35
Laser/cavity R&D for a polarised positron source Outline •Introductio n •Goal of the R&D •Status •Futur Collaborating Institutes: Hiroshima, KEK, LAL

Laser/cavity R&D for a polarised positron source

  • Upload
    zyta

  • View
    52

  • Download
    0

Embed Size (px)

DESCRIPTION

Laser/cavity R&D for a polarised positron source. Collaborating Institutes: Hiroshima, KEK, LAL. Outline Introduction Goal of the R&D Status Futur. Up to300 MHz. 300 MHz. Up to 300 MHz. Goal(s) of the R&D. Former goal : Compton based polarised positron source for ILC - PowerPoint PPT Presentation

Citation preview

Page 1: Laser/cavity R&D for a polarised positron source

Laser/cavity R&D for a polarised positron source

Outline •Introduction•Goal of the R&D•Status•Futur

Collaborating Institutes:Hiroshima, KEK, LAL

Page 2: Laser/cavity R&D for a polarised positron source

Up to 300 MHz

300 MHz

Up to300 MHz

Former goal : Compton based polarised positron source for ILC now a generic R&D on high flux [monchromatic] soft X-rays source e.g. production of 78keV X-rays for radiotherapy for brain cancer (glioblastom)

Goal(s) of the R&D

Optical resonator required to reach high average pulsed laser power

T. Omori

Page 3: Laser/cavity R&D for a polarised positron source

K. Moenig idea to modify the KEK schemeILC beam = trains of~3000 bunchs

•AND Train frequency =5Hz

100ms to create & 100ms to cool

the polarised e+

Introduction : e+ polarised source for the ILC

The original idea : the KEK scheme

Page 4: Laser/cavity R&D for a polarised positron source

10 of 600mJ Optical Cavities

ERL scheme for the e+ polarised source (proposed by A. Variola)

0.6J/pulse@1ps@60MHz <P>=36MW !!!For 1 cavity R&D ! (KEK, LAL)

1-3nc/bunches… R&D at Cornell& KEK

Kuriki-san

Page 5: Laser/cavity R&D for a polarised positron source

1ps Pulsed laser

Fabry-Perot cavitywith Super mirrors

Electron beam

R&D tasks on Fabry-Perot in 1ps pulsed regime: •Accelerator implementation & operations• Max. power gain (=enhancement factor) achievable [published : gain 200/120fs in 2007 & gain 6000/30ps at SLAC]•Minimisation of laser beam spot size to optimize Compton X-section

Laser/cavity R&D to reach 600mJ/pulse@~100 MHz

Page 6: Laser/cavity R&D for a polarised positron source

Complementary R/D in LAL and in KEK

Very High Enhancement ~ 20000-100000R/D in LAL

Moderate Enhancement ~ 1000R/D in KEK

Page 7: Laser/cavity R&D for a polarised positron source

Very High Enhancement ~ 20000-100000Small spot size ~ 10 micron

R/D in LAL

Moderate Enhancement ~ 1000Moderate spot size ~ 30 micron

R/D in KEK

Complementary R/D in LAL and in KEK

Page 8: Laser/cavity R&D for a polarised positron source

Very High Enhancement ~ 20000 - 100000Small spot size ~ 10 micronSofisticated cavity stucture with 4 mirrors

R/D in LAL

Moderate Enhancement ~ 1000Moderate spot size ~ 30 micronSimple cavity stucture with two mirrors

R/D in KEK

Complementary R/D in LAL and in KEK

Page 9: Laser/cavity R&D for a polarised positron source

Very High Enhancement ~ 20000 - 100000Small spot size ~ 10 micronSofisticated cavity stucture with 4 mirrors

R/D in LAL

Moderate Enhancement ~ 1000Moderate spot size ~ 30 micronSimple cavity stucture with two mirrors

R/D in KEK

Digital feedback

Analog feedback

Complementary R/D in LAL and in KEK

Page 10: Laser/cavity R&D for a polarised positron source

R&D at KEK : Cavity installation on the Accelerator Test Facility (ATF)

~ 54 m

30 m

Beam Energy

→ 1.28GeV

Beam Size

 → 100μm×10μm

Emittance  →

1.0x10-9 rad.m

1.0x10-11 rad.m

(Ultra Low !!)

(H. Shimizu)

.cavity

Page 11: Laser/cavity R&D for a polarised positron source

R&D Report in ATF

Laser Section Type YAG-VAN (1064nm) Power 10 W Frequency 357 MHz Pulse Width 10 psCavity Section Length 420 mm Mirror Reflection Coeff.

99.7 %

Beam Waist 60 μm ( in 2σ) Crossing Angle 12 degree

Page 12: Laser/cavity R&D for a polarised positron source

ATF e-Beam

LaserLaser

Port for ion pumpPort for ion pump

Terminal for piezo

Micro-positioning system

Page 13: Laser/cavity R&D for a polarised positron source
Page 14: Laser/cavity R&D for a polarised positron source

Laser

e-Beam

Mirror housing

Piezo housing

12deg.

Page 15: Laser/cavity R&D for a polarised positron source

Status :•Cavity received•Enhancement ~ 1000•Feedback under studies•Installation automn 2007

Page 16: Laser/cavity R&D for a polarised positron source

T. Udem et al. Nature 416 (2002) 233

R&D at LAL : toward very high power enhancement

Difficulty = properties of passive mode locked laser beams

Frequency comb all the combmust be locked to the cavity Feedback with 2 degrees of freedom : control of the Dilatation & translation

Page 17: Laser/cavity R&D for a polarised positron source

1 W Ti:sa laser1ps@frep=76MHz

vacuum cavity

R&D setup at LAL/Orsay

Status : Cavity locked (low gain ~1200)•Digital feedback (VHDL programming) set up•Already frep/frep=10-10 frep=30mHz for frep=76MHz•New mirrors in septembre gains 104-105

Page 18: Laser/cavity R&D for a polarised positron source

Small laser spot size &2 mirrors cavity unstable resonator (concentric resonator)

BUT astigmatic & linearly polarised eigen-modes

Stable solution: 4 mirror cavity as in Femto lasers

Non-planar 4 mirrors cavityAstigmatism reduced & ~circularly polarised eigenmodes

R&D at LAL : toward small laser spot size

e- beam

Laser input

Page 19: Laser/cavity R&D for a polarised positron source

3D cavity prototype

Cw laser diode inextended cavity config(Littrow configuration)

Y. Fedala

Page 20: Laser/cavity R&D for a polarised positron source

3D cavity modes

Exp. Higher order Modes

Th. results

Eigenmodes well described (shape and size)~10m spot size achieved (limited by mirror edge diffraction) mechanical stability measured

Page 21: Laser/cavity R&D for a polarised positron source

e- beam tube

Vacuum chamber Support

beam Support

Length 1.5m/2

tube diameter : 420 mm

4 mirrors cavity design for ATF

R. Cizeron

Page 22: Laser/cavity R&D for a polarised positron source

Spherical mirrors

3 Beam supports

Flat mirror

Flat mirror

Invar ( Fe-Ni alloy)

12 moteurs ‘encapsulated’ inside vaccum

Page 23: Laser/cavity R&D for a polarised positron source

Mirrors holders design study

3 piezos

θx & θy

motor

actuator θy

Z displacement

motor

actuator θx

Builded & tested at LAL

Page 24: Laser/cavity R&D for a polarised positron source

Futur: toward higher incident laser power

• Presently the laser average power is– 10W at KEK– 0.7W at Orsay

• Laser R&D– LAL : 150W average power (1ps@190MHz)

• Started in june 20072008• Installation at ATK with 4 mirrors cavity

– KEK & LAL : • 150WkW level after 2008

Page 25: Laser/cavity R&D for a polarised positron source

Laser Diode Laser Diode

40/170 40/170

Gold grating-based strectcher

OI

150 fs, 73 MHz

1W

High average power system

Femtosecond oscillator

Grating stretcher

CompressorFiber amplifiers

Doped photonic fibre :Large core diameter (up to 100m !!!)& monomode..

F. Röser et al. Optics letters, 30, p2754, 2005

Max published

Page 26: Laser/cavity R&D for a polarised positron source

•For most of laser applications : Interests for high peak power, not for high average power and/or femto pulses we have to do laser R&D ourselves for high repetition rate and 1ps

Evolution of continuous wave fibre laser power

“4.8kW average power may be(hardly) achievedIn the future” [131W today…]

Photonic fibre is a very recent promising technology …

Page 27: Laser/cavity R&D for a polarised positron source

Summary• R&D on high flux soft X-rays based on

Laser-e beam Compton scattering– Complementary R&D at KEK & LAL

• 2 mirrors & moderate enhancement ~1000 installed at ATF/KEK– Very high enhancement factor studies at LAL & non planar

resonator conception/construction• New high average power laser source KEK/LAL R&D

started– Needed to reach the required X-rays rate

• ~1-10Mw average power inside cavity expected • = 20-200GW peak power• =8-80mJ/pulse

• Would this help for the Photon Linear Collider ?– Much more pulse power needed…

non-linear & thermal effects in the mirror coatings ? huge cavity size

Page 28: Laser/cavity R&D for a polarised positron source

Backslides

Page 29: Laser/cavity R&D for a polarised positron source

1 Feb 2007 IHEP, China ILC e+ source R&D Group 29

Yield Evaluation• 1.5x109 electrons/bunch generates

8.2x108 /collision.• 10 collisions make 8.2x109 /bunch total,

2.4x109 /bunch in effective energy range.• Assuming 0.3% efficiency for e+ conversion

and capture, 7.5x106 e+/bunch is obtained.• This bunch train continues 100ms with 6.2ns

spacing.• # of revolutions of DR(C~6.7km) in 100ms is

4000. Top-up injection up to 4000 bunches in a same bucket make 3.0x1010 e+/bunch.

• Another 100ms is for damping

Page 30: Laser/cavity R&D for a polarised positron source

1 Feb 2007 IHEP, China ILC e+ source R&D Group 30

Yield Evaluation (2)Energy spread after IRs (ERL)

Energy spread after IRs (CR)

By E. Bulyak

Page 31: Laser/cavity R&D for a polarised positron source

Cardan (gimbal)

3 piezos at 120°

membrane to support mirror

piezoØ 1 inch

Page 32: Laser/cavity R&D for a polarised positron source

Une application médicale à l’ESRF (ligne ID17): radiothérapie pour le traitement des gliomes

Pas de traitement pour le ‘glioblastome’ aujourd’hui (& 7 cas/105 par an…) :•Idée (cf these S. Corde, J.F. Adam, ESRF)fixer un élément lourd (platine) sur l’ADN cancéreuse puis exciter l’atome par un rayonnement X (78 keV=couche K) pourdétruire cette ADN…

Sélection de l’énergie

du rayonnement

Page 33: Laser/cavity R&D for a polarised positron source

Pourquoi du rayonnement synchrotron ?

Pourquoi un élément à grand Z (le platine)

Haut flux de X monoénergétiques à 78 keV Parcourt moyen de ces X dans l’eau convenable

Minimisation des pertes dans les tissus sains &

maximisation de l’effet radiotérapeuthique

Page 34: Laser/cavity R&D for a polarised positron source

Cis-platine + rayons 78keV

Résultat [MC Biston et al. cancer reas. 64 (2004)2317]

Source rayons X Monoénergétique

nécessaire

ESRF (Grenoble)

Page 35: Laser/cavity R&D for a polarised positron source

Nécessité aussi d’une machine à bas coupUtilisation de l’interactionCompton (e-+laser → e- + photon)Laser pulsé ‘amplifié’ dans unecavité Production de rayons X dont onpeut choisir l’énergie (=longueurd’onde) à des flux de puissance tolérables par l’organisme