LaplaceCircuits.pdf

Embed Size (px)

Citation preview

  • 7/25/2019 LaplaceCircuits.pdf

    1/48

    Laplace Transforms Circuit Analysis

    Passive element equivalents

    Review of ECE 221 methods in s domain

    Many examples

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 1

  • 7/25/2019 LaplaceCircuits.pdf

    2/48

    Example 1: Circuit AnalysisWe can use the Laplace transform for circuit analysis if we can definethe circuit behavior in terms of a linear ODE.

    For example, solve for v(t). Check your answer using the initial and

    final value theorems and the methods discussed in Chapter 7.

    10 u(t) v(t)

    -

    +

    5 mH

    i(0-) = -2 mA

    5 k

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 2

  • 7/25/2019 LaplaceCircuits.pdf

    3/48

    Example 1:WorkspaceHint: [r,p,k] = residue([-2e-3 2e3],[1 1e6 0])r = -0.0040, 0.0020,

    p = -1000000, 0

    k = []

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 3

  • 7/25/2019 LaplaceCircuits.pdf

    4/48

    Example 1:Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 4

  • 7/25/2019 LaplaceCircuits.pdf

    5/48

    Laplace Transform Circuit Analysis Overview

    LPT is useful for circuit analysis because it transforms differentialequations into an algebra problem

    Our approach will be similar to the phasor transform

    1. Solve for the initial conditions Current flowing through each inductor

    Voltage across each capacitor

    2. Transform all of the circuit elements to thes domain

    3. Solve for the s domain voltages and currents of interest

    4. Apply the inverse Laplace transform to find time domainexpressions

    How do we know this will work?

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 5

  • 7/25/2019 LaplaceCircuits.pdf

    6/48

    Kirchhoffs LawsNk=1

    vk(t) = 0Nk=1

    Vk(s) = 0

    Mk=1

    ik(t) = 0Mk=1

    Ik(s) = 0

    Kirchhoffs laws are the foundation of circuit analysis

    KVL: The sum of voltages around a closed path is zero

    KCL: The sum of currents entering a node is equal to the sumof currents leaving a node

    If Kirchhoffs laws apply in the s domain, we can use the same

    techniques that you learned last term (ECE 221) Apply the LPT to both sides of the time domain expression for

    these laws

    The laws hold in the s domain

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 6

  • 7/25/2019 LaplaceCircuits.pdf

    7/48

    Defining s Domain Equations: Resistors

    R

    v(t) -+

    i(t) R

    V(s) -+

    I(s)

    v(t) =R i(t) V(s) =R I(s)

    Generalization of Ohms Law

    As with KCL & KVL, the relationship is the same in the s domainas in the time domain

    Note that we used the linearity property of the LPT for bothOhms law and Kirchhoffs laws

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 7

  • 7/25/2019 LaplaceCircuits.pdf

    8/48

    Defining s Domain Equations: Inductors

    v(t) -+

    i(t) L

    V(s) -+

    I(s) LsL I

    0

    V(s) -+

    I(s) Ls

    I0

    s

    v(t) =Ldi(t)

    dt i(t) =

    1

    L

    t0-v() d+I0

    V(s) =L [sI(s) I0] I(s) = 1

    sL

    V(s) +1

    s

    I0

    V(s) =sLI(s) LI0

    Where I0 i(0-)

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 8

  • 7/25/2019 LaplaceCircuits.pdf

    9/48

    Defining s Domain Equations: Capacitors

    v(t) -+

    i(t)

    V(s) -+

    I(s)

    V(s) -+

    I(s)

    CV0

    C

    1sC

    V0s 1

    sC

    i(t) =Cdv(t)dt

    v(t) = 1C

    t

    0-i() d+V0

    I(s) =C[sV(s) V0] V(s) = 1

    C

    1

    sI(s)

    +

    1

    sV0

    I(s) =sCV(s) CV0 V(s) = 1

    sCI(s) +

    V0

    s

    Where V0 v(0-)

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 9

  • 7/25/2019 LaplaceCircuits.pdf

    10/48

    s Domain Impedance and Admittance

    Impedance: Z(s) =V(s)

    I(s)

    Admittance: Y(s) = I(s)V(s)

    The s domain impedance of a circuit element is defined for zeroinitial conditions

    This is also true for the s domain admittance

    We will see that circuit s domain circuit analysis is easier when wecan assume zero initial conditions

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 10

  • 7/25/2019 LaplaceCircuits.pdf

    11/48

    s Domain Circuit Element Summary

    Resistor V(s) =RI(s) V =RI R

    Inductor V(s) =sLI(s) V =sLI Ls

    Capacitor V(s) = 1sC

    I(s) V = 1sC

    I1

    sC

    All of these are in the form V(s) =ZI(s)

    Note similarity to phasor transform

    Identical ifs=j

    Will discuss further later Equations only hold for zero initial conditions

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 11

  • 7/25/2019 LaplaceCircuits.pdf

    12/48

    Example 2: Circuit Analysis

    10 u(t) v(t)

    -

    +

    5 mH

    i(0-) = -2 mA

    5 k

    Solve for v(t) using s-domain circuit analysis.

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 12

  • 7/25/2019 LaplaceCircuits.pdf

    13/48

    Example 2: Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 13

  • 7/25/2019 LaplaceCircuits.pdf

    14/48

    Example 3: Circuit Analysis

    t = 0

    vo

    -

    +1 k

    sin(1000t) 1 F

    Given vo(0) = 0, solve for vo(t) for t 0.

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 14

  • 7/25/2019 LaplaceCircuits.pdf

    15/48

    Example 3: WorkspaceHint: [r,p,k] = residue([1e6],conv([1 0 1e6],[1 1e3]))r = [ 0.5000, -0.2500 - 0.2500i, -0.2500 + 0.2500i]

    p = 1.0e+003 *[ -1.0000, 0.0000 + 1.0000i, 0.0000 - 1.0000i]

    k = []

    [abs(r) angle(r)*180/pi]

    ans = [ 0.5000 0, 0.3536 -135.0000, 0.3536 135.0000]

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 15

  • 7/25/2019 LaplaceCircuits.pdf

    16/48

    Example 3: Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 16

  • 7/25/2019 LaplaceCircuits.pdf

    17/48

    Example 3: Plot of Results

    0 5 10 15 20 250.8

    0.6

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    0.8

    1 TotalTransient

    Steady State

    Time (ms)

    vo

    (t)

    (V)

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 17

  • 7/25/2019 LaplaceCircuits.pdf

    18/48

    Example 4: Circuit Analysis

    40 V

    10 mF

    10 mH

    t = 0

    v

    -

    +

    50

    50

    100

    175

    175

    Solve for v(t).

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 18

  • 7/25/2019 LaplaceCircuits.pdf

    19/48

    Example 4: WorkspaceHint: [r,p,k] = residue([1e-3 20 0],[1 21.25e3 10e3])r = [-1.2496, -0.0004]

    p = [-21250,-0.4706]

    k = [0.0010]

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 19

  • 7/25/2019 LaplaceCircuits.pdf

    20/48

    Example 4: Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 20

  • 7/25/2019 LaplaceCircuits.pdf

    21/48

    Example 5: Parallel RLC Circuits

    C L R v(t)

    -

    +

    i(t)

    Find an expression for V(s). Assume zero initial conditions.

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 21

  • 7/25/2019 LaplaceCircuits.pdf

    22/48

    Example 6: Circuit Analysis

    8 H v

    -

    +

    iL

    20 k0.125 F

    Given v(0) = 0 V and the current through the inductor isiL(0

    -) = 12.25 mA, solve for v(t).

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 22

  • 7/25/2019 LaplaceCircuits.pdf

    23/48

    Example 6: WorkspaceHint: [r,p,k] = residue([98e3],[1 400 1e6])r = [ 0 -50.0104i, 0 +50.0104i]

    p = 1.0e+002 * [ -2.0000 + 9.7980i, -2.0000 - 9.7980i]

    k = [] [abs(r) angle(r)*180/pi]

    ans =[ 50.0104 -90.0000, 50.0104 90.0000]

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 23

  • 7/25/2019 LaplaceCircuits.pdf

    24/48

    Example 6: Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 24

  • 7/25/2019 LaplaceCircuits.pdf

    25/48

    Example 6: Plot ofv(t)

    0 5 10 15 20 25 30 35 40

    40

    20

    0

    20

    40

    60

    80

    Time (ms)

    (v

    olts)

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 25

  • 7/25/2019 LaplaceCircuits.pdf

    26/48

    Example 6: MATLAB Codet = 0:0.01e-3:40e-3;v = 50*exp(-200*t).*sin(979.8*t);t = t*1000;h = plot(t,v,b);set(h,LineWidth,1.2);

    xlim([0 max(t)]);ylim([-23 40]);box off;xlabel(Time (ms));ylabel((volts));title();

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 26

  • 7/25/2019 LaplaceCircuits.pdf

    27/48

    Example 7: Series RLC Circuits

    R L

    Cv(t)

    vR(t) -+ v

    L(t) -+

    vC(t)

    -

    +

    Find an expression for VR(s), VL(s), and VC(s). Assume zero initialconditions.

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 27

  • 7/25/2019 LaplaceCircuits.pdf

    28/48

    Example 7: Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 28

  • 7/25/2019 LaplaceCircuits.pdf

    29/48

    Example 8: Circuit Analysis

    50 nF

    10 nF 2.5 nF

    80 V

    t = 0

    v1(t)

    -

    +

    v2(t)

    -

    +

    20 k

    There is no energy stored in the circuit at t= 0. Solve for v2(t).

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 29

  • 7/25/2019 LaplaceCircuits.pdf

    30/48

    Example 8: Workspace

    Hint: [r,p,k] = residue([320e3],[1 5e3 0])r = [-64, 64]

    p = [-5000,0]

    k = []

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 30

  • 7/25/2019 LaplaceCircuits.pdf

    31/48

    Example 8: Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 31

  • 7/25/2019 LaplaceCircuits.pdf

    32/48

    Example 9: Circuit Analysis

    0.25 v1

    20 H

    0.1 F600 u(t)

    v1

    v2

    10

    140

    Solve for V2(s). Assume zero initial conditions.

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 32

  • 7/25/2019 LaplaceCircuits.pdf

    33/48

    Example 9: Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 33

  • 7/25/2019 LaplaceCircuits.pdf

    34/48

    Example 9: Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 34

  • 7/25/2019 LaplaceCircuits.pdf

    35/48

    Example 10: Circuit Analysis

    10 mF

    9 i(t)

    u(t)

    a

    b

    i(t)

    100

    Find the Thevenin equivalent of the circuit above. Assume that thecapacitor is initially uncharged.

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 35

  • 7/25/2019 LaplaceCircuits.pdf

    36/48

    Example 10: Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 36

  • 7/25/2019 LaplaceCircuits.pdf

    37/48

    Example 10: Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 37

  • 7/25/2019 LaplaceCircuits.pdf

    38/48

    Example 11: Circuit Analysis

    v(t)

    L

    R vo(t)

    -

    +

    iL

    Find an expression for vo(t) given that v(t) = etu(t) and

    iL(0) =I0 mA.

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 38

  • 7/25/2019 LaplaceCircuits.pdf

    39/48

    Example 11: Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 39

  • 7/25/2019 LaplaceCircuits.pdf

    40/48

    Example 11: Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 40

  • 7/25/2019 LaplaceCircuits.pdf

    41/48

    Example 12: Circuit Analysis

    100 mH

    vs(t)

    vo(t)

    -

    +

    200

    1 k1 F

    Find an expression for Vo(s) in terms ofVs(s). Assume there is noenergy stored in the circuit initially. What is vo(t) ifvs(t) =u(t)?

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 41

  • 7/25/2019 LaplaceCircuits.pdf

    42/48

    Example 12: Workspace

    Hint: [r,p,k] = residue([-0.2 0],conv([1 2e3],[1 1e3]))r = [-0.4000, 0.2000]

    p = [-2000, -1000]

    k = []

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 42

  • 7/25/2019 LaplaceCircuits.pdf

    43/48

    Example 12: Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 43

  • 7/25/2019 LaplaceCircuits.pdf

    44/48

    Example 13: Circuit Analysis

    vo(t)

    -

    +

    vs(t)R

    L

    RA

    CA R

    B

    CB

    Find an expression for Vo(s) in terms ofVs(s). Assume there is noenergy stored in the circuit initially.

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 44

  • 7/25/2019 LaplaceCircuits.pdf

    45/48

    Example 13: Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 45

  • 7/25/2019 LaplaceCircuits.pdf

    46/48

    Example 13: Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 46

  • 7/25/2019 LaplaceCircuits.pdf

    47/48

    Example 14: Circuit Analysis

    vs(t)

    vo(t)

    -

    +

    RL

    C

    R

    Find an expression for Vo(s) in terms ofVs(s). Assume there is no

    energy stored in the circuit initially.

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 47

  • 7/25/2019 LaplaceCircuits.pdf

    48/48

    Example 14: Workspace

    J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 48