10
J Appl Ecol. 2017;1–10. wileyonlinelibrary.com/journal/jpe | 1 © 2017 The Authors. Journal of Applied Ecology © 2017 British Ecological Society Received: 27 February 2017 | Accepted: 11 September 2017 DOI: 10.1111/1365-2664.13013 RESEARCH ARTICLE Large woody debris “rewilding” rapidly restores biodiversity in riverine food webs Murray S. A. Thompson 1,2,3 | Stephen J. Brooks 1 | Carl D. Sayer 2 | Guy Woodward 4 | Jan C. Axmacher 2 | Daniel M. Perkins 5 | Clare Gray 4 1 Department of Life Sciences, Natural History Museum, London, UK 2 Environmental Change Research Centre (ECRC), Department of Geography, University College London, London, UK 3 Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Suffolk, UK 4 Department of Life Sciences, Imperial College London, Ascot, Berkshire, UK 5 Department of Life Sciences, Whitelands College, University of Roehampton, London, UK Correspondence Murray S. A. Thompson Email: [email protected] Handling Editor: Marie-Josée Fortin Abstract 1. Extensive habitat destruction and pollution have caused dramatic declines in aquatic biodiversity at local to global scales. In rivers, the reintroduction of large woody debris is a common method aimed at restoring degraded ecosystems through “rewilding.” However, causal evidence for its effectiveness is lacking due to a dearth of replicated before–after control-impact field experiments. 2. We conducted the first replicated experiment of large woody debris rewilding across multiple rivers and organisational levels, from individual target species popu- lations to entire food webs. 3. For the first time, we demonstrate causal links between habitat restoration, biodi- versity restoration and food web responses. Populations of invertebrates and an apex predator, brown trout (Salmo trutta), increased, and food web analysis sug- gested increased biomass flux from basal resources to invertebrates and subse- quently fishes within restored reaches. 4. Synthesis and applications. This study contributes significant new evidence demon- strating that large woody debris rewilding can help to restore human-impacted river ecosystems, primarily through altering the abundance and biomass of con- sumers and resources in the food web. We also outline a means to gauge the mag- nitude of ecological responses to restoration, relative to environmental stressors, which could help to prioritise the most effective conservation efforts. KEYWORDS BACI, biodiversity, biomonitoring, field experiment, food webs, rewilding, river restoration, river systems, trivariate analysis, woody debris 1 | INTRODUCTION Overexploitation, pollution and habitat destruction are causing global declines in freshwater biodiversity (Strayer & Dudgeon, 2010; Vörösmarty et al., 2010), especially in running waters (Nilsson, Reidy, Dynesius, & Revenga, 2005; Stein & Kutner, 2000). Despite widespread improvements in water quality in the developed world, ecological recovery in rivers has often been patchy, slow or even en- tirely lacking (Battarbee, Shilland, Kernan, Monteith, & Curtis, 2014; Langford, Shaw, Ferguson, & Howard, 2009). This suggests that envi- ronmental drivers, which were previously subordinate to poor water quality, are now acting as principal bottlenecks where chemical con- ditions have improved. Foremost among these is habitat degradation associated with river straightening, channelisation, impoundment and clearance of large woody debris (also termed large wood, henceforth LW), which has been ongoing around the world for many centuries (Downs & Gregory, 2014). These modifications restrict natural river dynamics, such as LW processes that determine the frequency of

Large woody debris “rewilding” rapidly restores biodiversity in ......Received: 27 February 2017 | Accepted: 11 September 2017 DOI: 10.1111/1365-2664.13013 RESEARCH ARTICLE Large

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Large woody debris “rewilding” rapidly restores biodiversity in ......Received: 27 February 2017 | Accepted: 11 September 2017 DOI: 10.1111/1365-2664.13013 RESEARCH ARTICLE Large

J Appl Ecol. 2017;1–10. wileyonlinelibrary.com/journal/jpe  | 1© 2017 The Authors. Journal of Applied Ecology © 2017 British Ecological Society

Received:27February2017  |  Accepted:11September2017DOI: 10.1111/1365-2664.13013

R E S E A R C H A R T I C L E

Large woody debris “rewilding” rapidly restores biodiversity in riverine food webs

Murray S. A. Thompson1,2,3  | Stephen J. Brooks1 | Carl D. Sayer2 | Guy Woodward4 |  Jan C. Axmacher2 | Daniel M. Perkins5 | Clare Gray4

1DepartmentofLifeSciences,NaturalHistoryMuseum,London,UK2EnvironmentalChangeResearchCentre(ECRC),DepartmentofGeography,UniversityCollegeLondon,London,UK3CentreforEnvironment,FisheriesandAquacultureScience,LowestoftLaboratory,Suffolk,UK4DepartmentofLifeSciences,ImperialCollegeLondon,Ascot,Berkshire,UK5DepartmentofLifeSciences,WhitelandsCollege,UniversityofRoehampton,London,UK

CorrespondenceMurrayS.A.ThompsonEmail:[email protected]

HandlingEditor:Marie-JoséeFortin

Abstract1. Extensive habitat destruction and pollution have caused dramatic declines inaquaticbiodiversityat localtoglobalscales. Inrivers,thereintroductionof largewoody debris is a common method aimed at restoring degraded ecosystemsthrough“rewilding.”However,causalevidenceforitseffectivenessislackingduetoadearthofreplicatedbefore–aftercontrol-impactfieldexperiments.

2. We conducted the first replicated experiment of large woody debris rewildingacrossmultipleriversandorganisationallevels,fromindividualtargetspeciespopu-lationstoentirefoodwebs.

3. Forthefirsttime,wedemonstratecausallinksbetweenhabitatrestoration,biodi-versityrestorationandfoodwebresponses.Populationsof invertebratesandanapexpredator,browntrout (Salmo trutta), increased,andfoodwebanalysissug-gested increasedbiomass flux frombasal resources to invertebrates and subse-quentlyfisheswithinrestoredreaches.

4. Synthesis and applications.Thisstudycontributessignificantnewevidencedemon-strating that largewoody debris rewilding can help to restore human-impactedriverecosystems,primarily throughaltering theabundanceandbiomassof con-sumersandresourcesinthefoodweb.Wealsooutlineameanstogaugethemag-nitudeofecologicalresponsestorestoration,relativetoenvironmentalstressors,whichcouldhelptoprioritisethemosteffectiveconservationefforts.

K E Y W O R D S

BACI,biodiversity,biomonitoring,fieldexperiment,foodwebs,rewilding,riverrestoration,riversystems,trivariateanalysis,woodydebris

1  | INTRODUCTION

Overexploitation, pollution and habitat destruction are causingglobaldeclinesinfreshwaterbiodiversity(Strayer&Dudgeon,2010;Vörösmarty etal., 2010), especially in running waters (Nilsson,Reidy, Dynesius, & Revenga, 2005; Stein & Kutner, 2000). Despitewidespread improvements inwater quality in the developedworld,ecologicalrecoveryinrivershasoftenbeenpatchy,sloworevenen-tirely lacking (Battarbee,Shilland,Kernan,Monteith,&Curtis,2014;

Langford,Shaw,Ferguson,&Howard,2009).Thissuggeststhatenvi-ronmentaldrivers,whichwerepreviouslysubordinatetopoorwaterquality,arenowactingasprincipalbottleneckswherechemicalcon-ditionshaveimproved.Foremostamongtheseishabitatdegradationassociatedwithriverstraightening,channelisation,impoundmentandclearanceoflargewoodydebris(alsotermedlargewood,henceforthLW),which has beenongoing around theworld formany centuries(Downs&Gregory,2014).Thesemodifications restrictnatural riverdynamics, such as LW processes that determine the frequency of

Page 2: Large woody debris “rewilding” rapidly restores biodiversity in ......Received: 27 February 2017 | Accepted: 11 September 2017 DOI: 10.1111/1365-2664.13013 RESEARCH ARTICLE Large

2  |    Journal of Applied Ecology THOMPSON eT al.

poolsand riffles,withoftendeleterious implications forecosystems(Brooker,1985;Gurnell&Sweet,1998).

Largewoodhasbeenused toenhance in-riverhabitat through-out the world for over a century in tens of thousands of projects(Bernhardtetal.,2005;Feldetal.,2011;Roni,Beechie,Pess,Hanson,&Jonsson,2015).Inrecenttimes,“rewilding”approaches,suchasre-introducingbeaversor fellingwhole trees into the river to replicatenaturaltreefall,havebeen increasinglyusedasameanstoreinstatenatural processes, restore biodiversity and thus recover degradedriver ecosystems (Baker & Eckerberg, 2016; Hood& Larson, 2015;Roni&Beechie,2012).LW-basedhabitatrestorationhasbeenlinkedtoincreasesinfishandinvertebratepopulations(Kail,Hering,Muhar,Gerhard, & Preis, 2007; Roni etal., 2015; Schneider &Winemiller,2008), increases in allochthonous and autochthonous resources forinvertebrates(Cashman,Pilotto,&Harvey,2016;Gurnell,Gregory,&Petts, 1995), and increased provision of refugia for organisms fromhigh flows (Borchardt, 1993) and predation (Everett & Ruiz, 1993).However, the assumedbiodiversity enhancement following the res-torationof habitat diversity is strongly contested in the absenceofunequivocal evidence (Feld etal., 2011; Lepori, Palm, Brännäs, &Malmqvist, 2005; Palmer, Menninger, & Bernhardt, 2010; but seeKail, Brabec, Poppe,&Januschke, 2015; Pilotto, Bertoncin,Harvey,Wharton,&Pusch,2014).

Due to a lack of replication and standardisation of monitoringtechniques, thesuitabilityofproxies (e.g. riverhabitatqualityortheabundanceofkeytaxa)assurrogates foreffectiveecosystemresto-rationremainsunverified(Bernhardt&Palmer,2011;Feldetal.,2011;Palmer etal., 2010).Where biomonitoring has been undertaken toassessrestorationsuccess,invertebratesorfishhaveoftenbeenthesole bioindicators used (Matthews, Reeze, Feld, & Hendriks, 2010;Whiteway,Biron,Zimmermann,Venter,&Grant,2010;but seeKailetal., 2015).Despite being repeatedly advocated (Feld etal., 2011;Fribergetal.,2011;Pander&Geist,2013),amoreholistic, system-based view of restoration responses at higher levels of biologicalorganisationisstill lacking.Furthermore,nostudytoourknowledgehas compared both control (i.e. unrestored) and target conditions(i.e.thosenaturallycreatedwhichtheinterventionaimstoreplicate)acrossriversinamultiplebefore–aftercontrol-impact(MBACI;sensuDownesetal.,2002)framework.Thisisnonethelesstheonlywaytoisolate potentially confounding drivers of ecological change in bothspaceandtimetotestwhetherecosystemsareconsistentlyrestoredtotargetconditions.

Weaddressthisknowledgegapbycomparingecologicalpatternsbetweencontrolreaches(i.e.thosewithnoLW),reacheswithnatu-rallyfallenLWpriortorestoration(i.e.“target”),andthosecontainingfelledLW(i.e.“restored”)inaMBACIexperiment.ThiswasconductedacrossfiveBritishlowlandriversthathavebeensubjectedtoriverhab-itatdegradationandpollutiontypicalforsuchsystems(EnvironmentAgencyEnglish Nature, 2004; WWF-UK, 2015). Recent studies(Heringetal.,2015;Kailetal.,2015)suggestthatriverrestorationcanaffectbiotaquickly,theeffectsofrestorationcandiminishovertime,andthatrestorationscaleisaweakdeterminantofrestorationeffect.Thus,bycomparingcontrol,targetandrestoredreaches,ouraimwas

toassessshort-term(<1yearpost-restoration)responsesto individ-ualLWstructures,whilealsogivingalonger-termperspectiveonthetrajectoryofecologicalrecovery,asrestoredreachesdevelopfromadegradedtoamorefullyrestored“target”state.Suchanapproachisvital inafieldwheremonitoringresourcesare limitedandextendedtemporalsampling(>2years)israrelyfeasible(Feldetal.,2011).

Tounderstandreach-scaleeffectsof restorationonthecommu-nity,weinvestigatedchangesinthemassandabundanceofspeciespopulationsandthelinksbetweenthem(trophicinteractions)infoodwebs using “trivariate analyses” (sensuCohen, Schittler, Raffaelli, &Reuman,2009),aswellastheirmoretraditionalunivariateandbivar-iate componentmeasures (e.g. linkagedensityandmass-abundancescaling exponents, respectively). Because invertebrate assemblagesrespondtohabitatchange(Demars,Kemp,Friberg,Usseglio-Polatera,&Harper,2012),formtheintermediatenodesinaquaticfoodwebs,and are widely used as bioindicators in habitat restoration stud-ies (Matthews etal., 2010; Palmer etal., 2010), we investigatedassemblage-levelresponsetoLWrestorationacrossreachesandbe-tweenlocalhabitatpatches.Wetestedthefollowinghypotheses:(1)LWrestorationaffectsmultiplelevelsofbiologicalorganisation,fromspecies’populationstoentirefoodwebs:specieswithmanypredatorsand thoseespecially sensitive todeterioratingenvironmental condi-tionswillprosperfromtheincreasedrefugiaandrestoredconditionsprovidedbyLW;anincreaseinspeciesrichnesswillresultinincreasesinboth feeding-linkdiversityandnewfeedingpathways in restoredfoodwebs; (2)foodwebs intherecentlyrestoredreachesare inter-mediatebetweencontrolandtargetconditionsassmall,vagile,fast-growing species (e.g. invertebrates) respond to elevated resources(i.e.refugiaandavailableenergy)beforelarge,long-livedspecies(e.g.fish); (3) LW restoration increases invertebrate species richness (i.e.α-diversity)atthereach-scaleandenhancesinvertebratecommunitydissimilarity(i.e.β-diversity)withinreachesashabitat-specificassem-blages colonise LW.Where frequently used control-impact designscannotestablishcausationandstandardBACIdesignsareunabletoreveal theconsistencyof recoverypatterns, theMBACIapproach isperfectlysuitedtoaddressthesehypotheses.

2  | MATERIALS AND METHODS

2.1 | Study sites, restoration and experimental design

WesampledfiveUKlowlandchalkrivers(Figure1;TableS1)thatspana range of nutrient concentrations representative of such systems(i.e.ortho-phosphateconcentrationsof37.7–308.5μgl−1represent-ingrelativelylowtomoderatelyenrichedwaters;UKTAG,2013).Oneachriver,wesurveyedan“impact”reach,designatedforrestoration,andanunrestored“control”reach,whichresembledthechannelformandripariansurroundingsthatexistedinthe(pre) impactreach.Wealsosurveyeda“target”reachwherenaturallyfallentreeshadbeeninplacefor3–5yearspriortorestorationonfouroftherivers.TherewerenoavailabletargetconditionsattheR.Wensum,however.Thismeantwehadtwotemporalcontrolsatfourofourrivers(i.e.control

Page 3: Large woody debris “rewilding” rapidly restores biodiversity in ......Received: 27 February 2017 | Accepted: 11 September 2017 DOI: 10.1111/1365-2664.13013 RESEARCH ARTICLE Large

     |  3Journal of Applied EcologyTHOMPSON eT al.

andtargetreaches),whichisconsideredanimportant,butoftenover-looked,requirementinBACIdesigns(Underwood,1994).

Reacheswere25m in length,100–500mapart ineach river tomaintain independence, and ordered randomly to avoid potentiallyconfounding longitudinaleffects (Harrisonetal.,2004).RestorationswereundertakeninlateOctoberandearlyNovember2010.Ineachriverwereplicated,ascloselyaspossible,theLWstructurefoundintargetconditions,thatis,byfellingthesamesizeandspeciesoftree,whichwere eitherwholeAlder (Alnus glutinosa L.) orWhiteWillow(Salix albaL.)atleast7mtallandof0.3mdiameteratthebaseofthetrunk.Felledtreesweretetheredtostakesfashionedfromtheirownbranches.

2.2 | Sampling protocol

Acrossallreaches,biological,physicalandchemicalsurveyswereun-dertakeninspring(mid-Marchtomid-April)2010beforerestorationandduringthesameperiodin2011followingrestoration.Estimatesweremade of the conditions and extent of LW, river-edge (i.e. upto1mfromthebank)andmid-riverhabitatsacrossagridoffifteen1 m2 quadrats divided between five equally spaced transects perreach (FigureS1).Usingabathyscope,proportionsof silt, sandandgravelsubstratewereestimatedvisuallytothenearest5%,andcoarsewoodydebris(<10cmdiameter),LW(>10cmdiameter)andplantoc-cupancyweremeasuredusingthe“percentagevolumeinfested”(PVI)system(Canfieldetal.,1984).Watervelocity(mS−1)wasmeasuredat60%depthusingaValeportBFM002flowmeterateachsurveypoint.Physicalriverreachcharacteristics(e.g.riverwidth,altitude,gradient)were collated alongside annual averages ofwater temperature and

chemistry (e.g. ortho-phosphate, total oxidised nitrogen, dissolvedoxygen,pHandalkalinity)collectedbytheUKEnvironmentAgency.

2.3 | Population abundance, community structure and trophic interactions

Epilithicbiofilmwassampledfromeightcobblesselectedhaphazardlyateachreach.EachcobblewasphotographedanditsuppersurfaceareacalculatedusingImage-Jsoftware(version1.42)toprovidedataperunitarea.Threecobbleswerescrapedonsite,preservedinLugol’siodine and prepared for diatom identification following Battarbee,Jones,Flower,andCameron(2001).Thefirst100diatomvalvesen-counteredwithina100-μmwidetransectcrossingthecentreofeachcoverslipwere identified tospecies, resulting in300valve identifi-cations per reach that is considered optimal for determining com-munity composition (Besse-Lototskaya, Verdonschot, & Sinkeldam,2006).Fulldetailsofdiatomabundanceanddrymassestimationaregiven inSupportingMaterialsandMethods (seealsoTableS2).Theremainingfivecobbleswerestoredinthedarkat−20°C.Biofilmwasremoved from theupper surfaceofeach stoneusinga toothbrush.Chlorophyll-a (a proxy for algal biomass) was cold-extracted using90%acetoneand itsconcentrationdeterminedusingaspectropho-tometer(Ritchie,2006).

Invertebratesweresampledfromedge,midandLWhabitats inordertoassessrestorationeffectswithinreach,aswellasbetweenreaches (Figure S1).We used these habitat types as the samplingunitbecausethisallowedafullyreplicatedstratifieddesignacrossreaches and years.AHess sampler (0.017m2)with 335-μmmeshwas used to collect invertebrates and coarse (CPOM) and fine

F IGURE  1 LocationsofriversusedinthisstudyintheUnitedKingdom.Upperandrightpanelshowscontrol(C),impact(I)andtarget(T)reacharrangementineachriverinrelationtodirectionofflow(indicatedbyarrows).TherewerenosuitabletargetreachesneartherestorationontheRiverWensum

Loddon

Lyde

WensumBure

Test

500 m0 km 100 N

Woodgate Carrat

TC I

Great Wood

T C I

Long Copse Cottage

TCI

DeanlandsFarm

Leckford Estate T

C I

C

I

Turf Common

Bure Loddon Lyde

Test

Wensum

Page 4: Large woody debris “rewilding” rapidly restores biodiversity in ......Received: 27 February 2017 | Accepted: 11 September 2017 DOI: 10.1111/1365-2664.13013 RESEARCH ARTICLE Large

4  |    Journal of Applied Ecology THOMPSON eT al.

particulateorganicmatter(FPOM).TheHesssamplerhadarowofteethonthebaseinordertocutthroughbranches,andthussam-pleLWhabitatandtheunderlyingbenthos,inacomparablewaytoedge andmid habitats. Sampling followed a random stratified de-sign in each reach: five sampleswere collected frommid-channel(thelargesthabitatbyareaandthusexpectedtohavehighesthet-erogeneity),threefromchanneledge,andthreefromLW(n=263).Sampleswerepreservedin70%industrialmethylatedspirits.CPOMandFPOM,retainedon1mmand335μmsieves,respectively,weredetermined by weighing oven dried (80°C) organic material fromeachHesssample.Invertebrateswereidentifiedtothehighestpos-sibletaxonomicresolution(usuallyspecies)andcountedtoprovidedata per unit area. Organism body size spanned many orders-of-magnitudeinthecommunitiesstudiedhere(i.e.fromdiatomstofish,3.93×10−8to9.88×105mg,respectively), thuswedeemedriver-specific estimates of invertebrate taxonmeanbody size sufficientto assess community-level responses. Measurements were madeusingall invertebratescollected fromthecontrol reaches in2011,supplementedwithspecimensofraretaxafromotherreaches.Alistof regression equations used to determine individual invertebratedrymassesfromlineardimensions(e.g.head-capsulewidthsorbodylengths)isprovidedinTableS3.

Quantitativedepletionelectrofishingwasundertakenatthereach-level, andall fishcapturedwere identified to speciesandmeasuredto fork length.Abundance (individuals perm2)was estimated usingiterativemaximumweightedlikelihoodstatistics(Carle&Strub,1978).Dry-massestimatesweremadeforeachspeciesusinglength-massre-gressionequationsandwet-to-drymassconversions(Thompsonetal.,2016).AlargeHesssampler(0.14m2)wasusedattheWensumimpactreachduetotherelativelylowsamplingefficiencyofbullhead(Cottus gobioL.),ascatchesdidnotreduceonconsecutiverunsduringelec-trofishing(Lauridsenetal.,2012).Thisapproachwasnotnecessaryfortheotherreacheswherebullheaddensitiesweresuccessfullydepletedbyelectrofishing.Fulldetailsoffishabundanceanddrymassestima-tioncanbefoundinSupportingMaterialsandMethods.

At least three randomly selected fish gut-content samplesweretaken from individuals of each species from each reach (i.e. up tonineperriver)inbothyearswherenumberspermitted(n=132).Gutcontentswereidentifiedtothehighestpossibletaxonomiclevel(usu-ally species).As gut content analysis captures only a snapshot of apredator’s diet,wepooled all observed feeding links and combinedthesewithfeeding linkspublished inthe literatureand inarecentlycollateddatabaseof trophic interactionsfromUKfreshwaters (Grayetal.,2015).Weassumedthat ifa trophic interactionbetweentwospecieswasdirectlyobservedorreportedintheliterature,andthosesamespecieswerepresentwithinareach,thenthattrophicinterac-tionalsooccurred.Thisapproachhasbeenwidelyapplied(e.g.Mulder&Elser, 2009;Pocock, Evans,&Memmott, 2012; Strong&Leroux,2014), especially in theconstructionof river foodwebs (Grayetal.,2015; Layer,Hildrew,&Woodward, 2013; Layer, Riede,Hildrew,&Woodward,2010;Thompsonetal.,2016).Thepercentageofdirectlyobservedlinksthatwerealsoreportedintheliteraturewas99%:i.e.,only1%of the4,535observations fromgutcontentsanalysiswere

newrecords.FurtherdetailsoffoodwebconstructioncanbefoundinThompson etal. (2016) andGray etal. (2015),with feeding linksobservedhereforthefirsttimepresentedinTableS4.

2.4 | Food web analysis

Considering that species rare for their size (i.e. thosewithnegativeresiduals fromthegeneralmass-abundancescalingrelationshipthatspansthefoodwebinFigure2a)havebeenshowntobesensitivetodeterioratingenvironmentalconditions (Woodwardetal.,2012),weexpectedincreasesinthesespeciesasenvironmentalstressorswererelieved following restoration (Figure2b). In addition, species withmanypredators(i.e.thosewithelevated“vulnerability”)wereexpectedtoprosperfromtheincreasedrefugiaprovidedbyLW.Feeding-linkdiversitywasmeasuredusingchangesinthenumberoflinks,linkagedensity (i.e. the number of links divided by the number of species)

F IGURE  2 Hypotheticalaquatictrivariatefoodwebsondouble-Log10axes.Nodesrepresentmeanbodymass(M)andnumericalabundance (N)ofindividualtaxa;greysquares=rare-for-sizeinvertebratetaxa,blacksquares=taxafoundonlyinrestoredandtargetfoodwebs,solidblackline=newfeeding-link.(a)Controlorimpact-beforereach;(b)followinghabitatrestorationinvertebrateN and/or Mincreases,especiallytaxararefortheirsize,andthosewithmanypredatorsprosperingfromincreasedrefugiaprovidedbyLW;(c)targetreachesfollowinglonger-termrecoveryoffish

Log 10

(N)

Diatoms

Invertebrates

Lower-links

Upper-links

General regressionslope

Fish

Log10(M)

(a)

(b)

(c)

Page 5: Large woody debris “rewilding” rapidly restores biodiversity in ......Received: 27 February 2017 | Accepted: 11 September 2017 DOI: 10.1111/1365-2664.13013 RESEARCH ARTICLE Large

     |  5Journal of Applied EcologyTHOMPSON eT al.

andconnectance(i.e.theproportionofrealisedlinks;Martinez,1991).Increasesinconsumernodes,linksbetweenconsumersandincreasedpredatorgenerality (e.g. in theproportionof resource links toeachfishnode;sensuSchoener,1989)wereusedtoassessthepotentialfornetwork “rewiring” via alternative feedingpathways.We testedwhethersmall,vagile,fast-growinginvertebratetaxarespondedfasterthan large long-lived fish taxa by comparing food webs in the re-storedreacheswiththoseintargetreaches(seeFigure2b,c).Changesin feeding “link angles” (sensuCohen etal., 2009; Thompson etal.,2016)andbiomassstocks(e.g.fishbiomassperreach)wereusedtotestwhether the inferredbiomass flux increased following restora-tion,andwhetherthisresultedinincreasesinconsumerandpredatorbiomass (i.e.bottom-upeffects and/or release from top-downcon-trol).Wheretherewereincreasesinspeciesrichnesswhichmayhavemaskedchangesinlinkanglesacrossacommoncoreofspecies(e.g.treatmentlevelincreasesinrare-for-sizetaxawithmorenegativelinkanglescouldbiasresults),were-rantheanalysisafterremovinglinksuniquetoagivenreach.Allfoodwebstatisticswerecalculatedinr usingCheddar(Hudsonetal.,2012).

2.5 | Data analysis

Weusedprincipalcomponentsanalysisandnon-metricmultidimen-sionalscaling(NMDS)toordinatetheenvironmentalandinvertebratedata,respectively.Duetothenestedandunbalanceddesign,dataformultivariateanalysesweresplitintofoursubsets:(1)temporalvaria-tion,unrelatedtotherestoration,wasassessedusingcontrol-beforeandcontrol-afterdata;and(2)spatialvariation,unrelatedtotheresto-ration,wasassessedusingcontrol-beforeandimpact-beforedata;(3)control-afterandimpact-afterdatawereusedtotestforrestorationeffects;and(4) impact-afterandtarget-afterdatawereusedtotestfordifferencesbetweenrestoredandtargetconditions.WeusedanNMDSofthechord-normalisedexpectedspeciessharedindexofdis-similarity(CNESS,calculatedinCOMPAH96;Gallagher,1999)onthelargestcommonsamplesizetoprovideameasureofβ-diversitynotconfounded by the number of individuals encountered (Trueblood,Gallagher,&Gould,1994;Legendre&Gallagher,2001).Permutationtests(n=999)werethenusedtoevaluatethesignificanceofobserveddifferences between rivers, reach- and habitat-types. All multivari-ateanalyseswereperformedinrusingvegan(Oksanenetal.,2015).Estimatesofα-diversity(i.e.HillnumberqD,whereq =0)weremadein rusingiNEXT(Hsieh,Ma,&Chao,2014).BysettingabasesamplesizeandusingrarefactionbasedonHillnumbers,thisapproachrepre-sentsarobustwayofcomparingspeciesrichnesswheresamplesizesdiffer(Chaoetal.,2014).Taxathatwerenotresolvedtospecies,andwhichcouldthereforerepresentmultiplespecies,wereremovedfromanalysesofα- and β-diversity.

Generallinearmixedeffectmodels(GLMM;simulatingbinomialorPoissondistributedresponses),linearmixedeffectmodels(LMM;modelling normally distributed responses) and linearmodels (LM;modelling normally distributed response without random terms)were used to test for ecological responses, besides invertebratedissimilarity,toenvironmentaldrivers.Strictlypositive,non-integer

data (e.g. biomass)were Log10 transformed,with x+1when dataincludedvalues<1.Allmixedeffectmodelswereconstructed inr usinglme4(Bates,Maechler,Bolker,&Walker,2015).TargetedtestsfordifferencesbetweengroupmeanswerecarriedoutusingTukey’sall-pairwisecomparisonsthatcorrectsformultiplecomparisonsinr usingmultcomp (Hothorn,Bretz,&Westfall,2008).Habitatcondi-tionsincontrolreachesweresignificantlydifferentbetweenrivers(seeSupportingResults;FigureS2a).Thus,toaccountforbetween-river differences, river identitywas fitted as a random term in allinitialmodels and restored and target reacheswere compared tounrestored (control and before-impact) reaches to test for resto-rationeffects.Toassessthespatialscaleoftherestorationeffectoninvertebrates,andtodisentanglepotentiallyconfoundingvariables,thosemodelsincludedtheadditionalfixedtermsofhabitat-type(i.e.edge,midandLW), resource (i.e. algaeanddetritus) andpredator(i.e. fish) biomass. Where there was evidence of over-dispersionin GLMM (i.e. where residual deviance was substantially greaterthantheresidualdegreesof freedom),eachdatumrowwas fittedasanadditionalrandomterm(Bolker,2008).Onlysignificantvari-ableswere retained in the finalmodels (Table S5), as determinedusing the likelihood-ratio test onnestedmodels comparedwith aχ²distribution.

3  | RESULTS

3.1 | Responses across multiple levels of biological organisation

FollowingLWrestoration,whichsuccessfullyreplicatedtargetenvi-ronmentalconditions(seeSupportingResults,TableS6),therewasanincrease innodes (species) in restoredreach foodwebsonlywithinthe invertebrate assemblages (Table1; Table S7). These “new” taxafound in the restored reaches, but not in their respective controls,were rare for their size (i.e. they hadmore negative residuals fromthegeneral regression slopewhen comparedwith taxa common toall reaches;LM,F1519=118.1,p<.001;Figure3),andtherewasnodifferenceinthisresponsebetweenrestoredandtargetreaches(LM,F1=0.213,p=.64).Higherinvertebratevulnerabilityandfishgener-ality revealed that “new” invertebrate taxa alsohadmanypotentialpredators,andtheirpresenceintherestoredandtargetreacheswaslinkedtoanincreaseinbothintermediatelinksbetweeninvertebratesand thediversityof feeding interactions (i.e. linkagedensity)withinthosefoodwebs(Table1).

The abundance, but not biomass, of Salmo trutta increasedin restored and target reaches by 186% and 127%, respectively,comparedwithcontrolreaches(Table1).Increasesininvertebrateabundance and biomasswere restricted to LWhabitat, irrespec-tiveofreachtype(TableS5),indicatingthattherestorationeffectwaslocalised,andthatincreasesweresimilarinmagnitudeinboth,restoredandtargetreaches.Invertebrateabundanceacrossreachtypeswas102% (GLMM; z = 5.22; p<.001) and185% (z=7.28;p<.001; Figure S5f) higher in LWvs. mid and edge habitat, re-spectively,whilebiomasswas62%(LMM;z = 2.35; p=.048)and

Page 6: Large woody debris “rewilding” rapidly restores biodiversity in ......Received: 27 February 2017 | Accepted: 11 September 2017 DOI: 10.1111/1365-2664.13013 RESEARCH ARTICLE Large

6  |    Journal of Applied Ecology THOMPSON eT al.

131%(z=3.84;p<.001)higher.Fishbiomass, thenumberofdi-atomandfishnodes,thenumberofinvertebrateupperandlowerlinks,andwholenetworkmetricsofconnectance,generalregres-sion slopeand interceptwere all similar across reach types (seeTablesS7,S8).

3.2 | Transitional responses within restored reaches

Algal biomasswas lower (LMM; z=−3.42;p=.002) and fish abun-dancewashigherintargetrelativetocontrolreaches(LMM;z = 2.46; p=.036),andbothwere intermediate inrestoredreaches (Figure4;Table S7). Both invertebrate lower- (LMM; z = 13.04; p<.001) andupper-linkanglesincreased(LMM;z = 2.47; p=.031)relativetocon-trols, but not target reaches, indicating the potential for increasedbiomassfluxfrombasalresourcestoinvertebrates,andsubsequentlytofishinrestoredfoodwebs.Thesignificanceofourlink-angletestresultswerenotaffectedwhenweremovedinvertebratelinksuniquetoeachreach(TableS7).Theseresponsessuggestthatrestoredreachfoodwebswere in transition,moving fromcontrol to target condi-tions,asbiomasswasredistributedacrossthenetwork.

3.3 | Invertebrate community structure

Aftercontrollingfordifferencesinabundance(i.e.atbasesamplesizeof1,388),invertebrateα-diversityincreasedbyfivespecies(approxi-mately9%)inrestoredandtargetreachesrelativetocontrols(Table1,Figure5a),and thiswaschieflydue to increases inchironomid taxa

(Table S7). Differences in invertebrate assemblages between habi-tat types (NMDS, r2=0.28, p=.001) revealed that the addition ofLWhabitat enhanced overall β-diversitywithin restored and targetreaches relative to controls (Figure5b, see alsoSupportingResults,FigureS4;TablesS9,S10).

4  | DISCUSSION

ByadoptingaMBACIdesign,wesuccessfullydemonstratedtheposi-tive causal relationships between LW introduction, invertebrate α- diversityandβ-diversity,and linkedthesewithchangesacrossriverfoodwebs,frombasalresourcesthroughtoanapexpredator,S. trutta. The observed consistent ecological responses to restoration acrossrivers contradictmany earlier inferential non-MBACI studieswhichquestionedthe linkbetweenrestoringhabitatdiversityand increas-ingbiodiversity(e.g.Harrisonetal.,2004;Jähnigetal.,2010;Palmeretal., 2010).Moreover, by linking habitat restorationwith changesacrossthefoodweb,ourstudyprovidesamoreholisticsystem-basedview that has been repeatedly called for (Feld etal., 2011; Fribergetal.,2011;Pander&Geist,2013),andwhichsupportstheconceptofLWrewildingasameanstorecoverandconserveriverecosystemsdegradedbyanthropogenicactivities.

Analysis of community mass-abundance scaling relationshipsandfoodwebpropertiesrevealedthatrepopulationfollowingresto-rationwas largelydrivenby invertebrate taxa rare for their size (i.e.thoseconsideredparticularlysensitivetodeterioratingenvironmental

Response Test Estimate SE z value p

Numberinvertebratenodes

Tar–Con 16.05 2.66 6.03 <.001

Res–Con 14.73 3.05 4.83 <.001

Res–Tar −1.32 3.43 −0.38 .921

Invertebratevulnerability Tar–Con 2.18 0.78 2.81 .014

Res–Con 2.49 0.89 2.78 .015

Res–Tar 0.3 1 0.3 .951

Fishgenerality Tar–Con 9.01 2.78 3.24 .003

Res–Con 10.09 3.2 3.16 .005

Res–Tar 1.08 3.59 0.3 .95

Numberbetweeninvertebratelinks

Tar–Con 305.52 54.70 5.59 <.001

Res–Con 301.20 62.82 4.79 <.001

Res–Tar −4.32 70.46 −0.06 .998

Linkagedensity Tar–Con 2.58 0.89 2.89 .011

Res–Con 3.04 1.03 2.96 .009

Res–Tar 0.46 1.15 0.4 .915

Log10 (Salmo trutta abundance+1) (100 m2)

Tar–Con 0.27 0.11 2.54 .029

Res–Con 0.36 0.12 2.90 .010

Res–Tar 0.09 0.14 0.61 .811

Invertebrateα-diversity Tar–Con 4.96 1.69 2.94 .009

Res–Con 4.61 1.93 2.39 .044

Res–Tar −0.34 2.17 −0.16 .986

TABLE  1 Tukey’sall-pairwisecomparisonsofecologicalresponsesbetweencontrol(Con),target(Tar)andrestored(Res)reachesfollowinglinearmixedeffectmodel(LMM)Significantfindingshighlightedinbold

Page 7: Large woody debris “rewilding” rapidly restores biodiversity in ......Received: 27 February 2017 | Accepted: 11 September 2017 DOI: 10.1111/1365-2664.13013 RESEARCH ARTICLE Large

     |  7Journal of Applied EcologyTHOMPSON eT al.

conditions) and with many potential predators. The persistence ofthesepatterns in target reaches indicated that these taxa remainedraredespitehavinghadmoretimetorepopulateoldertargetreaches.Ouranalysis,therefore,providesnovelinsightsintorecoveryprocessesacrossmultiplelevelsoforganisation,fromindividualspeciespopula-tionstothewiderfoodweb,andrepresentsausefulnewmethodforassessingthesuccessofecologicalrestoration.

Byusingasystem-basedapproach,wecanbegintointerprethowan increase in invertebrate α-diversity may influence restored eco-systems. First, reaches restoredwith LW have a higher number ofspecieswhichmay responddifferently to fluctuating environmentalconditions,andthuscouldprovidehigherecologicalredundancythan

in unrestored reaches (Yachi& Loreau, 1999). Second, the elevatedpotentialfornetworkrewiringviaalternativeintermediatenodesandtheincreaseinfeeding-linkdiversitymayhelptoconservespeciesandecosystemprocesses in restoredwebs in the faceofenvironmentalchange (Lu etal., 2016; Staniczenko, Lewis, Jones, & Reed-Tsochas,2010;Tylianakis, Laliberté,Nielsen,&Bascompte,2010).Therefore,riversectionsrewildedwithLWmaybebothmorerobustandresil-ient to environmental stressors. Moreover, because univariate, bi-variateandtrivariateanalyseshaveallowedthequantificationofanarrayofnetworkresponsestoenvironmentalstressorsinrecentyears(Layer etal., 2010; O’Gorman etal., 2012; Thompson etal., 2016;Woodwardetal.,2012),thismoresyntheticapproachcouldprovideanewandwidelyapplicablemeansofgaugingtheecologicalimpactsofarangeofdrivers,includinghabitatrestoration,pollutionandwarm-ing,forexample.Inlightofcurrentandforecastenvironmentalchange,thisisvaluableinformationforpractitionersandstakeholdersaimingtofocusresourcestothemosteffectiveconservationinterventions.

Our findings complement those of previous studies that havedocumented increases in economically important salmonid popu-lations following LW restoration (e.g. Cederholm etal., 1997; Kailetal.,2007;Ronietal.,2015).Wewereable to show that this re-sponsewasbothrapidandpersistent,drivenbythepresenceofsmallS. trutta inboththerestoredandtargetreaches.ThissuggeststhatLWprovides refugia or nursery habitat.Our analyses also indicate

F IGURE  3 TrivariatefoodwebsfortheRiverLoddon,withnewinvertebratenodes(blackfill)andlinks(darkgrey)highlightedinthe(a)restoredand(b)targetreachesthatwerenotpresentinthecontrolreaches.Nodesrepresentmeanbodymass(M)and numerical abundance (N)ofindividualtaxa;circles=diatomtaxa,squares=invertebratetaxa,diamonds=fishtaxa,greylines=feeding-links.SeeFigureS3forallfoodwebplots.Differencesin(c)residualsfromthegeneralregressionslopebetweeninvertebratenodespresentinallreaches(common)comparedwiththosefoundonlyinrestoredortargetreaches(new)inallrivers.Errorbarsrepresent95%confidenceintervals

Log10(M) (mg)–6 –4 –2 0 2 4 6

Log 10

(N) (

m2 ) –2

0

2

4

6

8

–2

0

2

4

6

8

–0.8–0.6–0.4–0.20.0

Common New

Res

idua

l

Loddon restored

Loddon target

(a)

(b)

(c) F IGURE  4 Differencesin(a)algalbiomass(aschlorophyll-a)and(b)fishabundancebetweencontrol(Con),restored(Res)andtarget(Tar)reaches,evidentfollowinglinearmixedeffectmodelling(LMM).Errorbarsrepresent95%confidenceintervals,*and+indicatesignificantdifferencesattheα = 0.05 level

Log 10

(chl

orop

hyll-

a) (m

g m

2 )Lo

g 10(f

ish

abun

danc

e) (1

00 m

2 )Con Res Tar

0

1

2

3

0

1

2

(a)

(b)

Page 8: Large woody debris “rewilding” rapidly restores biodiversity in ......Received: 27 February 2017 | Accepted: 11 September 2017 DOI: 10.1111/1365-2664.13013 RESEARCH ARTICLE Large

8  |    Journal of Applied Ecology THOMPSON eT al.

thatsomebioticresponseswereintransitionintherestoredreaches.Elevatedfishabundance,butnotbiomass,inthetargetreachesrel-ative tocontrolswas intermediated in restored reachessuggestingthatotherfishspecies,besidesS. trutta,useLWasrefugiaornurseryhabitat,butthisresponserequiresseveralyearstodevelop.Power(1992)showedthatincreasedhabitatcomplexity,andconsequentlyincreasedinvertebrateabundanceviaprovisionofrefugiafrompre-dation,increasedtop-downeffectsofinvertebratesonproducers.Inthisstudy,algalbiomass in restoredreacheswasalso intermediatebetween control and target conditions. This could mean elevatedinvertebratepopulations intargetreacheshad increasedtop-downeffectson their resources,but that thisalso takes severalyears todevelop.Theshallowingoffeeding linkanglesprovidesfurtherev-idence of transitional effects, as biomasswas redistributed acrossthe network in restored reaches, and highlights the potential forincreased biomass flux between resources and invertebrates andinvertebrates and fishes. These findings pave the way for futureexperimental investigations using similar methods, combined withmeasuresofecosystemprocessesandextendedtemporalandspatialsampling.Suchanapproachcouldinvestigate:thecausesofvariation

acrossrestorations(e.g.asseeninFigures4and5a,S6);conflictingeffectsofrestorationonbiota(e.g.Langford,Langford,&Hawkins,2012);howrestorationaltersbottom-upandtop-downeffects,bio-mass flux and the distribution of taxa across the foodweb at thehabitat level (e.g.useofLWas refugiaandadditional substratebyfishesanddiatoms,respectively);andhowlonger-termalterationstorestored foodwebstructure (e.g. transient, cyclicalor successionalassemblydynamics)relatetothespatialandtemporalfrequencyoftreefallevents.

By using a rigorous MBACI design to establish causative re-sponses, this study contributes substantially to the evidence basethat LW rewilding can help to restore human-impacted river eco-systems.Critically,wewereabletoisolatevariationcausedbycon-foundingecologicaldrivers,enablingustogetclosertoamechanisticunderstandingofecosystemresponsestohabitatrestoration.Ifthisapproachwereadoptedinfuturestudies,conductedacrossarangeof restoration projects and river systems with extended tempo-ralmonitoring, a valuable open-source database of the short- andlonger-termoutcomesofecologicalriverrestorationcouldbedevel-oped. Suchanapproachwouldoffer apowerfulmeansof improv-ingunderstandingofecologicalprocesses,helptomitigatenegativehumanimpactsonriverecosystemsandenhanceglobalbiodiversityconservation.

ACKNOWLEDGEMENTS

ThispaperisdedicatedtoDaveBrady(NationalTrust)whoinspiredthisstudybyinitiatingaground-breakingLWrestoration;wethankThe John Spedan Lewis Foundation for fundingM.S.A.T.;NaturalEnvironment Research Council (Grant reference: NE/J015288/1)for supporting D.M.P.; Rob Goldsworthy, Terry Lawton, DaveRundleandtheirteamsforundertakingtherestorations,andrespec-tive landowners for access to study sites and permitting restora-tionwork.TheEnvironmentAgency,inparticular,DominicMartyn,JonClarkeandDanHorsley,forsupport;FrancoisEdwards,GavinSimpson,NancyCampbell,JamesHumphries,CharlieHanison,DorisPichler, the late Sasha Fayers,OwenDyke, Ian Patmore, CliffordLeo Harris, Jacob Laws, Flavia Toloni, Dan Carpenter, RosemaryBaileyandMickaelTeixeiraAlvesfortheirinvaluablecontributions.Special thanks to ChristianMulder,Michael Craig and an anony-mousreviewerfortheirconstructivefeedback.

AUTHORS’ CONTRIBUTIONS

M.T.,S.B.,C.S.andG.W.conceivedtheideasanddesignedmethodol-ogy;M.T. collected thedata;M.T., J.A.,C.G. andD.P. analysed thedata;M.T.ledthewritingofthemanuscript.Allauthorscontributedcriticallytothedraftsandgavefinalapprovalforpublication.

DATA ACCESSIBILITY

Data available from the Cefas datahub https://doi.org/10.14466/ cefasdatahub.43(Thompson,2017).

F IGURE  5 Differencesin(a)invertebrateα-diversityincontrol(Con),target(Tar)andrestored(Res)reaches(basesamplesize=1,388),evidentfollowinglinearmixedeffectmodel(LMM).Errorbarsrepresent95%confidenceintervals.*Asignificantdifferenceattheα=0.05level.(b)Withinreachdifferencesininvertebrateβ-diversitybetweenhabitattypesusingnon-metricmultidimensionalscaling(NMDS)ofchord-normalisedexpectedspeciessharedindexofdissimilarity(CNESS)dissimilarity(m=16)basedonrestoredandtargetdatarepresentedbySEellipses

0

20

40

60

Con

Inve

rtebr

ate

α-di

vers

ity

(a)

(b)

Res Tar

NM

DS

2

NMDS 1–0.6 –0.2 0.2 0.6

–0.6

–0.2

0.2

0.6

EdgeMid

LW

Page 9: Large woody debris “rewilding” rapidly restores biodiversity in ......Received: 27 February 2017 | Accepted: 11 September 2017 DOI: 10.1111/1365-2664.13013 RESEARCH ARTICLE Large

     |  9Journal of Applied EcologyTHOMPSON eT al.

ORCID

Murray S.A. Thompson http://orcid.org/0000-0002-9567-175X

REFERENCES

Baker,S.,&Eckerberg,K. (2016).Ecologicalrestorationsuccess:Apolicyanalysisunderstanding.Restoration Ecology,24,284–290.

Bates,D.,Maechler,M.,Bolker,B.,&Walker,S.(2015).Fittinglinearmixed-effectsmodelsusinglme4.Journal of Statistical Software,67,1–48.

Battarbee, R. W., Jones, V. J., Flower, R. J., & Cameron, N. G. (2001).Diatoms.InJ.P.Smol,W.M.Last&H.J.B.Birks(Eds.),Tracking environ-mental change using lake sediments (pp.155–202).Dordrecht:KluwerAcademicPublishers.

Battarbee,R.W.,Shilland,E.M.,Kernan,M.,Monteith,D.T.,&Curtis,C.J.(2014).RecoveryofacidifiedsurfacewatersfromacidificationintheUnitedKingdomaftertwentyyearsofchemicalandbiologicalmonitor-ing(1988–2008).Ecological Indicators,37,267–273.

Bernhardt,E.S.,&Palmer,M.A.(2011).Riverrestoration:Thefuzzylogicofrepairingreachestoreversecatchmentscaledegradation.Ecological Applications,21,1926–1931.

Bernhardt,E.S.,Palmer,M.A.,Allan,J.D.,Alexander,G.,Barnas,K.,Brooks,S., … Sudduth, E. (2005). Synthesizing U.S. river restoration efforts.Science,308,636–637.

Besse-Lototskaya, A., Verdonschot, P. F., & Sinkeldam, J. A. (2006).Uncertaintyindiatomassessment:Sampling,identificationandcount-ingvariation.InM.T.Furse,D.Hering,K.Brabec,A.Buffagni,L.Sandin&P.F.M.Verdonschot, (Eds.),The ecological status of European rivers: Evaluation and intercalibration of assessment methods (pp. 247–260).Dordrecht:SpringerNetherlands.

Bolker, B. M. (2008). Ecological models and data in R. Princeton, NJ:PrincetonUniversityPress.

Borchardt,D. (1993).Effectsof flowand refugiaondrift lossofbenthicmacroinvertebrates: Implications for habitat restoration in lowlandstreams.Freshwater Biology,29,221–227.

Brooker, M. P. (1985). The ecological effects of channelization. The Geographical Journal,151,63–69.

Canfield,D.E.Jr,Shireman,J.V.,Colle,D.E.,Haller,W.T.,Watkins,C.E.II,&Maceina,M.J.(1984).PredictionofchlorophyllaconcentrationsinFloridalakes:Importanceofaquaticmacrophytes.Canadian Journal of Fisheries and Aquatic Sciences,41,497–501.

Carle,F.L.,&Strub,M.R.(1978).Anewmethodforestimatingpopulationsizefromremovaldata.Biometrics,34,621–630.

Cashman,M.J.,Pilotto,F.,&Harvey,G.L. (2016).Combinedstable-iso-tope and fatty-acid analyses demonstrate that largewood increasesthe autochthonous trophic baseof amacroinvertebrate assemblage.Freshwater Biology,61,549–564.

Cederholm,C.J.,Bilby,R. E.,Bisson,P.A.,Bumstead,T.W., Fransen,B.R., Scarlett,W. J., &Ward, J.W. (1997). Response of juvenile cohosalmonandsteelheadtoplacementoflargewoodydebrisinacoastalWashington stream.North American Journal of Fisheries Management,17,947–963.

Chao,A.,Gotelli,N.J.,Hsieh,T.C.,Sander,E.L.,Ma,K.H.,Colwell,R.K.,&Ellison,A.M.(2014).RarefactionandextrapolationwithHillnumbers:Aframeworkforsamplingandestimationinspeciesdiversitystudies.Ecological Monographs,84,45–67.

Cohen,J.E.,Schittler,D.N.,Raffaelli,D.G.,&Reuman,D.C.(2009).Foodwebs aremore than the sumof their tritrophic parts.Proceedings of the National Academy of Sciences of the United States of America,106,22335–22340.

Demars,B.O.L.,Kemp,J.L.,Friberg,N.,Usseglio-Polatera,P.,&Harper,D. M. (2012). Linking biotopes to invertebrates in rivers: Biologicaltraits, taxonomic composition and diversity.Ecological Indicators,23,301–311.

Downes,B.J.,Barmuta,L.A.,Fairweather,P.G.,Faith,D.P.,Keough,M.J., Lake, P. S, … Quinn, G. P.. (2002).Monitoring ecological impacts: Concepts and practice in flowing waters. Cambridge, UK: CambridgeUniversityPress.

Downs,P.,&Gregory,K. (2014).River channel management: Towards sus-tainable catchment hydrosystems.NewYork,NY:Routledge.

EnvironmentAgencyEnglishNature.(2004).The State of England’s chalk riv-ers: A report by the UK biodiversity action plan steering group for Chalk Rivers. Bury Saint Edmunds,UK:Department for Environment, Food&RuralAffairs.

Everett,R.A.,&Ruiz,G.M.(1993).Coarsewoodydebrisasarefugefrompredationinaquaticcommunities.Oecologia,93,475–486.

Feld, C. K., Birk, S., Bradley, D. C., Hering, D., Kail, J., Marzin, A., …Pletterbauer,F.(2011).Fromnaturaltodegradedriversandbackagain:Atestofrestorationecologytheoryandpractice.Advances in Ecological Research,44,119–209.

Friberg,N.,Bonada,N.,Bradley,D.C.,Dunbar,M.J.,Edwards,F.K.,Grey,J.,…Trimmer,M.(2011).Biomonitoringofhumanimpactsinfreshwa-terecosystems:Thegood,thebadandtheugly.Advances in Ecological Research,44,1–68.

Gallagher,E.D.(1999).COMPAHdocumentation.User’sguideandappli-cationpublished.http://www.es.umb.edu/edgwebp.htm.

Gray,C.,Figueroa,D.H.,Hudson,L.N.,Ma,A.,Perkins,D.,&Woodward,G.(2015).Joiningthedots:Anautomatedmethodforconstructingfoodwebsfromcompendiaofpublishedinteractions.Food Webs,5,11–20.

Gurnell,A.M.,Gregory,K.J.,&Petts,G.E.(1995).Theroleofcoarsewoodydebrisinforestaquatichabitats:Implicationsformanagement.Aquatic Conservation: Marine and Freshwater Ecosystems,5,143–166.

Gurnell,A.M.,&Sweet,R.(1998).Thedistributionoflargewoodydebrisaccumulationsandpoolsinrelationtowoodlandstreammanagementinasmall,low-gradientstream.Earth Surface Processes and Landforms,23,1101–1121.

Harrison,S.,Pretty,J.L.,Shepherd,D.,Hildrew,A.G.,Smith,C.,&Hey,R.D.(2004).Theeffectofinstreamrehabilitationstructuresonmacroinver-tebratesinlowlandrivers.Journal of Applied Ecology,41,1140–1154.

Hering,D.,Aroviita,J.,BaattrupPedersen,A.,Brabec,K.,Buijse,T.,Ecke,F.,…Kohler,J.(2015).Contrastingtherolesofsectionlengthandin-streamhabitatenhancementforriverrestorationsuccess:Afieldstudyof 20 European restoration projects. Journal of Applied Ecology, 52,1518–1527.

Hood,G.A., & Larson,D.G. (2015). Ecological engineering and aquaticconnectivity: A new perspective from beaver-modified wetlands.Freshwater Biology,60,198–208.

Hothorn,T.,Bretz,F.,&Westfall,P.(2008).Simultaneousinferenceingen-eralparametricmodels.Biometrical Journal,50,346–363.

Hsieh, T. C., Ma, K. H., & Chao, A. (2014). iNEXT: iNterpolation andEXTrapolation for species diversity. R package version 2.0. http://CRAN.Rproject.org/package=iNEXT.

Hudson,L.N.,Emerson,R.,Jenkins,G.B.,Layer,K.,Ledger,M.E.,Pichler,D.E.,…Reuman,D.C.(2012).Cheddar:Analysisandvisualisationofeco-logicalcommunitiesinR.Methods in Ecology and Evolution,4,99–104.

Jähnig,S.C.,Brabec,K.,Buffagni,A.,Erba,S.,Lorenz,A.W.,Ofenböck,T.,…Hering,D. (2010).Acomparativeanalysisof restorationmeasuresandtheireffectsonhydromorphologyandbenthicinvertebratesin26central and southern European rivers. Journal of Applied Ecology,47,671–680.

Kail,J.,Brabec,K.,Poppe,M.,&Januschke,K.(2015).Theeffectofriverrestoration on fish, macroinvertebrates and aquatic macrophytes: Ameta-analysis.Ecological Indicators,58,311–321.

Kail,J.,Hering,D.,Muhar,S.,Gerhard,M.,&Preis,S. (2007).Theuseoflarge wood in stream restoration: Experiences from 50 projects inGermanyandAustria.Journal of Applied Ecology,44,1145–1155.

Langford,T.E.L.,Langford,J.,&Hawkins,S.J.(2012).Conflictingeffectsofwoodydebrisonstreamfishpopulations:Implicationsformanage-ment.Freshwater Biology,57,1096–1111.

Page 10: Large woody debris “rewilding” rapidly restores biodiversity in ......Received: 27 February 2017 | Accepted: 11 September 2017 DOI: 10.1111/1365-2664.13013 RESEARCH ARTICLE Large

10  |    Journal of Applied Ecology THOMPSON eT al.

Langford,T.E.L.,Shaw,P.J.,Ferguson,A.J.D.,&Howard,S.R. (2009).Long-term recovery of macroinvertebrate biota in grossly pollutedstreams:Re-colonisationasaconstrainttoecologicalquality.Ecological Indicators,9,1064–1077.

Lauridsen,R.B.,Edwards,F.K.,Bowes,M.J.,Woodward,G.,Hildrew,A.G.,Ibbotson,A.T.,&Jones,J.I.(2012).Consumer-resourceelementalimbalancesinanutrient-richstream.Freshwater Science,31,408–422.

Layer,K.,Hildrew,A.G.,&Woodward,G.(2013).Grazinganddetritivoryin20streamfoodwebsacrossabroadpHgradient.Oecologia,171,459–471.

Layer,K.,Riede,J.O.,Hildrew,A.G.,&Woodward,G. (2010).Foodwebstructure and stability in 20 streams across a wide pH gradient.Advances in Ecological Research,42,265–299.

Legendre,P.&Gallagher,E.D.(2001).Ecologicallymeaningfultransforma-tionsforordinationofspeciesdataOecologia,129,271–280.

Lepori,F.,Palm,D.,Brännäs,E.,&Malmqvist,B.(2005).Doesrestorationofstructuralheterogeneityinstreamsenhancefishandmacroinverte-bratediversity?Ecological Applications,15,2060–2071.

Lu,X.,Gray,C.,Brown,L.E.,Ledger,M.E.,Milner,A.M.,Mondragón,R.J.,…Ma,A. (2016).Drought rewires thecoresof foodwebs.Nature Climate Change,6,875–878.https://doi.org/10.1038-nclimate3002

Martinez,N.D.(1991).Artifactsorattributes?EffectsofresolutionontheLittleRockLakefoodweb.Ecological Monographs,61,367–392.

Matthews,J.,Reeze,B.,Feld,C.K.,&Hendriks,A.J.(2010).Lessonsfrompractice:Assessing early progress and success in river rehabilitation.Hydrobiologia,655,1–14.

Mulder,C.,&Elser,J.J. (2009).Soilacidity,ecologicalstoichiometryandallometric scaling in grassland foodwebs.Global Change Biology,15,2730–2738.

Nilsson,C.,Reidy,C.A.,Dynesius,M.,&Revenga,C.(2005).Fragmentationand flow regulation of theworld’s large river systems. Science,308,405–408.

O’Gorman,E.J.,Pichler,D.E.,Adams,G.,Benstead,J.P.,Cohen,H.,Craig,N.,…Woodward,G.(2012).Impactsofwarmingonthestructureandfunctioningofaquaticcommunities:Individual-toecosystem-levelre-sponses.Advances in Ecological Research,47,81–176.

Oksanen,J.,Blanchet,F.G.,Kindt,R.,Legendre,P.,Minchin,P.R.,&O’Hara,R.B,…Wagner,H.(2015).vegan:Communityecologypackage.Rpack-ageversion2.3-0.http://CRAN.R-project.org/package=vegan.

Palmer,M.A.,Menninger,H.L.,&Bernhardt,E.S.(2010).Riverrestoration,habitatheterogeneityandbiodiversity:Afailureoftheoryorpractice?Freshwater Biology,55,205–222.

Pander,J.,&Geist,J. (2013).Ecological indicators forstreamrestorationsuccess.Ecological Indicators,30,106–118.

Pilotto,F.,Bertoncin,A.,Harvey,G.L.,Wharton,G.,&Pusch,M.T.(2014).Diversification of stream invertebrate communities by large wood.Freshwater Biology,59,2571–2583.

Pocock,M.J.,Evans,D.M.,&Memmott,J.(2012).Therobustnessandres-torationofanetworkofecologicalnetworks.Science,335,973–977.

Power,M.E.(1992).Habitatheterogeneityandthefunctionalsignificanceoffishinriverfoodwebs.Ecology,73,1675–1688.

Ritchie, R. J. (2006). Consistent sets of spectrophotometric chlorophyllequationsforacetone,methanolandethanolsolvents.Photosynthesis Research,89,27–41.

Roni,P.,&Beechie,T.(2012).Stream and watershed Restoration: A guide to re-storing riverine processes and habitats.Chichester,UK:JohnWiley&Sons.

Roni,P.,Beechie,T.,Pess,G.,Hanson,K.,&Jonsson,B.(2015).Woodplace-mentinriverrestoration:Fact,fiction,andfuturedirection.Canadian Journal of Fisheries and Aquatic Sciences,72,466–478.

Schneider,K.N.,&Winemiller,K.O.(2008).Structuralcomplexityofwoodydebrispatchesinfluencesfishandmacroinvertebratespeciesrichnessinatemperatefloodplain-riversystem.Hydrobiologia,610,235–244.

Schoener,T.W.(1989).Foodwebsfromthesmalltothelarge:TheRobertH.MacArthurAwardLecture.Ecology,70,1559–1589.

Staniczenko,P.P.A.,Lewis,O.T.,Jones,N.S.,&Reed-Tsochas,F.(2010).Structuraldynamicsandrobustnessoffoodwebs.Ecology Letters,13,891–899.

Stein,B.A.,&Kutner,L.S.(2000).Precious heritage: The status of biodiversity in the United States.NewYork,NY:OxfordUniversityPress.

Strayer,D.L.,&Dudgeon,D.(2010).Freshwaterbiodiversityconservation:Recentprogressand futurechallenges.Journal of the North American Benthological Society,29,344–358.

Strong,J.S.,&Leroux,S.J.(2014).Impactofnon-nativeterrestrialmammalsonthestructureoftheterrestrialmammalfoodwebofNewfoundland,Canada.PLoS ONE,9,e106264.

Thompson,M.S.A.(2017).Datafrom:Largewoodydebris‘rewilding’rap-idlyrestoresbiodiversityinriverinefoodwebs.Cefasdatahub.https://doi.org/10.14466/cefasdatahub.43

Thompson,M.S.A.,Bankier,C.,Bell,T.,Dumbrell,A.J.,Gray,C.,Ledger,M.E.,…Woodward,G.(2016).Gene-to-ecosystemimpactsofacata-strophicpesticidespill:Testingamultilevelbioassessmentapproachinariverecosystem.Freshwater Biology,61,2037–2050.

Trueblood,D.D.,Gallagher,E.D.,&Gould,D.M.(1994).Threestagesofseasonal succession on the SavinHill Covemudflat, BostonHarbor.Limnology and Oceanography,39,1440–1454.

Tylianakis, J. M., Laliberté, E., Nielsen, A., & Bascompte, J. (2010).Conservationofspeciesinteractionnetworks.Biological Conservation,143,2270–2279.

UKTAG(2013).Updated recommendations on phosphorus standards for riv-ers: River basin management (2015–2021). Bristol, UK: EnvironmentAgency.

Underwood,A.J. (1994).OnbeyondBACI:Samplingdesigns thatmightreliably detect environmental disturbances.Ecological Applications,4,4–15.

Vörösmarty,C.J.,McIntyre,P.B.,Gessner,M.O.,Dudgeon,D.,Prusevich,A.,Green,P.,…Liermann,C.R.(2010).Globalthreatstohumanwatersecurityandriverbiodiversity.Nature,467,555–561.

Whiteway,S.L.,Biron,P.M.,Zimmermann,A.,Venter,O.,&Grant,J.W.(2010).Do in-stream restoration structures enhance salmonid abun-dance? A meta-analysis. Canadian Journal of Fisheries and Aquatic Sciences,67,831–841.

Woodward,G.,Brown,L.E.,Edwards,F.K.,Hudson,L.N.,Milner,A.M.,Reuman,D.C.,&Ledger,M.E.(2012).Climatechangeimpactsinmul-tispecies systems: Drought alters foodweb size structure in a fieldexperiment.Philosophical Transactions of the Royal Society B: Biological Sciences,367,2990–2997.

WWF-UK(2015).The state of England’s Chalk streams.Woking,UK:WorldWideFundforNature.

Yachi,S.,&Loreau,M.(1999).Biodiversityandecosystemproductivityina fluctuating environment: The insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America,96,1463–1468.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in thesupportinginformationtabforthisarticle.

How to cite this article:ThompsonMSA,BrooksSJ,SayerCD,etal.Largewoodydebris“rewilding”rapidlyrestoresbiodiversityinriverinefoodwebs.J Appl Ecol. 2017;00:1–10. https://doi.org/10.1111/1365-2664.13013