52

Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

  • Upload
    halien

  • View
    219

  • Download
    6

Embed Size (px)

Citation preview

Page 1: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology
Page 2: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Laser welding and its industrial applications

Heidi Piili on behalf of Antti Salminen

Lappeenranta University of TechnologyFaculty of TechnologyLaser processing research group

June 16th 2014

Page 3: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

LAPPEENRANTA UNIVERSITY OF TECHNOLOGY (LUT)

Page 4: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology
Page 5: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

LAPPEENRANTA CAMPUS

Page 6: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Lappeenranta Laser Processing Centre, LPCLUT Laser, Lappeenranta University of Technology

VTT Laser processing team

Lappeenranta University of Technology (LUT)LondonLondon

BerlinBerlin

MoscowMoscow

TallinnTallinn

LappeenrantaLappeenranta

OsloOsloStockholmStockholm

HelsinkiHelsinki

FINLANDFINLAND

LondonBerlin

Moscow

Tallinn

Lappeenranta

OsloStockholm

Helsinki

FINLANDSt. Peters-burg

Page 7: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

LUT Laser

Page 8: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology
Page 9: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology
Page 10: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

LASER TECHNOLOGY RESEARCH AT LUT

Page 11: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

LUT LaserActivities since 1985− New building 1999 (Factory of Future)− LPC the Lappeenranta Laser Processing Centre,

joint research environment with VTT 2005− Turku Unit 2008− Head of laboratory: Prof. Antti Salminen− Research staff: 20 persons− Offer laser solutions to the manufacturing

challenges− High quality educational role for M.Sc. Students,

Ph.D. students and industry

Tampere 24.10.2012Tampere 24.10.2012Ohutlevypäivät, Hämeenlinna, 22.3.2013Outotec, Lappeenranta, 24.4.2013Lappeenranta, 30.4.2013Imatra, 17.5.2013Messukeskus, Helsinki   3.9.2013Messukeskus, Helsinki   4.9.2013Lappeenranta,  17.10.2013Tampere,  24.10.201326.11.201428.11.2013, LaitilaEuromold, 4.12.201316.6.2014 Appolo

Page 12: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

LUT Laser - Activities− Welding of metals− Welding of polymers− Surface treatments− Cutting− Micro/milli laser processing− Laser additive manufacturing

Ohutlevypäivät, Hämeenlinna, 22.3.2013Outotec, Lappeenranta, 24.4.2013Lappeenranta, 30.4.2013Imatra, 17.5.2013Messukeskus, Helsinki   3.9.2013Messukeskus, Helsinki   4.9.2013Lappeenranta,  17.10.2013Tampere,  24.10.201326.11.201428.11.2013, LaitilaEuromold, 4.12.201316.6.2014 Appolo

Page 13: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Machinery− 5 kW multi mode fiber laser− 10 kW multi mode fiber laser− 2.7 kW CO2-laser− 200 W single mode fiber laser (water cooled)− 200 W single mode fiber laser (air cooled)− 200 W diode laser with scanner− 2 kW single mode fiber laser − 20 W pulsed fiber laser − Workstations:

• Laser additive manufacturing work station• 11x4 m gantry workstation• 125 kg robot• small xy-workstation for welding and cutting• small xy-workstation for milli/micro processing• fast xy-workstation and rotational stations for

ultra hight speed cutting testing

Euromold, 4.12.201316.6.2014 Appolo

Page 14: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

International co-operation

Euromold, 4.12.201316.6.2014 Appolo

Page 15: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

LASER WELDING

Page 16: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Keyhole

Salminen & Fellman, 2006

asa 17.09.2012 1616.6.2014 Appolo

Page 17: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Introduction

− Laser welding is a is rapid, high quality method of joining a wide range of metals and alloys, as well as polymers

− Principle: create a sufficiently high power density at the surface of a material for vaporisation to occur, which will lead to the formation of a deeply-penetrating vapour cavity surrounded by molten material.

− Practice select appropriate materials determine in-service requirements select appropriate processing parameters

− Process modelling: laser welding diagrams− Process selection− Industrial application

Major industrial sectors of application

asa 17.09.2012 1716.6.2014 Appolo

Page 18: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Effect of power density (steel)

asa 17.09.2012 18

Intensity = Power density, W/mm2

I = PL/AB

16.6.2014 Appolo

Page 19: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Keyhole vs. conduction limited

− Conduction limited welding brings the heat on the workpiece surface melting as a point heat source to the surface and the heat is conducted deeper into the material.

− Keyhole welding brings the heat directly into the material trough considerable thickness and heat is conducting from this vertical line energy source to material.

asa 17.09.2012 1916.6.2014 Appolo

Page 20: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Keyhole welding

− There is quite a lot conduction limited applications with Plasma welding.

− EB-welding is typically using keyhole welding− For laser welding In any thicker section is usually welded with

keyhole. Modern lasers enable keyhole welding also for thin sections.

− Typically conduction limited is done up to 1.5 mm, e.g. with diode laser.

asa 17.09.2012 2016.6.2014 Appolo

Page 21: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Heat sources

− There is three heat sources capable to perform keyhole i.e. deep penetration welding process Laser Electron beam Plasma welding

− Each of these can also be used for conventional welding i.e. heating via heat conduction

asa 17.09.2012 2116.6.2014 Appolo

Page 22: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Laser processing chart

asa 17.09.2012 22

Melting

Cutting

Metals andalloys

Ion, 2005

16.6.2014 Appolo

Page 23: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Keyhole welding

− Beam welding typically enables high enough power density for keyhole formation.

− Usually the advantages of laser welding are fully utilized only with keyhole welding process

asa 17.09.2012 2316.6.2014 Appolo

Page 24: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Keyhole

− Due to features of keyhole the efficiency of keyhole welding is high, in range of 70-98 %

− Pressure of the metal vapor keeps the keyhole open− There is balance between vapor pressure, gravitation, flow of molten

material and surface tension

asa 17.09.2012 2416.6.2014 Appolo

Page 25: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Principle of keyhole welding

asa 17.09.2012 25

John Ion

16.6.2014 Appolo

Page 26: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Keyhole

− Due to keyhole and the line heat input the weld is narrow− If there is no keyhole, the weld is narrow and deep− With incorrect parameters there is no keyhole (e.g. the focal point

position compared to workpiece surface)

asa 17.09.2012 2616.6.2014 Appolo

Page 27: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Keyhole welding process

Metal vapor

Melt poolWeld metal

Key hole

Laser beam

Welding direction

Weld cross section

5 kW, 2,3 m/min3+3 mm lap joint

1.4301asa 17.09.2012 2716.6.2014 Appolo

Page 28: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Power, continuous wave

− The range of parameters of high quality is restricted with lack of penetration (too low a heat input) and sagging weld (too high a heat input)

− Maximum speed is increased with the power− Other parameters like beam mode, beam quality, plasma formation,

have intermixed effect on performance

asa 17.09.2012 2816.6.2014 Appolo

Page 29: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Power, continuous wave

− In practice high power laser has larger parameter window, since required performance can be reached with several parameter combinations

− The penetration depth is increased with decrease in speed (constant beam quality and dimensions and laser power)

asa 17.09.2012 2916.6.2014 Appolo

Page 30: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Power, pulsed wave

− Pulsing adds few new parameters: Frequency (Hz) Pulse on-time (ms) Pulse off-time (ms) Overlap (%) Shape of the pulse

− Welding speed = spot diameter X frequency X overla− Pulse maximum power dictates penetration− Quality is depending on several factors

asa 17.09.2012 3016.6.2014 Appolo

Page 31: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Focal point diameter

− Dimensions of focal point Joining efficiency, joint cross section divided with welding speed,

depends strongly of the focal point dimensions Mode, optics (focal length of focusing and collimation, optical fiber,

beam diameter at focusing optics) define the dimension of focal point− Beam mode is typically not an issue if optical fiber is used for beam

transfer. It can be seen if diameter of optical fiber is more than 300 µm

asa 17.09.2012 3116.6.2014 Appolo

Page 32: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Focal point

asa 17.09.2012 3216.6.2014 Appolo

Page 33: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Beam characteristics

Radius 84 µmDiameter 168 µmBPP 4.4 mm*mradM2 13.1

Salminen & Fellman, 2007

asa 17.09.2012 3316.6.2014 Appolo

Page 34: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Effect of beam quality

asa 17.09.2012 34Katayama et al., 2011

Pen

etra

tion

dept

h, m

m

Welding speed, m/min

16.6.2014 Appolo

Page 35: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Focal point diameter and penetration

16.6.2014 Appolo 35

Katayama, 2010

Laser power 10 kW

Page 36: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Weldability window

16.6.2014 Appolo 36

Welding speed, m/min

Laser b

eam pow

er, kW

0 1 2 3 4 5 6 7

2

0

4

6

10

8

12

14

16

No penetrationTransition borderFull penetration

S355 steel, Thickness 8 mm,  Bead on plate

Page 37: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Quality window for welding

16.6.2014 Appolo 37

Welding speed, m/min

Laser p

ower, kW

S355, EN 10025‐2 Thickness 20 mmButt joint 30 kW fiber laser

Fiber core 200 µmCollimation length 140 mmFocal length 300 mm

Acceptable weldCut throughImperfectionsIncomplete pentration

Page 38: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Typical weld flaws

16.6.2014 Appolo 38

Page 39: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

S355, 20 mm

Laser power 16kWWelding speed 2 m/minFiber core 200µmFocal length 300 mmFocal point 420 µmFocal point -7,5 mmAWJ cut edges

16.6.2014 Appolo 39

Page 40: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

S355, 25 mm

16.6.2014 Appolo 40

Thickness 25mmLaser power 20kWWelding speed 2 m/minFiber core 200µmFocal length 300 mmFocal point 420 µmFocal point -10 mmAWJ cut edges

Page 41: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Productivity of welding

16.6.2014 Appolo

Process mmmm/minGas 3,2 90MMA 5 200TIG 2,3 500MIG 10 600SAW 38 200CO2 laser 2 2000

6 125012 132035 1000

Fiber laser 2 70004,5 1000025 2000

EB 38 100050 1000

0                   1                   2                   3                  4                  5

Joining efficiency = Thickness X welding speed

41

2 kW5 kW

12 kW40 kW4 kW

10 kW30 kW45 kW75 kW

Kutsuna, 2008

Page 42: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Laser welding of airbus 300

16.6.2014 Appolo 42

Page 43: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

T-joint, case airbus

16.6.2014 Appolo 43

Page 44: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

The advantages of laser welding, airbus

− Lower cost due to higher automation − Joint save material− Fewer work phases− Savings in weight by lower density of materials − Fewer sealings− Better corrosion resistance by new joint type− Riveting speed about 0.1 m/min, laser up to 10 m/min

16.6.2014 Appolo 44

Page 45: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Tailored blanks

Laser : 860HF x-flow CO2 laserMaterial: QStE 110 Zn/QStE 700Laser power: 6 kWFocal Length 150 mmThicknesses: 2.0 and 2.1 mmWelding speed: 8 m/minWeld widht: 0.9 mmSystem: X/Y CNC system

16.6.2014 Appolo

Page 46: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Tailored blanks

Advantages:• Higher stiffness and strength• More efficient use of materials• Lower body weight • Lower cost of forming• No installation tools• Lower installation costs• Higher productivity• Lower design costs• Better accuracy• Lower mass of coatings and

coated materials

Rofin

16.6.2014 Appolo

Page 47: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Tailored blanks

− Tailored base plate

16.6.2014 Appolo

Page 48: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Roof welding at volvo car

850 855 C70S70 V70classicS60 V70S80 V70XC

XC90

S40 V50, ….

> 5.000 km laser weld in car roof since 1991

Johnny K Larsson Volvo car

16.6.2014 Appolo

Page 49: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Hybrid Welding: Offshore

6/16/2014 49IPG Photonics Confidential Information

Offshore Application

P=10kW

v=1,5m/min

Flange thickness: 15mm

16.6.2014 Appolo

Page 50: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Hybrid Welding: Ship Yard

6/16/2014 50

IPG Photonics

Que

lle: B

IAS

Laser-HybridX70t = 12 mmPL = 10.5 kWvS = 2.2 m/min

Page 51: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Welding with Singlemode-Fiber Lasers

6/16/2014 51IPG Photonics Confidential

Information

Stainless steel200W 80m/min

CopperAluminium

Fe-Cu-Joint

Quelle: BIAS

Page 52: Laser welding and its industrial - appolo-fp7.eu · PDF fileLaser welding and its industrial applications Heidi Piili on behalf of Antti Salminen Lappeenranta University of Technology

Thank you for your attention

Further information:

Antti [email protected]