mail: [email protected]), Natural History Museum, University of Oslo, P. O. Box 1172 Blindern,0318 Oslo, Norway

Page 2: Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

2. Regional setting and biostratigraphy

The “Nordic Atlantic region” is here defined as rough-ly the area stretching from immediately south of theGreenland-Scotland Ridge northwards, encompassingthe North Sea and Nordic Seas (Norwegian Sea,Greenland Sea, Iceland Sea, West Barents Sea) to theArctic Ocean Gateway and the Yermak Plateau(Fig. 1). In this region, the Upper Cenozoic biostrati -graphy is based primarily upon foraminifers, calcare-ous nannoplankton and organic-walled dinoflagellatecysts. Marine diatoms and continental pollen se-quences (van der Vlerk and Florschütz 1953, Zagwijn1974) add paleontological age control across discretetime intervals. At these high latitudes, many of thestandard ‘global’markers present in the mid- to low- latitudes (including the Mediterranean region) are ab-sent; these include most of the primary and secondarycorrelative events defining the relevant GSSPs.

Various abiotic and biotic expressions of late Ceno-zoic climatic change have been used for dating the onsetof the Quaternary and Pleistocene in the Nordic Atlanticregion. Marine isotopic trends and magnetic polarity re-versals show near synchroneity across large geograph-ic regions. However, these dating methods often requireadditional control to interpret an age, being inherentlylimited to two outcomes (e. g. either glacial/interglacial

or normal polarity/reversed polarity). This additionalage control is often in the form of planktonic markerfossils that have been well-documented both spatiallyand temporally (planktonic foraminifera, calcareousnannoplankton, dinoflagellate cysts and siliceous mi-crofossils). Where integration of data sets from a rangeof both abiotic and biotic proxies is possible (e. g. indeep-sea cores), well-constrain ed age models form thebasis for a regional biostratigraphy.

High-resolution biostratigraphies have been con-structed from Upper Cenozoic depositional sequencesin Deep Sea Drilling Project (DSDP) and OceanDrilling Program (ODP) coreholes from the Mediter-ranean to the high Arctic. For the Nordic Atlantic re-gion, the following planktonic foraminiferal zonationstudies have been most utilised: Weaver and Clement(1986) and Weaver (1987) in the northern North At-lantic (DSDP Leg 94) and Spiegler and Jansen (1989) inthe Norwegian Sea (ODP Leg 104). For the North SeaBasin, dominated by shallow neritic benthic fora mini -feral assemblages, the deterministic zonation by King(1983, 1989) and the probabilistic zonation by Grad-stein and Bäckström (1996) are most widely used. Theirzonal boundaries are defined almost entirely upon lastoccurrence events (LOs) due to downhole contami -nation in industrial exploration well samples. Bothschemes are based primarily on poorly constrainedranges of benthic foraminifera, with age interpretationsstrongly dependent upon the biomagnetostratigraphy ofDSDP Leg 94 in the northern North Atlantic.

In response to high-frequency Quaternary climatechange, benthic communities would have been forcedto migrate repeatedly to more preferable environmen-tal conditions. Benthic foraminifera are sensitive towater mass and substrate properties and therefore theyoften exhibit sedimentary facies dependency (Mack-ensen et al. 1985). They are therefore often unreliablemarkers, showing a high degree of diachroneity in theirfirst and last appearances (Denne and Sen Gupta 1990).This is especially evident in the bathymetrically con-trolled last occurrence of Cibicides grossus (C. lobatu-lus var. grossa) in the North Sea (see Appendix 1).

Following ODP Leg 104, a number of new oceanicsites have been drilled as part of ODP Legs 151, 152and 162 (Fig 1.). Calibration of the stratigraphy ofthese new sites to astronomical parameters has greatlyincreased Neogene temporal resolution (Lourens et al.,1996; Gradstein et al., 2004). These additional datapoints allow for a broader examination of the relation-ship between the geographic distribution and the de-gree of synchroneity/diachroneity of important north-

34 Erik D. Anthonissen

90° 60° 30° 0° 30° 40°

60°

80°

642

646

907

910

919

981

985

986

987

984

610

982

609611

North Sea

Labrador Sea

Norwegian Sea

Greenland Sea

Yermak Plateau

Svalbard Margin

Iceland Sea

Irminger Basin

644

643

980

918

983

911

607606

Northern North Atlantic

Calibration sites

A. Northern North Atlantic & Labrador SeaDSDP Leg 94 (606-610); ODP Leg 105 (646, 647);ODP Leg 162 (980-984)

B. Irminger Basin (East Greenland Margin)ODP Leg 152 (918, 919)

C. Norwegian Sea & Iceland PlateauODP Leg 151(907); ODP Leg 162 (985)

D. Norwegian Sea (Vøring Plateau)ODP Leg 104 (642-644)

E. Greenland SeaODP Leg 162 (987) Greenland-Scotland Ridge Statfjord C

BGS81/34

898

B10-3,13-3,B-17-5/6

15/9-A-112/4-C-11

34/8-1

Legend

Pleistocene & Gelasian GSSP’s

‘Nordic Atlantic region’Warm ocean current Cool ocean currentIndustrial well/boreholeODP/DSDP Site

647

F. Yermak Plateau & Svalbard MarginODP Leg 151 (910, 911); ODP Leg 162 (986)

G. North SeaStatfjord C borehole; 34/8-1; 15/9-A-11; 2/4-C-11;BGS81/34; B10-3, 13-3, B17-5, B17-6

Barents Sea

Arctic Ocean

Fig. 1. Map showing the location of calibration points usedin this study, including Deep Sea Drilling Project Sites,Ocean Drilling Program Sites, and industrial wells/bore-holes. Locations are grouped according to region/basin andgiven a letter abbreviation.

Page 3: Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

ern high-latitude bioevents. A better understanding andquantification of the time-transgressive nature of keyplanktonic events from oceanic settings will help toimprove the accuracy of Quaternary biostratigraphyand to better constrain benthic foraminiferal ranges inshallower shelf settings such as the North Sea.

High-resolution integrated stratigraphic data sets arerare in industrial exploration-well studies in the Northand Norwegian seas. Here both quality of material andeconomic constraints limit the availability of paleo-magnetic and isotopic data. Strontium isotope meas-urements may provide a limited degree of independentage control, but contamination has often rendered con-tradictory results (e. g. Eidvin et al. 1993). For latestPleistocene deposits, amino-acid dating and opticallystimulated luminescence (OSL) dating have proveduseful, especially in areas where paleomagnetic data isambiguous or unobtainable and where key planktonicmarkers are absent (e. g. Sejrup and Knudsen 1999).However, due to the strong dependency of amino-acidracemization rates on temperature, water concentrationand alkalinity, uncertainties regarding conditions ofpreservation can obscure the results (Brown 1985).

3. Material and Methods: Mid- to high-latitude correlations

The location of Nordic ocean drilling sites and selectedindustrial petroleum wells with a reliable Plio-Pleis-tocene record is shown in Fig. 1. The sites have been or-ganised from south to north, according to sub-basin.They have been divided into three correlation panels: 1)temperate to subpolar sites located south of the Green-land-Scotland Ridge (GSR) in the northeastern NorthAtlantic; 2) subpolar sites located north of the GSR inthe Nordic Seas; 3) Arctic Sites in the Greenland Seaand on the Yermak Plateau (Figs. 2a–c). Most sites havea reliable magnetostratigraphy, allowing for direct cal-ibration of bioevents via the Geomagnetic PolarityTime Scale (GPTS) to the standard chronostratigraphyof Gradstein et al. (2004). At a few sites, a Pleistoceneoxygen-isotope stratigraphy allows for high-resolutioncalibrations to the marine oxygen isotope stages. In ad-dition, a limited number of astronomically calibratedforaminiferal and calcareous nannoplankton bioevents(with ages according to Lourens et al. 2004) improvethe stratigraphic resolution. In a few cases, new eventshave been identified from the raw fossil occurrence datain the respective publications. Each site record present-ed here is a composite of the results from the individual

site coreholes. Where possible, the standard chronos-tratigraphic boundaries of the Late Pliocene – Pleis-tocene have been correlated between sites. This has fa-cilitated a biostratigraphic comparison of sites at both alocal level between sub-basins and at a more regionalscale from temperate to polar latitudes.

It is only via the high-resolution data sets providedthrough these deep-sea cores that reliable stratigraphicrelationships can be found between the Mediterraneanstages and the Nordic Atlantic biostratigraphy. The re-liability of these relationships or calibrations can beranked according to the number of correlations neces-sary. First-order calibrations are those involving a di-rect and onsite stratigraphic link between the respectivebioevent and the standard Geologic Time Scale. Thishas most often been achieved via an onsite stratigraph-ic tie to the GPTS or to selected astronomically cali-brated events (Lourens et al. 2004). Second-order cali-brations involved a correlation between the observedbioevent and another locality with a correspondingstratigraphic level which had a 1st order – calibratedage. Third-order calibrations involve two correlations.Updated ages have been calculated based on their rela-tive positions between magnetosubchron and/or nan-nofossil zonal boundaries. For the majority of events,the age has been calculated for the depth originallyquoted in the respective DSDP/ODP publications andgiven to one decimal place only. This is intended to ac-count for low sample resolution, lack of continuous cor-ing, and the often numerous occurrence of bracketingbarren intervals.

4. Results: Late Pliocene –Pleistocene chronostrati -graphic boundaries at Nordic high-latitudes

A critical assessment of the biostratigraphy and corre-lation of key deep-sea cores and industrial petroleumwells has resulted in the framework of calibrated bio-events for the Nordic Atlantic region presented in Ap-pendix 1. Selected bioevents can be used for the iden-tification of the standard chronostratigraphic bound-aries of the Late Pliocene – Pleistocene in this region.

Four chronostratigraphic boundaries divide theQuaternary: Base Upper Pleistocene Subseries, BaseMiddle Pleistocene Subseries, Base Pleistocene Se-ries, and Base Gelasian Stage. To date, the Pleistoceneand Gelasian GSSPs have been ratified by the Interna-

35Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region

Page 4: Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

36 Erik D. Anthonissen

LowerPleistocene

(Upper Pliocene)Gelasian

MiddlePleistocene

UpperPleist.S

ou

thG

ree

nla

nd

-Sco

tla

nd

Rid

ge

Na

tS

Ehu

x

Pla

c

1n

1r.1

r

1r.1

n

1r.2

r

1r.3

r

2n

2r.1

r

2r.1

n

Sit

e 9

81

(co

mp

osi

te)

Fe

ni D

rift

0

10

20

30

40

50

60

70

80

90

10

0

110

12

0

13

0

14

0

15

0

16

0

17

0

18

0

Gin

f

Gp

un

Gr. inflataN. pachyderma (s) G. bulloides N. atlantica (s)

N O D A T A

NN 21 NN 20 NN 19

2A

n.1

n

2r.2

r

Dsu

r

Cm

ac

0.4

4

0.2

90

.34

0.5

5

2.1

4

2.3

52

.39

2.6

6

1.6

61

.67

2.5

4

NN 16NN 17

Depth (mbsf)

Polarity/ chron

Age (Ma)

CalcareousNannoplankton

Zone

PlanktonicForaminiferal

Zone

Np

aS

(FC

O)

Sit

e 9

82

(co

mp

osi

te)

Ro

cka

ll P

late

au

1n

1r.1

r

1r.1

n

1r.2

r

2n

2r.1

r

2r.2

r

2A

n.1

n

0

20

40

60

80

Np

aS

(FC

O)

Gin

fN

atS

Gp

un

Gcr

a

Pla

c

NN 19

Cm

ac

0.4

4

0.2

9

2.0

92

.30

2.8

12

.65

1.6

61

.23

0.4

1

0.1

8

2.5

4

Pla

c

Ehu

x

2021

Dsu

r

Depth (mbsf)

Polarity/ chron

Age (Ma)

CalcareousNannoplankton

Zone

PlanktonicForaminiferal

Zone

N. pachyderma (s) N. atlantica (s)

0

10

20

30

40

50

60

70

80

90

10

0

110

12

0

13

0

14

0

15

0

16

0

17

0

18

0

19

0

20

0

21

0

22

0

23

0

Ehu

x

Pla

c

1n

1r.1

r

1r.1

n

1r.2

r

2n

Sit

e 9

83

(co

mp

osi

te)

Ga

rda

r D

rift

Np

aS

(FC

O)

Gr. inflataN. pachyderma (s)

24

0

25

0

Gsp

p

NN 21 NN 20 NN 19

2r.1

r

Cm

ac

0.4

4

0.2

9

1.2

4

1.6

61

.65

0.3

0.6

0.6

8

0.8

4

1.2

5

1.5

3

1.8

9

N O D A T ADepth (mbsf)

Polarity/ chron

Age (Ma)

CalcareousNannoplankton

Zone

PlanktonicForaminiferal

Zone

1 5 7 9 11

13

15

17

19

21

23

25

27

29

31

33

35

Nre

i

Pcu

r

Nse

m

N. seminaeP. curvirostrisT. oestrupii

Nfo

s

N. reinholdii

Nse

m

Pd

ol

Pcu

r

Marine IsotopeStage

DiatomZone

0

10

20

30

40

50

60

70

80

90

10

0

110

12

0

13

0

14

0

15

0

16

0

17

0

18

0

19

0

20

0

21

0

22

0

23

0

Ehu

x

Pla

c

24

0

25

0

26

0

1n

1r.1

r

1r.1

n

1r.2

r

1r.3

r

2n

2r.1

r

2r.1

n

2r.2

r

Sit

e 9

84

(co

mp

osi

te)

Bjo

rn D

rift

Np

aS

(FC

O)

N. pachyderma (s)

Na

tl3

00

Gr. inflata / G. bulloides

Gsp

p

NN 21 NN 20 NN 19

0.4

4

0.2

9

(~2

.57

)

1.2

4

N O D A T A

Depth (mbsf)

Polarity/ chron

Age (Ma)

CalcareousNannoplankton

Zone

PlanktonicForaminiferal

Zone

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Sit

e 9

18

(co

mp

osi

te)

Ea

st G

ree

nla

nd

Ma

rgin

1n

2n

1r.1

n

2r.1

r

2r.1

n

1r.1

r

1r.2

r -

1

r.3r

Ehu

x

NN 21

0.2

9

NN 20

Na

tDN

atS

N. pachyderma (s)

UpperN. atlantica (d)

N. atlantica (s)

]

Na

tD

Na

tD

Np

aS

(FC

O)

Nd

ut

(LC

O)

Np

aD

(LC

O)

Max. PF diversity in Pleistocene

Depth (mbsf)

Polarity/ chron

Age (Ma)

CalcareousNannoplankton

Zone

PlanktonicForaminiferal

Zone(+ warm fauna)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Sit

e 9

19

(co

mp

osi

te)

Ea

st G

ree

nla

nd

Ma

rgin

1n

1r.1

r

Ehu

x

NN 21

0.2

9

NN 20

N. pachyderma (s)

NN 19

Pla

c0

.44

Gin

f(LC

O),

Gsc

i(LC

O)

Tnid

0.3

10

Pcu

r0

.33

5

Nse

m0

.81

7-

0.8

95

N. sem.P. curvirostrisT. oestrupii

25

21

19

17

15

13

119751

Depth (mbsf)

Polarity/ chron

Age (Ma)

CalcareousNannoplankton

Zone

PlanktonicForaminiferal

Zone(+ warm fauna)

Marine IsotopeStage

DiatomZone

Max. PF diversity in Pleistocene

1.8

3

3.1

7

Fig

.2a.

Lat

e Pl

ioce

ne-P

leis

toce

ne c

orre

latio

n pa

nel

show

ing

sele

cted

oce

an d

rilli

ng s

ites

loca

ted

sout

h of

the

Gre

enla

nd-S

cotla

nd R

idge

(G

SR).

For

tax

on a

b-br

evia

tions

see

Fig

.2c.

Age

s in

bol

d ar

e ac

cord

ing

toth

e as

tron

omic

al c

alib

ratio

ns o

f L

oure

ns e

t al

. (20

04),

all

othe

r ag

es a

re b

ased

on

inte

rpol

atio

ns a

ccor

ding

to

the

stud

ies

cite

d. W

here

pos

sibl

e, t

he f

our

chro

nos-

trat

igra

phic

bou

ndar

ies

disc

usse

d ar

e in

dica

ted.

For

Site

s 98

1, 9

82, 9

83&

984

: mag

neto

stra

tigra

phy

is a

c-co

rdin

g to

Cha

nnel

l an

d L

ehm

an (

1999

); c

alca

reou

sna

nnop

lank

ton

bios

trat

igra

phy

is a

ccor

ding

to S

hipb

oard

Sci

entif

ic P

arty

(19

96a)

; pla

nkto

nic

fora

min

ifer

al b

iost

ratig

raph

y is

acc

ordi

ng to

Flo

wer

(19

99);

mar

ine

diat

ombi

ostr

atig

raph

y an

d ox

ygen

isot

ope

stra

tigra

phy

is a

ccor

ding

to K

oc e

t al.

(199

9). F

or S

ites

918

and

919:

mag

neto

stra

tigra

phy

is a

ccor

ding

to F

ukum

a (1

998)

; cal

care

ous

nann

opla

nkto

n st

ratig

raph

y is

acc

ordi

ng to

Wei

(199

8); p

lank

toni

c fo

ram

inif

eral

bio

stra

tigra

phy

is a

ccor

ding

to S

pezz

afer

ri (1

998)

; mar

ine

diat

om b

iost

ratig

raph

y an

d ox

y-ge

n is

otop

e st

ratig

raph

y is

acc

ordi

ng to

Koc

and

Flo

wer

(19

98).

Page 5: Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

37Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region

LowerPleistocene

(Upper Pliocene)Gelasian

MiddlePleistocene

Sit

e 9

85

(co

mp

osi

te)

Ice

lan

d S

ea

Depth (mbsf)

Polarity/ chron

Age (Ma)

PlanktonicForaminiferal

Zone

1n

2n

2r.2

r

1r.2

r -

1

r.3r

1r.1

n

0 10

20

30

40

50

60

70

2A

n.1

n

Np

aS

(FC

O)

N. pachyderma (s)

Na

tS1

.7

Sit

e 9

07

(co

mp

osi

te)

Ice

lan

d P

late

au

Depth (mbsf)

Polarity/ chron

Age (Ma)

PlanktonicForaminiferal

Zone

1n

0 10

20

30

40

50

60

Np

aS

(FC

O)

N. pachyderma (s)

Na

tS1

.8

1r.1

n1

r.1r

1r.2

r

2r.1

r

1r.3

r

2r.2

r

2A

r

2A

n.1

n

2A

n.2

n2

An

.3n

2n

1n

2A

n.1

n

1r.1

nSit

e 6

43

(co

mp

osi

te)

rin

g P

late

au

Depth (mbsf)

Polarity/ chron

0 10

20

30

40

50

60

1r.1

r

Age (Ma)

PlanktonicForaminiferal

Zone

Np

aS

(FC

O)

‘en

cru

ste

d’

N. pachyderma (s) Na

tS

?1.8

N. atl. (s)

CalcareousNannoplankton

Zone

Dinoflagellatecyst Zone

3.1

1

Pla

c

Ehu

x

21 20 NN 19

Mm

in,

Bsi

m

Ffil

Ffil

top

Aa

nd

acm

e

M. minuta - B. simplex

F. filifera

0.2

9

0.4

4

1n

2n

1r.1

nSit

e 6

42

(co

mp

osi

te)

rin

g P

late

au

Depth (mbsf)

Polarity/ chron

0 10

20

30

40

50

60

Age (Ma)

PlanktonicForaminiferal

Zone

Np

aS

(FC

O)

‘en

cru

ste

d’

N. pachyderma (s) Na

tS,

Gb

ul

(LC

O)

1.8

N. atl. (s)

CalcareousNannoplankton

Zone

Dinoflagellatecyst Zone

3.1

1

Pla

c

Ehu

x

NN 21 20 NN 19

Mm

in,

Bsi

m

Ffil,

Nle

m

Ffil,

Tp

elA

um

b(L

CO

)

M. minuta - B. simplex

0.2

9

0.4

4

70

Np

aS

Ffil

acm

e(u

pp

er)

Ffil

acm

e(l

ow

er)

Tpel

, Se

lo

0 10

20

30

40

50

60

70

80

90

10

0

110

12

0

13

0

14

0

15

0

16

0

17

0

18

0

19

0

20

0

21

0

22

0

23

0

Gin

f

Na

tD,

Gp

un

Gp

un

Gin

f

Na

tDN

atS

*co

ilin

g

cha

ng

e*

Np

aD

2.3

0.4

4

0.2

9

M. minuta - B. simplex F. filifera

1n

1r.1

n

2n

2r.1

n

2A

n.1

nSit

e 6

44

(co

mp

osi

te)

rin

g P

late

au

Depth (mbsf)

Polarity/ chron

Age (Ma)

PlanktonicForaminiferal

Zone

CalcareousNannoplankton

Zone

Dinoflagellatecyst Zone

Pla

c

Ehu

x

NN 21 NN 20 NN 19

Mm

in,

Bsi

m

Nle

m

Np

aS

(FC

O)

‘en

cru

ste

d’

N. pachyderma (s)

Upper N. atlantica (d) N. atl. (s)

0 50

10

0

15

0

20

0

25

0

30

0

35

0

1n

1r.1

r1

r.1n

2n

1r.2

r-

1r.3

r

2r.1

r

2r.2

r

2A

n.1

n

Ffil

Np

aS

(FC

O)

N. pac. (s)

Sit

e 9

87

(co

mp

osi

te)

Gre

en

lan

d S

ea

Depth (mbsf)

Polarity/ chron

Age (Ma)

PlanktonicForaminiferal

Zone

DinoflagellateCystZone

F. filifera

1.8

So

uth

Gre

en

lan

d-S

cotl

an

d R

idg

e

Fig

.2b

.L

ate

Plio

cene

-Ple

isto

cene

cor

rela

tion

pane

l sho

win

g se

lect

ed o

cean

dri

lling

site

s lo

cate

d no

rth

of th

e G

reen

land

-Sco

tland

Rid

ge(G

SR).

For

taxo

n ab

brev

iatio

ns s

ee F

ig.2

c. D

inof

lage

llate

cys

t acm

e ev

ents

are

new

inte

rpre

tatio

ns a

ccor

ding

to a

naly

sis

of th

e ra

w f

os-

sil o

ccur

renc

e da

ta in

the

resp

ectiv

e st

udie

s. A

ges

in b

old

are

acco

rdin

g to

the

astr

onom

ical

cal

ibra

tions

of

Lou

rens

et a

l. (2

004)

. All

oth-

er a

ges

are

base

d on

inte

rpol

atio

ns a

ccor

ding

to th

e st

udie

s ci

ted.

Whe

re p

ossi

ble,

the

four

chr

onos

trat

igra

phic

bou

ndar

ies

disc

usse

d ar

ein

dica

ted.

For

Site

s 98

5&

907

: m

agne

tost

ratig

raph

y is

acc

ordi

ng t

o C

hann

ell

et a

l. (1

999a

); p

lank

toni

c fo

ram

inif

eral

bio

stra

tigra

phy

isac

cord

ing

to F

low

er (

1999

). F

or S

ites

643,

642

& 6

44: m

agne

tost

ratig

raph

y is

acc

ordi

ng to

Ble

il (1

989)

; pla

nkto

nic

fora

min

ifer

al b

ios-

trat

igra

phy

is a

ccor

ding

to

Spie

gler

and

Jan

sen

(198

9);

calc

areo

us n

anno

plan

kton

bio

stra

tigra

phy

is a

ccor

ding

to

Don

nally

(19

89);

di-

nofl

agel

late

cys

t bi

ostr

atig

raph

y is

acc

ordi

ng t

o M

udie

(19

89).

For

Site

s 98

7&

986

: m

agne

tost

ratig

raph

y ac

cord

ing

to C

hann

ell

et a

l.(1

999b

); p

lank

toni

c fo

ram

inif

eral

bio

stra

tigra

phy

is a

ccor

ding

to F

low

er (

1999

); c

alca

reou

s na

nnop

lank

ton

bios

trat

igra

phy

is a

ccor

ding

to S

hipb

oard

Sci

entif

ic P

arty

(19

96b)

; di

nofl

agel

late

cys

t bi

ostr

atig

raph

y (i

nclu

ding

sei

smic

ref

lect

ors)

is

acco

rdin

g to

Sm

elro

r (1

999)

.Fo

r Si

tes

910

& 9

11: m

agne

tost

ratig

raph

y is

acc

ordi

ng to

Shi

pboa

rd S

cien

tific

Par

ty (

1995

); p

lank

toni

c fo

ram

inif

eral

bio

stra

tigra

phy

ac-

cord

ing

to S

pieg

ler

(199

6);

calc

areo

us n

anno

plan

kton

bio

stra

tigra

phy

acco

rdin

g to

Sat

o an

d K

ameo

(19

96);

din

ofla

gella

te c

yst

bios

-tr

atig

raph

y ac

cord

ing

to M

atth

iess

en a

nd B

renn

er (

1996

).

Page 6: Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

38 Erik D. Anthonissen

0 50

10

0

15

0

20

0

25

0

30

0

35

0

40

0

45

0

50

0

55

0

60

0

65

0

70

0

75

0

80

0

85

0

90

0

95

0

1n

1r.1

n1r

.1r

? 2n ? ?

2r.1

r

N O D A T A

1r.x

x

Na

tS,

Gb

ull

(LC

O)

Sbre

Ra

ct, I

lac

Spli

Au

mb

Ois

r

Oce

nac

me

Ffil

~2

.3Sd

io

Tpel

~1

.0R5

sei

smic

re

flect

or

Selo

Aa

nd

acm

e

1r.2

n?

Ffil

0.2

-0

.44

R1 s

eism

ic

refle

ctor

Np

aS

(FC

O)

N. pachyderma (s) N. atl. (s)

Pla

c

NN 20 NN 19

?0.4

4

R7 s

eism

ic

refle

ctor

Ffil

acm

e(u

pp

er)

Ffil

acm

e(l

ow

er)

Sit

e 9

86

(co

mp

osi

te)

Sv

alb

ard

Ma

rgin

Depth (mbsf)

Polarity/ chron

Age (Ma)

PlanktonicForaminiferal

Zone

CalcareousNannoplankton

Zone

Dinoflagellatecyst Zone

0

10

20

30

40

50

60

70

80

90

10

0

110

12

0

13

0

14

0

15

0

16

0

17

0

18

0

19

0

20

0

21

0

22

0

23

0

0.4

4

Go

ce,

Gca

r(G

spp

me

d.)

Dat

ump

lane

“A”

? 2

.78

N O D A T A

1.6

7 -

1.7

3

Np

aS

(co

nsi

sen

t)

N. pachyderma (s) Ssem

, N

pa

D

N 21

Da

lt,

Mlim

(su

btr

op

ical

)

N 21

Ga

eq

Na

tS

N. atlantica (s)

Cg

ro(L

CO

)

Cg

ro

Sit

e 9

10

(co

mp

osi

te)

Ye

rma

k P

late

au

Depth (mbsf)

Polarity/ chron

Age (Ma)

PlanktonicForaminiferal

Zone

CalcareousNannoplankton

Zone

Pla

c

NN 20 NN 19 NN 19

Pl4 Pl3/Pl4 dro

pst

on

es

3.1

4

Ga

eq(t

em

pe

rate

)

3.1

0 50

10

0

15

0

20

0

25

0

30

0

35

0

Plac

NN 19

0.4

4

Gsp

p(m

ed.)

NN 19

1.7

3

Dat

um p

lane

“A”

?2.7

8

Ehux

0.2

9

20

Rasa

0.8

5

Gsp

p(la

rge)

1.2

4

Gsp

p(la

rge)

1.6

2

1n

1r.1

n1r

.1r

1r.2

r

2n

2A

n.1

n

? 2r

Gin

f, G

sci

(tem

per

ate)

Nat

D, G

rub

(tem

per

ate)

N. atl. (s)

UpperN. atl. (d)

]

Npa

S(c

onsi

sent

)

Npac. (s)

Oce

n ac

me

Ffil

Nat

S

Sit

e 9

11

(co

mp

osi

te)

Ye

rma

k P

late

au

Depth (mbsf)

Polarity/ chron

Age (Ma)

PlanktonicForaminiferal

Zone

CalcareousNannoplankton

Zone

Dinoflagellatecyst Zone

19

Ffil

acm

e(u

pp

er)

Ffil

acm

e(l

ow

er)

LowerPleistocene

(Upper Pliocene) Gelasian

MiddlePleistocene

No

rth

?ba

se P

leis

toce

ne in

Cha

nnel

et a

l. (19

99b)

base

Ple

isto

cene

in F

low

er (1

999)

So

uth

Zone

Even

t

Even

tla

st o

ccu

rre

nce

or

last

co

mm

on

occ

urr

en

ce (

LCO

)

firs

t o

ccu

rre

nce

or

firs

t co

mm

on

occ

urr

en

ce (

FC

O)

Even

tp

oin

t o

ccu

rre

nce

or

acm

e

‘war

m’ a

sse

mb

lag

e

0.4

4

age

fro

m L

ou

ren

s e

t al

. (2

00

4)

age

fro

m in

terp

ola

tio

n b

ase

d o

n

Be

rgg

ren

et

al. (

19

95

)0

.44

PL

AN

KT

ON

ICF

OR

AM

INIF

ER

AB

EN

TH

ICF

OR

AM

INIF

ER

A

TAXO

NCO

DE

TAXO

NCO

DE

Den

togl

obig

erin

a al

tispi

raD

alt

Cibi

cide

s lob

atul

us v

ar. g

ross

a (=

C. g

ross

us)

Cgro

Glo

bige

rinel

la a

equi

late

ralis

Gae

q

Glo

bige

rina

bullo

ides

Gbu

lD

IAT

OM

S

Glo

bige

rinoi

des c

ongl

obat

usG

con

TAXO

NCO

DE

Glo

boro

talia

cra

ssaf

orm

isG

cra

Nitz

schi

a fo

ssili

sN

fos

Glo

boco

nella

(Glo

boro

talia

) inf

lata

Gin

fN

itzsc

hia

rein

hold

iiN

rei

Glo

bige

rinoi

des o

bliq

uus e

xtre

mus

Goe

xN

itzsc

hia

sem

inae

Nse

m

Glo

boco

nella

(Glo

boro

talia

) pun

ctic

ulat

aG

pun

Prob

osci

a cu

rviro

stris

Pcur

Glo

bige

rinoi

des r

uber

Gru

bPs

eudo

euno

tia d

olio

lus

Pdol

Glo

boro

talia

scitu

laG

sci

Thal

assi

osira

jous

eae

Tjou

Glo

bige

rinoi

des t

rilob

usG

tri

Thal

assi

osira

nid

ulus

Tnid

Glo

boro

talia

(Men

arde

lla) l

imba

taM

limTh

alas

sios

ira o

estr

upii

Toes

Glo

boro

talia

(Men

arde

lla) m

enar

dii

Mm

en

Neo

glob

oqua

drin

a at

lant

ica

(dex

.)N

atD

DIN

OF

LA

GE

LL

AT

EC

YS

TS

Neo

glob

oqua

drin

a at

lant

ica

(sin

)N

atS

TAXO

NCO

DE

Neo

glob

oqua

drin

a du

tert

rei

Ndu

tAc

hom

osph

aera

and

alou

sien

sis

Aan

d

Neo

glob

oqua

drin

a pa

chyd

erm

a (d

ex.)

Npa

DA

mic

ulos

phae

ra u

mbr

acul

aA

umb

Neo

glob

oqua

drin

a pa

chyd

erm

a (s

in.)

Npa

SBr

igan

tedi

nium

sim

plex

Bsim

Spha

eroi

dine

llops

is se

min

ulin

a s.

l.Ss

emFi

lisph

aera

filif

era

Ffil

Turb

orot

alita

qui

nque

loba

Tqui

Inve

rtoc

ysta

lacr

ymos

aIla

c

Mul

tispi

nula

min

uta

(=Ba

tiaca

spha

era

min

uta)

Mm

in

CA

LC

AR

EO

US

NA

NN

OP

LA

NK

TO

NN

emat

osph

aero

psis

lem

nisc

ata

Nle

m

TAXO

NCO

DE

Ope

rcul

odin

ium

cen

troc

arpu

mO

cen

Calc

idis

cus m

acin

tyre

iCm

acO

perc

ulod

iniu

m is

rael

ianu

mO

isr

Dis

coas

ter s

urcu

lus

Dsu

rRe

ticul

atos

phae

ra a

ctin

ocor

onat

aRa

ct

Emili

ania

hux

leyi

Ehux

Sele

nope

mph

ix b

revi

spin

osa

Sbre

Gep

hyro

caps

a ca

ribbe

anic

a (M

ediu

m)

Gca

rSe

leno

pem

phix

dio

naec

ysta

Sdio

Gep

hyro

caps

a oc

eani

ca (M

ediu

m)

Goc

eSp

inife

rites

elo

ngat

usSe

lo

Gep

hyro

caps

a sp

p. (L

arge

)G

spp

Sum

atra

dini

um p

lioce

nicu

mSp

li

Pseu

doem

ilian

ia la

cuno

saPl

acTe

ctat

odin

ium

pel

litum

Tpel

Retic

ulof

enes

tra

asan

oiRa

sa

Dat

um p

lane

"A" o

f Sat

o &

Kam

eo (1

996)

-

MIS

CE

LL

AN

EO

US

TAXO

N/E

VEN

TCO

DE

Seis

mic

refle

ctor

R1

R1

Seis

mic

refle

ctor

R5

R5

Seis

mic

refle

ctor

R7

R7

Leg

end

Fig

.2c.

Lat

e Pl

ioce

ne-P

leis

toce

ne c

orre

latio

n pa

nel

show

ing

sele

cted

oce

an d

rilli

ng s

ites

loca

ted

in t

heA

rctic

reg

ion.

Din

ofla

gella

te c

yst a

cme

even

ts a

re n

ew in

terp

reta

tions

acc

ordi

ng to

ana

lysi

s of

the

raw

fos

-si

l occ

urre

nce

data

in th

e re

spec

tive

stud

ies.

Age

s in

bol

d ar

e ac

cord

ing

to th

e as

tron

omic

al c

alib

ratio

ns o

fL

oure

ns e

t al.

(200

4). A

ll ot

her

ages

are

bas

ed o

n in

terp

olat

ions

acc

ordi

ng to

the

stud

ies

cite

d. W

here

pos

-si

ble,

the

four

chr

onos

trat

igra

phic

bou

ndar

ies

disc

usse

d ar

e in

dica

ted.

For

Site

986

: mag

neto

stra

tigra

phy

ac-

cord

ing

to C

hann

ell e

t al.

(199

9b);

pla

nkto

nic

fora

min

ifer

al b

iost

ratig

raph

y is

acc

ordi

ng to

Flo

wer

(19

99);

calc

areo

us n

anno

plan

nkto

n bi

ostr

atig

raph

y is

acc

ordi

ng to

Shi

pboa

rd S

cien

tific

Par

ty (

1996

b); d

inof

lage

l-la

te c

yst b

iost

ratig

raph

y (i

nclu

ding

sei

smic

ref

lect

ors)

is a

ccor

ding

to S

mel

ror

(199

9). F

or S

ites

910

& 9

11:

mag

neto

stra

tigra

phy

is a

ccor

ding

to S

hipb

oard

Sci

entif

ic P

arty

(19

95);

pla

nkto

nic

fora

min

ifer

al b

iost

ratig

-ra

phy

acco

rdin

g to

Spi

egle

r (19

96);

cal

care

ous

nann

opla

nkto

n bi

ostr

atig

raph

y ac

cord

ing

to S

ato

and

Kam

eo(1

996)

; din

ofla

gella

te c

yst b

io -s

trat

i gra

phy

acco

rdin

g to

Mat

thie

ssen

and

Bre

nner

(19

96).

Page 7: Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

tional Commission on Stratigraphy as formal globalboundaries (Ogg et al. in press). The Base Upper Pleis-tocene Subseries is provisionally placed at the base ofthe Eemian Interglacial in Marine Isotope Stage (MIS)5. The Base Middle Pleistocene Subseries is provi-sionally placed at the Brunhes-Matuyama magnetic re-versal (Gibbard 2003). The identification of thesechronostratigraphic boundaries outside of the Mediter-ranean type area is possible via first-order principaland secondary correlative events associated with theGSSPs (Aguirre and Pasini 1985, Rio et al. 1998). Inthe Nordic Atlantic region, only two secondary correl-ative marker events for the base Pleistocene GSSP atVrica have been identified. These are the calcareousnannofossil last occurrence of Calcidiscus macintyrei(northern North Atlantic) and the first occurrence ofmedium Gephyrocapsa spp. (Yermak Plateau). For di-rect correlation to the base Gelasian GSSP, the last oc-currence of Discoaster surculus was the only primarycorrelative event observed in the northern North Atlantic (Fig. 3). In addition to these relatively rare observations, the following microfossil markers bestapproximate the four main chronostratigraphic bound-aries dividing the Late Pliocene – Pleistocene intervalin this region (see Appendix 1 for details):

4.1 Base Upper Pleistocene (0.126 Ma)

Planktonic foraminiferaAt all ODP sites in the Nordic Atlantic region whereMIS 5e was identified, this level occurred within theNeogloboquadrina pachyderma (sinistral) Zone. Inaddition, it marks the base of a warm temperate plank-tonic foraminiferal assemblage at ODP Sites 918 and919 (Spezzaferri 1998), consistent with the Eemian In-terglacial.

Benthic foraminiferaThis level coincides with a high-productivity benthicforaminiferal assemblage rich in Bulimina marginata,Cassidulina laevigata and Bolivina spp. in the NorthSea (Knudsen and Sejrup 1988). It may coincide withthe last common occurrence of Elphidium ustulatum inneritic deposits (see Appendix 1).

Calcareous nannoplanktonAt ODP Site 983, on the Gardar Drift in the northernNorth Atlantic, the base of MIS 5 occurs approximate-ly 15 metres below the seafloor (Koç et al. 1999), andca. 10 metres above the first occurrence of Emilianiahuxleyi (0.29 Ma in Lourens et al. 2004). The base of

the Upper Pleistocene occurs at a level approximatingto the middle of Calcareous Nannoplankton ZoneNN21. The same is true for ODP Site 919 on the EastGreenland margin (Koç and Flower 1998) and ODPSite 643 on the Vøring Plateau (Jansen et al. 1989).

DiatomsBased on the oxygen isotope studies at ODP Sites 983and 919, the boundary should be placed within theThalassiosira oestrupii Zone of Koc et al. (1999). Itcan be identified more precisely as the base of the sec-ond and largest acme of T. oestrupii, as counted eitheruphole or downhole.

4.2 Base Middle Pleistocene (0.781 Ma)

Planktonic foraminiferaAt ODP Site 919, on the East Greenland margin in thenorthern North Atlantic, the top of MIS 19 (warm stage)corresponds to the last common occurrence (LCO) ofthe ‘warm-temperate’ species Globorotalia scitula andGloborotalia inflata (new event identified in Flower1998 and Spezzaferri 1998). Similarly, at neighbouringODP Site 918 the last common occurrence of the ‘cool-temperate’ (‘warm-subpolar’) Neo globoquadri-na pachy derma (dextral) and the slightly later LCON. dutertrei occur close to the Brunhes-Matuyamaboundary. This level is also marked by a maximum inPleistocene planktonic foraminiferal species diversityat both East Greenland Margin ODP Sites 918 and 919(Spezzaferri 1998), consistent with the top of the MIS19 warm stage (Fig. 2a). North of the Greenland-Scot-land Ridge, this ‘cool-temperate’ assemblage appearsto be absent at this level with the LCO (consistent)N. pachyderma (dextral) occurring older, close to thePliocene-Pleistocene boundary (Spiegler and Jansen1989; Spiegler 1996). On the Yermak Plateau, the LCO(consistent) N. pachyderma (dextral) does, however,occur together with the last occurrence of a cool-tem-perate assemblage close to the Pliocene-Pleistoceneboundary (Spiegler 1996). The lack of a clearly identi-fiable younger LCO N. pachyderma (dextral) and other“warmer species” at most sites north of the GSR may beattributed to a reduced impact of warmer interglacialsurface currents at these higher latitudes.

Benthic foraminiferaAt shallow neritic paleo-water depths in the North Sea,the base of the Middle Pleistocene corresponds to thetop of a warm assemblage of abundant Bulimina mar-

39Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region

Page 8: Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

ginata, Trifarina fluens and Cassidulina teretis (Sejrupet al. 1987). This may coincide with the first commonoccurrence of the cold-indicator Elphidium asklundi(Knudsen and Asbjørnsdottir 1991). At Lower Neriticto Upper Bathyal depths the last occurrence of Cibi-cides grossus approximates the boundary (King 1989;Osterman 1996). At Lower Bathyal depths the Mid-Pleistocene saw the extinction of deep-sea benthicforaminifera with elongate, cylindrical tests and high-ly specialised apertures. The ‘Stilostomella Extinction’has been documented globally as occurring around theBrunhes-Matuyama boundary. This includes ODPSites 980 and 982 in the northern North Atlantic,where the event was seen to culminate at ~ 0.694 Maat Lower Bathyal water depths (Kawagata et al. 2005).

Calcareous nannoplanktonAt ODP Site 911, on the Yermak Plateau, Sato andKameo (1996) found the last occurrence of Retic-ulofenestra asanoi at 0.85 Ma. This species had its lastcommon occurrence calibrated astronomically in the

South Atlantic and Eastern Mediterranean to 0.9 Ma inLourens et al. (2004). This is the only nannofossilmarker for the base Middle Pleistocene in the NordicAtlantic region and was only identified at this high-Arctic location. It is believed to have entered the Arc-tic through the Bering Strait.

DiatomsSouth of the Greenland-Scotland Ridge, the best bio-stratigraphic approximation to the base of the MiddlePleistocene is the last occurrence of the diatomNitzschia seminae. This event was dated to 0.84 Ma(MIS 21) at the northern North Atlantic ODP Site 983(Koç et al. 1999) and 0.817–0.895 Ma (MIS 22–24) atODP Site 919 on the East Greenland Margin (Koç andFlower 1998).

Dinoflagellate cystsIn the Norwegian Sea, Smelror (pers. comm.) placedthe last occurrence of Filisphaera filifera at 1.4 Ma.This age is according to correlations with the nanno-

40 Erik D. AnthonissenA

ge (

Ma)

StandardChrono-

stratigraphy

Epoc

h

Stag

e

Geom

agne

ticPo

larity

Tim

e Sc

aleCalcareous Nannoplankton

Selected (Sub-)Tropical Bioevents according to Lourens et al. (2004)(Bold = GSSP correlative events)

0

1

2

3

Plio

cene

Ple

isto

cene

Hol

.

Pia

cenz

ian

Gel

asia

n

2.59

1.81

E. P

leis

t.

0.78

M. P

leis

t.

L.Pl.0.13

0.78

0.991.171.19

1.78

1.95

2.132.15

2.59

3.033.123.21

3.33

4.19

C2A

C2

C1

NN16

NN172.49

NN18

2.39

NN19

1.93

NN21

0.29

0.61Gephyrocapsa sp.3

1.02small Gephyrocapsa spp. dominance

1.24

N20

/N21

N22

2.0

PL3

PL43.14

PL5

3.13

PL6

2.39

Pt1

1.77

2.0 Gr. truncatulinoides

0.61Globorotalia tosaensis

1.77Gs. fistulosus

2.39Gr. miocenica [Atl.]

3.13Dentoglobigerina altispira

3.14Sphaeroidinellopsis seminulina

3.24 Gr. inflata

1.3Globigerinoides obliquus

1.58

Neogloboquadrina acostaensis

1.64Globoturborotalita apertura

1.98Globigerinoides extremus

2.24Globorotalia limbata

2.3Globoturborotalita woodi

3.23Globoquadrina baroemoenensis

0.29Emiliania huxleyi

0.44

Pseudoemiliania lacunosa

0.91Reticulofenestra asanoi

1.6

Calcidiscus macintyrei

1.93Discoaster brouweri1.95Discoaster triradiatus

2.39Discoaster pentaradiatus

2.49Discoaster surculus

2.8Discoaster tamalis

large Gephyrocapsa spp.

Planktonic Foraminifera

Selected (Sub-)Tropical Bioevents according to Lourens et al. (2004)(Bold = GSSP correlative events)

2.41Gr. puncticulata +

Neogloboquadrina atlantica (s) [Med.]

1.79Neogloboquadrina spp.(s) common [Med.]

Selected Age Calibrated Nordic Markers

0.13base 2nd acme (up/downhole) of(DT) Thallassiosira oestrupii (A,B)

0.29 (CN) Emiliania huxleyi (A-D,F)

0.84(DT) Nitzschia seminae (A)

1.0

(DC) Filisphaera filifera and/or(DC) Nematosphaeropsis lemniscata (B,F,G)

0.9(BF) Cibicides grossus L. Neritic-U. Bathyal (F, G)

0.44(CN) Pseudoemiliania lacunosa (A,B,D,F)

1.7-1.8 (PF) N. pachyderma (s)common (A,C,D,F)

1.7-1.9(PF) Neogloboquadrina

atlantica (d) (B,D,F)

1.6(CN) Calcidiscus macintyrei (A)

1.73

medium Gephyrocapsa spp.1.73

(CN) medium

Gephyrocapsa spp. (F)

(DC) top of Upper F. filiferaacme (D,F)

1.8

(PF) N. atlantica (s) consistently common (A,G) 2.6

2.4-2.6(DC) base of Lower Filisphaera filiferaacme (D,F)

0.44NN20

(PF) Foraminifera(CN) Nannoplankton(DC) Dinoflagellates(DT) Diatoms

(A) Northern Atlantic(B) Irminger Basin(C) Iceland Plateau(D) Vøring Plateau

0.3(DT) Proboscia curvirostris (A,B)

0.78(BF) top acme B. marginata-C. teretis-T. fluens (G)

(CN) large Gephyrocapsa spp. (A,F) 1.24

1.8(BF) Cibicides grossus M. Neritic (G)

2.5-2.6(BF) Monspeliensina pseudotepida U-M. Neritic (G)

2.49(CN) Discoaster surculus (A)

2.1 (PF) Globorotalia inflata (A,G)

See Appendix 1 for calibrations(Bold = GSSP correlative events)

(E) Greenland Sea(F) Yermak Plateau(G) North Sea

Legend

Fig. 3. Comparison of the low-latitude standard biozonations and important calibrated Nordic region bioevents. The geo-graphic distribution of calibration points for each Nordic bioevent is indicated by the letters following its name (see Legend).

Page 9: Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

plankton stratigraphies of ODP Leg 151 (Poulsen et al.1996). Mudie et al. (1990) placed the last occurrenceof F. filifera in the Norwegian Sea and North Atlanticat slightly older than the base of the Middle Pleis-tocene (ca. 1 Ma). The dinoflagellate cyst stratigra-phies for Norwegian Sea ODP Sites 643 and 642 placethis event slightly older than the base of the MiddlePleistocene. At Arctic ODP Site 911 this event occursat a level similar to the Norwegian Sea occurrence. Atthe Svalbard Margin ODP Site 986, it is significantlyyounger, occurring in the Upper Pleistocene (between0.2 and 0.44 Ma). Whether this is due to reworking ortrue extinction events is not known. The last occur-rence of F. filifera, according to these data, appears tobe a rough approximation to the base of the MiddlePleistocene in the Norwegian Sea and possibly furthersouth.

4.3 Base Pleistocene (1.806 Ma)

Planktonic foraminiferaNone of the base Pleistocene primary or secondaryGSSP markers are present in the Nordic deep-sea cores(with the exception of a rare occurrence of Globigeri-noides obliquus extremus in discontinuous Upper Plio -cene sediments of ODP Site 910), which usually offermost precise dating via direct correlation to the Geo-magnetic Polarity Time Scale. However, examinationof the microfossil data in the original definition of theVrica GSSP (Aguirre and Pasini 1985) shows, in addi-tion to the secondary markers mentioned, the first oc-currence of Neogloboquadrina pachyderma (sinistral)occurring just above the boundary. In a later study ofthe Vrica Section, Lourens et al. (1996) astronomical-ly calibrated the first common occurrence of N. pachy-derma (s) to 1.799 Ma. The first common occurrence(FCO) of this species has also been recorded in oceandrilling cores throughout the Nordic Atlantic region ascorresponding approximately to the top of the OlduvaiSubchron: North Atlantic DSDP Sites 609, 610, 611(Weaver and Clement 1986 recorded as a first occur-rence of the “encrusted” morphotype); Northern NorthAtlantic ODP Site 985 (Flower 1999), Norwegian SeaODP Sites 642, 643, 644 (Spiegler and Jansen 1989);Iceland Plateau Site 907 and Svalbard Margin ODPSite 986 (Flower 1999).

An additional planktonic foraminiferal event mark-ing the boundary is the last occurrence of Neoglobo-quadrina atlantica (dextral), or the top of the UpperN. atlantica (dextral) Zone of Spiegler and Jansen(1989). It has been noted at ODP Sites 644 on the

Vøring Basin, and 918 in the Irminger Basin. Thisevent can also be described as the last occurrence ofN. atlantica as a species including both coiling mor-photypes. This was the case in the original range chartpublished by Aguirre and Pasini (1985) where they ob-served the last occurrence of N. atlantica just abovethe boundary at Vrica. It may sometimes occur togeth-er with the LCO N. pachyderma (dextral).

Benthic foraminiferaAt upper neritic depths in the southern North Sea, thelast common occurrence of the benthic foraminiferElphidiella hannai occurs close to the Pliocene-Pleis-tocene boundary within the Olduvai Subchron (Kuhl -mann 2004). At deeper lower neritic depths in the central and northern North Sea, the last occurrence ofCibicides grossus is a better approximation to theboundary (see Appendix 1).

Dinoflagellate cystsThe dinoflagellate cyst stratigraphy of Kuhlmann(2004) for the southern North Sea describes a firstand second ‘Filisphera/Habicysta/Bitectatodiniumacme’ during the Olduvai normal event. A second or“upper F. filifera acme” is also evident in the raw fos-sil occurrence data of ODP Site 642 (see Mudie1989) on the Vøring Plateau, and at ODP Site911(see Mat thiessen and Brenner, 1996) on the Yer-mak Plateau. At both sites this upper acme corre-sponds closely to the top of the Olduvai Subchron.On the Svalbard Margin, at ODP Site 986, this sameacme event can be identified (see Smelror 1999),how ever, the ambiguous magnetostratigraphy inthese samples obscures a reliable age estimate. Ittherefore appears that the upper F. filifera acme is themost reliable palynological marker for a level that isslightly younger than the base Pleistocene through-out much of the Nordic Atlantic region.

Calcareous nannoplanktonThe calcareous nannoplankton stratigraphy of north-ern North Atlantic ODP Sites 981, 982 and 983 ap-pears to be the most reliable biostratigraphy for thistime interval, at least south of the GSR. At all threesites the last occurrence of Calcidiscus macintyreioccurs at the same level, above the Olduvai Sub-chron in C1r.3r. This datum was astronomically cal-ibrated to 1.66 Ma according to Lourens et al. (2004)and occurs approximately 10 metres above the firstcommon occurrence of N. pachyderma (s) at all threesites.

41Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region

Page 10: Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

4.4 Base Gelasian (2.588 Ma)

Planktonic foraminiferaIn the northern North Atlantic (DSDP Sites 609, 610,611), Weaver and Clement (1986) and Weaver (1987)found the last occurrence (LO) Neogloboquadrina at-lantica (sinistral) between the Gauss/Matuyama mag-netic polarity boundary and the Olduvai Subchron. Inthe southern North Sea core study by Kuhlmann(2004), the last common occurrence (LCO) of N. at-lantica was found just above the Gauss/Matuyamaboundary. There may be exceptions to this age inter-pretation (see Discussion).

Benthic foraminiferaThe benthic foraminiferal extinction of Monspeliensi-na pseudotepida in the Lower Neritic North Sea andoffshore Mid-Norway corresponds approximately tothe base of the Gelasian Stage (Kuhlmann 2004). Thisevent was used by King (1989) to define his NSB14/15 zonal boundary in the North Sea, which heplaced close to the LO of N. atlantica (s) at 2.3 Ma(age according to Weaver and Clement 1986). The LOMonspeliensina pseudotepida also occurrs at a levelwith a strontium isotope date of 2.5–4.5 Ma in thecentral North Sea well 2/4-C-11 (Eidvin and Riis1995).

Dinoflagellate cystsIn the southern North Sea, Kuhlmann (2004) found afirst and a second acme of Filisphera/Habicysta/Bi-tectatodinium. The base of the first (or lower) acmecorresponds closely to the Gauss-Matuyama magneticreversal and therefore to the base of the GelasianStage. An analysis of the raw fossil occurrence data forODP Sites 642 (Vøring Plateau), 986 (Svalbard Mar-gin) and 911 (Yermak Plateau) reveals both an upperand a lower F. filifera acme. On the Vøring Plateau, thebase of this acme approximately coincides with theGauss/Matuyama boundary (see Mudie 1989). On theSvalbard Margin, it occurs slightly below the “R7 seis-mic reflector” (Smelror 1999), with a correlated age ofca. 2.3 Ma according to Faleide et al. (1996). Whilethis suggests agreement with the Norwegian Sea age,this is not the case for the Yermak Plateau ODP Site911, where the acme occurs much higher in the se-quence. Further study is needed to ascertain the relia-bility of these acme events as regional markers.

A comparison between the key Nordic region bio-events and the standard (sub)tropical zonations is giv-en in Fig 3.

5. Discussion: Synchroneity/diachroneity of selectedplanktonic foraminiferal datums

The age of the last occurrence of Neogloboquadrinaatlantica (sinistral) in the Nordic Atlantic region has ahistory of conflicting interpretation. North Sea zona-tions have most often referred it to an age of 2.3 Ma,based on the temperate northern North Atlantic bio-magnetostratigraphy of DSDP Leg 94 (Weaver andClement 1986). This study shows this bioevent to beclearly time-transgressive across the region, but withthree age clusters recorded at ca. 1.8 Ma, ca. 2.3 Maand ca. 3.1 Ma (Appendix 1).

The oldest age assignment for the LO N. atlantica (s)of ca. 3.1 Ma was recorded at sites that show evidenceof a significant Mid-Pliocene warm-water influx:Vøring Plateau ODP Sites 642 & 643 (?C2r.1r) and Yermak Plateau ODP Site 910 (slightly older than thestandard Pl3/Pl4 planktonic foraminiferal zonal bound-ary of Berggren et al. 1995). The ‘Mid-Pliocene globalwarmth’ is evident here in the warm-temperate to sub-tropical planktonic foraminiferal assemblage at ODPSite 910 (including Dentoglobigerina altispira andGloborotalia (Menardella) limbata), and the acmes ofGlobigerina bulloides and the dinocyst Achomo-sphaera andalousiensis on the Vøring Pla teau. Knies et al. (2002) identified a seasonally ice-free period inthe eastern Arctic, contemporaneous with the ‘Mid-Pliocene global warmth’.

The ca. 2.3 Ma age assignment for the LO N. at-lantica (s) applies to the northern North Atlantic sitescurrently overlain by the warm surface waters of theNorth Atlantic Drift (ODP Sites 981, 982,?984) and forthe Vøring Plateau ODP Site 644, currently overlainby the warm Norwegian Coastal Current. At these lo-cations the LO N. atlantica (s) occurs within the pale-omagnetic Subchron C2r.2r.

The youngest age assignment for the LO N. atlanti-ca (s) of ca. 1.8 Ma (straddling the Pliocene-Pleis-tocene boundary) was recorded at sites currently over-lain by cold to mixed surface currents: Irminger BasinODP Site 918 (upper C2n), Iceland Sea ODP Sites 985(?C1r.3r) and 907 (mid C2n), Svalbard Margin ODPSite 986 (?C1r.3r) and Yermak Plateau ODP Site 911(mid C2n). The complete absence of this bioevent andpoor preservation encountered at Greenland Sea ODPSite 987 is probably due to dissolution as a result of theoverlying cold East Greenland Current. The presenceof this bioevent at the more northerly sites could be

42 Erik D. Anthonissen

Page 11: Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

due to the contemporaneous inception of the warmProto-Norwegian Current at ca. 1.9 Ma (Henrich et al.2002). Poore and Berggren (1974) observed this eventin the Labrador Sea at Deep Sea Drilling Project Site113 as a very rare occurrence at the same level as theLO Discoaster brouweri (1.9 Ma astronomically cali-brated age in Lourens et al. 2004). At other LabradorSea sites, the event occurred lower in the UpperPliocene, also possibly due to dissolution by the coldLabrador Current.

The age of the first common occurrence of Neo -globoquadrina pachyderma (sinistral) appears to belargely synchronous across the region, ranging from1.7–1.9 Ma (mid C2n to lower C1r.3r) in the majorityof the sites investigated. The only exceptions to thisrecord are the anomalously young ages of 1.0–1.1 Marecorded at East Greenland ODP Site 918 (upperC1r.2r) and Greenland Sea ODP Site 987 (mid C1r.1r).Both sites are presently overlain by the cold EastGreenland Current, which may have resulted in calcitedissolution of the lower parts of the N. pachyderma (s)acme. The inception of the warm Proto-NorwegianCurrent at ca. 1.9 Ma might have been responsible forthis sudden acme event. Since these warmer-water in-cursions are believed to have been confined to the east-ern and southern Nordic Seas, the Greenland Seawould not have experienced the same ameliorated sur-face-water conditions (Henrich et al. 2002). The ano -malously younger age does, however, coincide withthe globally synchronous first occurrence of the largermodern N. pachyderma (s) morphotype (Kucera andKennett, 2002).

6. Conclusions

The correlation of deep-sea cores in the Nordic At-lantic region highlights the geographical extent andstratigraphic range of a number of high-latitude mar-ker species. This has resulted in the identification ofsynchronous and diachronous bioevents, together withthe best biostratigraphic approximations to the stan-dard chronostratigraphic boundaries of this time peri-od. Although many of these taxa have been know toshow diachronous local ranges, this regional correla-tion allows for a better quantification of the degree ofthis diachroneity. This has resulted in identification ofthe best biostratigraphic approximations to the stand -ard Late Pliocene – Pleistocene chronostratigraphicboundaries at these high latitudes. In addition, thisstudy highlights biostratigraphic trends on both a re-

gional scale and on a more local scale between sub-basins.

Possible explanations for the diachronous record ofthe last occurrence Neogloboquadrina atlantica (sinis-tral) in the Nordic Atlantic region are: calcite dissolu-tion under cold ocean currents (results in a depressedrange); ice-rafting or other reworking (results in an ar-tificially extended range); sites located under warmsurface water from the Gulf Stream/North AtlanticDrift might have experienced unfavourable environ-mental conditions for this apparently cold-adapted,sinistrally-coiled N. atlantica morphotype (results in adepressed range). At locations dominated by cold ormixed ocean currents, the last occurrence of Neo -globoquadrina atlantica (s) occurs together with thefirst common occurrence of N. pachyderma (s).

The first common occurrence of N. pachyderma (s)is a largely synchronous datum in the region, and agood biostratigraphic approximation for the base ofthe Pleistocene. The exception occurs at locationsdominated by cold ocean currents such as the EastGreenland Current, where only the uppermost part ofthe acme is present. The earlier onset of this acmeevent in the southern and eastern parts of the regionmay be related to the inception of the warm Proto-Nor-wegian Current (Henrich et al. 2002).

The continuing efforts of the Integrated Ocean Dril -ling Program (IODP) and further advances in amino-acid dating, OSL and isotope dating methods may im-prove linking these high-latitude microfossil recordsto the standard Neogene chronostratigraphic defini-tions of the Mediterranean.

Acknowledgements. This study, under the supervisionof Felix M. Gradstein, is part of an ongoing project at theNatural History Museum in Oslo (Norway) to calibrateNordic Upper Cenozoic biozones relative to the standardglobal time scale. Support comes from the Natural HistoryMuseum, University of Oslo and the Norwegian InteractiveLithostratigraphic Lexicon (NORLEX Project).

7. References

Aguirre, E., Pasini, G., 1985. The Pliocene-Pleistoceneboundary. Episodes 8(2), 116–120.

Aksu, A. E., Kaminski, M. A., 1989. Neogene planktonicforaminiferal biostratigraphy and biochronology in Baf-fin Bay and the Labrador Sea. In: Srivastava, S. P., Arthur,M., Clement, B., et al. (Eds.), Proceedings of the OceanDrilling Program, Scientific Results 105, Ocean DrillingProgram, College Station, p. 287–304.

43Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region

Page 12: Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

Berggren, W. A., Kent, D.V., Swisher, C. C., III., Aubry,M.-P., 1995. A revised Cenozoic geochronol -ogy andchronostratigraphy. In: Berggren, W. A., Kent, D.V.,Hardenbol, J., (Eds.), Geochronology, Time Scales andGlobal Stratigraphic Correlations: A Unified TemporalFramework for a Historical Geology: Society of Eco-nomic Paleontologists and Mineralogists Special Volume54, 129–212.

Bleil, U., 1989. Magnetostratigraphy of Neogene and Qua-ternary sediment series from the Norwegian Sea. In: Eld-holm, O., Thiede, J., Taylor, E. et al. (Eds.), Proceedingsof the Ocean Drilling Program, Scientific Results 104,Ocean Drilling Program, College Station, p. 829–901.

Brown, R. H., 1985. Amino acid dating. Origins 12(1), 8–25.

Channell, J. E. T., Amigo, A. E., Fronval, T., Rack, F.,Lehman, B., 1999a. Magnetic stratigraphy at Sites 907and 985 in the Norwegian-Greenland Sea and a revisionof Site 907 composite section. In: Raymo, M. E., Jansen,E., Blum, P., Herbert, T. D. (Eds.), Proceedings of theOcean Drilling Program, Scientific Results 162, OceanDrilling Program, College Station, p. 131–148.

Channell, J. E. T., Lehman, B., 1999. Magnetic stratigraphyof North Atlantic Sites 980–984. In: Raymo, M. E.,Jansen, E., Blum, P., Herbert, T. D. (Eds.), Proceedings ofthe Ocean Drilling Program, Scientific Results 162,Ocean Drilling Program, College Station, p. 113–130.

Channell, J. E. T., Smelror, M., Jansen, E., Higgins, S. M.,Lehman, B., Eidvin, T., Solheim, A., 1999b. Age modelsof glacial fan deposits off East Greenland and Svalbard(Sites 986 and 987). In: Raymo, M. E., Jansen, E., Blum,P., Herbert, T. D. (Eds.), Proceedings of the OceanDrilling Program, Scientific Results 162, Ocean DrillingProgram, College Station, p. 149–166.

Denne, R. A., Sen Gupta, B. K., 1990. First and Last Occur-rences of Quaternary Benthic Foraminifera in the Gulf ofMexico: Relation to Paleoceanography. Gulf Coast Asso-ciation of Geological Societies Transactions 40, 177–180.

de Vernal, A., Mudie, P. J. 1989. Pliocene and Pleistocenepalynostratigraphy at ODP Sites 646 and 647, eastern andsouthern Labrador Sea. In: Srivastava, S. P., Arthur, M.,Clement, B., et al. (Eds.), Proceedings of the OceanDrilling Program, Scientific Results 105, Ocean DrillingProgram, College Station, p. 401–422.

Donnally, D. M., 1989. Calcareous nannofossils of the Nor-wegian-Greenland Sea: ODP Leg 104. In: Eldholm, O.,Thiede, J., Taylor, E. et al. (Eds.), Proceedings of theOcean Drilling Program, Scientific Results 104, OceanDrilling Program, College Station, p. 459- 486.

Eidvin, T., Riis, F., 1995. Neogen og øvre paleogen strati-grafi på norsk kontinentalsokkel (fra Ekofisk-feltet i sen-trale Nordsjøen til Bjørnøya-Vest i sydvestlige deler avBarentshavet). Oljedirektoratet, Stavanger, 135 p.

Eidvin, T., Jansen, E., Riis, F., 1993. Chronology of Tertiaryfan deposits off the western Barents Sea: Implications forthe uplift and erosion history of the Barents Shelf. MarineGeology 112, 109–131.

Faleide, J. I., Solheim, A., Fiedler, A., Hjelstuen, B. O., An-dersen, E. S., Vanneste, K., 1996. Late Cenozoic evolu-tion of the western Barents Sea-Svalbard continental mar-gin. Global Planetary Change 12, 53–74.

Feyling-Hanssen, R. W. 1986. Grænsen mellem Tertiær ogkvartær i Nordsøen og i Arktis, fastlagt og korreleret vedhjælp af benthoniske foraminiferer. Dansk GeologiskForening Årsskrift for 1985, 19–33.

Flower, B. P., 1998. Mid- to late Quaternary stable isotopestratigraphy and paleoceanography at Site 919 in theIrminger Basin. In: Saunders, A. D., Larsen, H. C., WiseJr, S. W. (Eds.), Proceedings of the Ocean Drilling Pro-gram, Scientific Results 152, Ocean Drilling Program,College Station, p. 243–248.

Flower, B. P., 1999. Data Report: Planktonic fora minifersfrom the subpolar North Atlantic and Nordic Seas: Sites980–987 and 907. In: Raymo, M. E., Jansen, E., Blum, P.,Herbert, T. D. (Eds.), Proceedings of the Ocean DrillingProgram, Scientific Results 162, Ocean Drilling Pro-gram, College Station, p. 19–34.

Fukuma, K., 1998. Pliocene-Pleistocene magnetostratigra-phy of sedimentary sequences from the Irminger Basin.In: Saunders, A. D., Larsen, H. C., Wise Jr, S. W. (Eds.),Proceedings of the Ocean Drilling Program, ScientificResults 152, Ocean Drilling Program, College Station,p. 265–269.

Gibbard, P. L., 2003. Definition of the Middle-Upper Pleis-tocene boundary. Global and Planetary Change 36, 201–208.

Gradstein, F. M., Backstrom, S. A., 1996. Cainozoic bios-tratigraphy and paleobathymetry, northern North Sea andHaltenbanken. Norsk Geologisk Tidsskrift 76, 3–32.

Gradstein, F. M., Ogg, J. G., Smith, A. G., Agterberg, F. P.,Bleeker, W., Cooper, R. A., Davydov, V., Gibbard, P.,Hinnov, L. A., House, M. R., Lourens, L., Luterbacher,H. P., McArthur, J., Melchin, M. J., Robb, L. J., Shergold,J., Villeneuve, M., Wardlaw, B. R., Ali, J., Brinkhuis, H.,Hilgen, F. J., Hooker, J., Howarth, R. J., Knoll, A. H.,Laskar, J., Monechi, S., Plumb, K. A., Powell, J., Raffi, I.,Röhl, U., Sadler, P., Sanfilippo, A., Schmitz, B., Shackle-ton, N. J., Shields, G. A., Strauss, H., Van Dam, J., vanKolfschoten, T., Veizer, J., Wilson, D., 2004. A GeologicTime Scale 2004. Cambridge University Press, UnitedKingdom, 589 p.

Gregory, D., Bridge, V. A., 1979. On the Quaternaryforaminiferal species Elphidium? ustulatum Todd 1957:its stratigraphic and paleoecological implications. Journalof Foraminiferal Research 9(1), 70–75.

Head, M. J., Riding, J. B., Eidvin, T., Chadwick, R. A., 2004.Palynological and foraminiferal biostratigraphy of (Up-per Pliocene) Nordland Group mudstones at Sleipner,northern North Sea. Marine and Petroleum Geology 21,277–297.

Henrich, R., Baumann, K., Huber, R., Meggers, H., 2002.Carbonate preservation records of the past 3 Myr in theNorwegian-Greenland Sea and the northern North At-lantic: implications for the history of NADW production.Marine Geology 184, 17–39.

44 Erik D. Anthonissen

Page 13: Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

Jansen, E., Slettemark, B., Bleil, U., Henrich, R., Kringstad,L., Rolfsen, S., 1989. Oxygen and carbon isotope stratig-raphy and magnetostratigraphy of the last 2.8 Ma: paleo-climatic comparisons between the Norwegian Sea and theNorth Atlantic. In: Eldholm, O., Thiede, J., Taylor, E., etal.(Eds.), Proceedings of the Ocean Drilling Program,Scientific Results 104, Ocean Drilling Program, CollegeStation, p. 255–269.

Kawagata, S., Hayward, B. W., Grenfell, H. R., Sabaa, A.,2005. Mid-Pleistocene extinction of deep-sea foramini -fera in the North Atlantic Gateway (ODP Sites 980 and982). Palaeogeography, Palaeoclimatology, Palaeoecolo-gy 221, 267–291.

King, C., 1983. Cainozoic micropalaeontological biostratig-raphy of the North Sea. Report of the Institute of Geo-logical Sciences 82-7, London, 40 p.

King, C., 1989. Cenozoic of the North Sea. In: Jenkins,D. G., Murray, J. W. (Eds.): Stratigraphical atlas of fossilForaminifera. Ellis Horwood, Chichester, 418–489.

Knies, J., Matthiessen, J., Vogt, C., Stein, R., 2002. Evi-dence of ‘Mid-Pliocene (similar to 3 Ma) globalwarmth’ in the eastern Arctic Ocean and implications forthe Svalbard/Barents Sea ice sheet during the late Plio -cene and early Pleistocene (similar to 3–1.7 Ma). Bore-as 31, 82–93.

Knudsen, K. L., Asbjörnsdóttir, L., 1991. Plio-Pleistoceneforaminiferal stratigraphy and correlation in the CentralNorth Sea. Marine Geology 101, 113–124.

Knudsen, K. L., Sejrup, H. P., 1988. Amino acid geochronol-ogy of selected interglacial sites in the North Sea area.Boreas 17, 347–354.

Koç, N., Flower, B. P., 1998. High-resolution Pleistocene di-atom biostratigraphy and paleoceanography of Site 919from the Irminger Basin. In: Saunders, A. D., Larsen,H. C., Wise Jr, S. W. (Eds.), Proceedings of the OceanDrilling Program, Scientific Results 152, Ocean DrillingProgram, College Station, p. 209–220.

Koç, N., Hodell, D. A., Kleiven, H., Labeyrie, L., 1999. High-resolution Pleistocene diatom biostratigraphy of Site 983and correlations with isotope stratigraphy. In: Raymo,M. E., Jansen, E., Blum, P., Herbert, T. D. (Eds.), Proceed-ings of the Ocean Drilling Program, Scientific Results162, Ocean Drilling Program, College Station, p. 51–62.

Kucera, M., Kennett, J. P., 2002. Causes and consequencesof a middle Pleistocene origin of the modern planktonicforaminifer Neogloboquadrina pachyderma sinistral. Ge-ology 30, 539–542.

Kuhlmann, G. 2004. High resolution stratigraphy and pale-oenvironmental changes in the southern North Sea duringthe Neogene – An integrated study of Late Cenozoic ma-rine deposits from the northern part of the Dutch offshorearea. Mededelingen van de Faculteit Aardwetenschappen245, Utrecht University, Utrecht, 205 p.

Lourens, L. J., Hilgen, F. J., Shackleton, N. J., Laskar, J.,Wilson, D., 2004. The Neogene Period. In: Gradstein,F. M., Ogg, J. et al. (Eds.), A Geologic Time Scale 2004.Cambridge University Press, United Kingdom, p. 409–430; 469–484.

Lourens, L. J., Hilgen, F. J., 1996. Early Pleistocene chronol-ogy of the Vrica section (Calabria, Italy). Paleoceanogra-phy 11(6), 797–812.

Lourens, L. J., Hilgen, F. J., Zachariasse, W. J., van Hoof,A. A. M., Antonarakou, A., Vergaud-Grazzini, C., 1996.Evaluation of the Plio-Pleistocene astronomical time -scale. Paleoceanography 11, 391–413.

Mackensen, A., Sejrup, H. P., Jansen, E., 1985. The distribu-tion of living benthic Foraminifera on the continentalslope and rise off southwest Norway. Marine Micropale-ontology 9, 275–306.

Matthiessen, J., Brenner, W., 1996. Dinoflagellate cyst ecos-tratigraphy of Pliocene-Pleistocene sediments from theYermak Plateau (Arctic Ocean, Hole 911A). In: Myhre,A. M., Thiede, J., Firth, J. V., et al. (Eds.), Proceedings ofthe Ocean Drilling Program, Initial Reports 151, OceanDrilling Program, College Station, p. 243–253.

McCarthy, F. M. G., Gostlin, K. E., Mudie, P. J., Scott, D. B.,2000. Synchronous palynological changes in early Pleis-tocene sediments off New Jersey and Iberia, and a possi-ble paleoceanographic explanation. Palynology 24, 63–77.

Mudie, P. J., 1989. Palynology and dinocyst biostratigraphyof the Late Miocene to Pleistocene, Norwegian Sea: ODPLeg 104, Sites 642 to 644. In: Eldholm, O., Thiede, J.,Taylor, E. et al. (Eds.), Proceedings of the Ocean DrillingProgram, Scientific Results 104, Ocean Drilling Pro-gram, College Station, p. 587–610.

Mudie, P. J., de Vernal, A., Head, M. J., 1990. Neogene toRecent palynostratigraphy of circum-Arctic basins: re-sults from ODP Leg 104, Norwegian Sea, Leg 105, Baf-fin Bay, and DSDP Site 611, Irminger Sea. In: Bleil, U.,Thiede, J. (Eds.), Geological History of the Polar Oceans:Arctic Versus Antarctic, p. 609–646.

Ogg, J. G., Ogg, G., Gradstein, F. M., in press. The ConciseGeologic Time Scale. Cambridge University Press. Unit-ed Kingdom.

Osterman, L. E., 1996. Pliocene and Quaternary benthicforaminifers from site 910, Yermak Plateau. In: Thiede,J., Myhre, A. M., Firth, J.V., Johnson, G. L., Ruddiman,W. F. (Eds.), Proceedings of the Ocean Drilling Program,Scientific Results 151, Ocean Drilling Program, CollegeStation, p. 187–195.

Poore, R. Z., Berggren, W. A., 1974. Pliocene biostratigra-phy of the Labrador Sea: calcareous plankton. Journal ofForaminiferal Research 4(3), 91–108.

Poulsen, N. E., Manum, S. B., Williams, G. L., Ellegaard,M., 1996. Tertiary dinoflagellate biostratigraphy of Sites907, 908 and 909 in the Norwegian-Greenland Sea. In:Thiede, J., Myhre, A. M., Firth, J.V., Johnson, G. L., Rud-diman, W. F. (Eds.), Proceedings of the Ocean DrillingProgram, Scientific Results 151, Ocean Drilling Pro-gram, College Station, p. 255–287.

Reale, V., Monechi, S., 2005. Distribution of the calcareousnannofossil Reticulofenestra asanoi within the Early-Middle Pleistocene transition in the Mediterranean Seaand Atlantic Ocean: correlation with magneto- and oxy-gen isotope stratigraphy. In: Head, M. J., Gibbard, P. L.

45Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region

Page 14: Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

(Eds.), Early-Middle Pleistocene transition: the land-ocean evidence, Special Publication of the GeologicalSociety, London, Special Publication 247, p. 117–130.

Rio, D., Sprovieri, R., Castradori, D., Di Stefano, E., 1998.The Gelasian Stage (Upper Pliocene): A new unit of theglobal standard chronostratigraphic scale. Episodes 21(2),82–87.

Sato, T., Kameo, K., 1996. Pliocene to Quaternary calcare-ous nannofossil biostratigraphy of the Arctic Ocean, withreference to Late Pliocene glaciation. In: Thiede, J.,Myhre, A. M., Firth, J.V., Johnson, G. L., Ruddiman,W. F. (Eds.), Proceedings of the Ocean Drilling Program,Scientific Results 151, Ocean Drilling Program, CollegeStation, p. 39–59.

Seidenkrantz, M., 1992. Plio-Pleistocene foraminiferal pale-oecology and stratigraphy in the northernmost North Sea.Journal of Foraminiferal Research 22(4), 363–378.

Sejrup, H. P., Aarseth, I., Ellingsen, K. L., Reither, E.,Jansen, E., 1987. Quaternary stratigraphy of the Fla denarea, central North Sea: a multidisciplinary study. Journalof Quaternary Science 2, 35–58.

Sejrup, H. P., Knudsen, K. L., 1999. Geochronology andpalaeoenvironment ofmarine Quaternary deposits in Den- mark:new evidence from northern Jutland. GeologicalMagazine 136, 561–578.

Shipboard Scientific Party, 1995. Site 911. In: Myhre, A. M.,Thiede, J., Firth, J.V., et al. (Eds.), Proceedings of theOcean Drilling Program, Initial Reports 151, OceanDrilling Program, College Station, p. 271–318.

Shipboard Scientific Party, 1996a. Sites 981, 982, 983 & 984.In: Jansen, E., Raymo, M. E., Blum, P. et al. (Eds.), Pro-ceedings of the Ocean Drilling Program, Initial Reports162, Ocean Drilling Program, College Station, p. 49–222.

Shipboard Scientific Party, 1996b. Sites 986, 987. In:Jansen, E., Raymo, M. E., Blum, P. et al. (Eds.), Pro-ceedings of the Ocean Drilling Program, Initial Reports162, Ocean Drilling Program, College Station, p. 287–387.

Smelror, M., 1999. Pliocene-Pleistocene and redeposited di-noflagellate cysts from the western Svalbard margin (Site986): biostratigraphy, paleoenvironments, and sedimentprovenance. In: Raymo, M. E., Jansen, E., Blum, P., Her-bert, T. D. (Eds.), Proceedings of the Ocean Drilling Pro-gram, Scientific Results 162, Ocean Drilling Program,College Station, p. 83–97.

Spezzaferri, S., 1998. Planktonic foraminifer bio -stratigra-phy and paleoenvironmental implications of Leg 152Sites (East Greenland Margin). In: Saunders, A. D.,Larsen, H. C., Wise Jr, S.W. (Eds.), Proceedings of theOcean Drilling Program, Scientific Results 152, OceanDrilling Program, College Station, p. 161–190.

Spiegler, D., 1996. Planktonic foraminifer Cenozoic bio -stratigraphy of the Arctic Ocean, Fram Strait (Sites 908–909), Yermak Plateau (Sites 910–912), and East Green-land Margin (Site 913). In Thiede, J., Myhre, A. M., Firth,J.V., Johnson, G. L., Ruddiman, W. F. (Eds.), Proceedingsof the Ocean Drilling Program, Scientific Results 151,Ocean Drilling Program, College Station, p. 153–167.

Spiegler, D., Jansen, E., 1989. Planktonic foraminifer bios-tratigraphy of Norwegian Sea sediments: ODP Leg 104. In:Eldholm, O., Thiede, J., Taylor, E. et al. (Eds.), Proceedingsof the Ocean Drilling Program, Scientific Results 104,Ocean Drilling Program, College Station, p. 681–696.

van der Vlerk, I. M. and Florschütz, F., 1953. The paleonto-logical base of the subdivision of the Pleistocene in theNetherlands. Verhandelingen Koninklijke NederlandseAkademie van Wetenschappen, Afdeling Natuurkunde 1e

Reeks XX(2), 1–58.Weaver, P. P. E., Clement, B. M., 1986. Synchroneity of

Pliocene planktonic foraminiferal datums in the North At-lantic. Marine Micropaleontology 10, 295–307.

Weaver, P. P. E., 1987. Late Miocene to Recent planktonicforaminifers from the North Atlantic: Deep Sea DrillingProject Leg 94. In: Ruddiman, W. F., Kidd, R. B.,Thomas, E., et al. (Eds.), Initial Reports of the Deep SeaDrilling Project, 94. U. S. Government Printing Office,Washington, p. 703–727.

Wei, W., 1998. Calcareous nannofossils from the southeastGreenland Margin: biostratigraphy and paleoceanogra-phy. In: Saunders, A. D., Larsen, H. C., Wise Jr, S.W.(Eds.), Proceedings of the Ocean Drilling Program, Sci-entific Results 152, Ocean Drilling Program, College Sta-tion, p. 147–160.

Zagwijn, W. H., 1974. The paleogeographic evolution of theNetherlands during the Quaternary. Geologie en Mijn-bouw 53, 369–385.

Manuscript received: March 13, 2008, rev. version received:April 8, 2008, accepted for print: April 9, 2008.

46 Erik D. Anthonissen

Page 15: Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

47Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region

Page 16: Late Pliocene and Pleistocene biostratigraphy of the ... · Late Pliocene and Pleistocene biostratigraphy of the Nordic Atlantic region Erik D.Anthonissen 1 With 3 figures and 1 appendix

48 Erik D. Anthonissen

Ap

pen

dix

1.C

alib

ratio

ns o

f ke

y m

icro

foss

il bi

oeve

nts

in th

e N

ordi

c A

tlant

ic r

egio

n. E

ach

calib

rate

d ag

e is

org

anis

ed a

ccor

ding

to th

e re

gion

/bas

in w

here

the

calib

rati-

on w

as m

ade.

Whe

re n

esse

cary

, the

ave

rage

of

thes

e ca

libra

ted

ages

has

bee

n as

crib

ed to

a d

iach

rono

us b

ioev

ent.