54
Land carbon and vegetation models at LSCE Philippe Peylin , Philippe Ciais, N. Viovy, N. DeNoblet, V. Bellasem, N. Vuichard, P. Cadule, P. Friedlingstein, F. Maignan, H. Verbeeck, C. Bacour, C. Ottle,….

Land carbon and vegetation models at LSCE - ECMWF · (prescribed or calculate by LPJ Dynamic General Vegetation model) Add-ons: • Progressive increase of LAI_max for 15 years after

Embed Size (px)

Citation preview

Land carbon and vegetation models at LSCE

Philippe Peylin, Philippe Ciais, N. Viovy, N. DeNoblet, V. Bellasem,

N. Vuichard, P. Cadule, P. Friedlingstein, F. Maignan,

H. Verbeeck, C. Bacour, C. Ottle,….

Continental surface modeling

Outline

Land surface model at LSCE: ORCHIDEE

Model evaluation at the site level& Recent model improvements

Running projects and Studies

Data Assimilation with ORCHIDEE

ORCHIDEE

• ORganizing Carbon and Hydrology In

Dynamic EcosystEms

• Process-driven global ecosystem model

• Energy, Water, Carbone, N, balances

• Plant Functional Types PFT’s approach• Computes its own phenology

Major processes simulated by ORCHIDEE

Photosynthèse nette

Respiration decroissance & maintenance

Allocation des assimilats

litière

Bilan de carbone et de nutriments

Flux de CO2

Concentration en CO2

Interception par la canopée

Infiltration, stockage, drainage

ruissellement de surface

Evapotranspiration

Humidité de l’air Précipitation

Solaire etinfra-rouge

Rayonnement Vitesse du vent

Turbulence de l’air

Température

conv

ectio

n de

cha

leur

sèc

he

Températurede la surface

Below groundCarbon cycle

ORCHIDEE performances(site level)

& Recent improvements

H(W/m2)

LE(W/m2)

Rn(W/m2)

ORCHIDEE

EC measurements

NEE(µmol/m2/mth)

Extensive evaluation over more than 30 sites

Average seasonalcycle

NACP model intercomparison : NEE

Water cycle validation

• Change in runoffcomparison with data

(Labat et al., 2004)

Piao et al., submitted

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Ano

mal

ies

of to

tal r

unof

f (×

1012

m3 )

-2

-1

0

1

2

-2

-1

0

1

2

Year

1900 1920 1940 1960 1980 2000-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

-4

-2

0

2

4

-4

-2

0

2

4

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

South America

North America

Africa

Europe

Asia

ORCHIDEE Observed

Recent improvements of ORCHIDEE

Natural grass

Bare soil / desert

Multi-layer soil hydrology’

AssimilationOf variables

Modules implementation

Forest

Crops

Managed grass Temperate Crops

grassland

Tropicalcrops

Forest management module

Nitrogencycle

50 100 150 200 250 300 3500

1

2

3

4

5

6

days

Winter wheat : LAI (leaf Area index)

Measurements

ORCHIDEE

50 100 150 200 250 300 3500

1

2

3

4

5

6

days

ORCHIDEE+STICS

STICS

Improve “phenology” for cropland

Πse

q (tC

ha-1

)

PASIM

Potential for soil carbon storage

Improve soil carbon estimatesfor managed pasture

Atmosphere (prescribed or

simulated by a GCM)

LAI, roughness, albedo

Soil profiles ofwater and temperature,

GPP

ORCHIDEEBiosphere

SECHIBAEnergy budget

Hydrology+

PhotosynthesisΔt=1 hour

Vegetation distribution(prescribed or calculate by LPJ

Dynamic General Vegetation model)

Add-ons:• Progressive increase of LAI_max

for 15 years after a clear-cut• Age-related decline in NPP

(LAI_max limited by height and v_max declines after 50 years)

• 2.5% of branches die each year

ORCHIDEE, coupled with FM module

STOMATEVegetation and soil

Carbon cycle

Δt=1 day

Prognostic phenology and allocation, constant mortality

rainfall, temperaturesolar radiation, CO2

concentration, ...

sensible and latent heat fluxes, albedo, roughness, surface temperature, CO2 flux...

NPP, biomass,litterfall ...

Vegetation typesbiomass

Forest management (FM)• Explicit tree distribution• Explicit mortality due to self-

thinning and human thinning• LAI limited by thinnings

A Forest Management Module for ORCHIDEE

Impact of management on stocks & fluxes

Effect of management on fluxes and stocksPeriodic decrease of above-ground stocksDrop in GPPSlow changes in soil carbon during the rotation

Carbon fluxes at stand scale Carbon stocks at stand scale

RESULTS with Forest Module

Validation: 2 different datasets

Permanent monitoring plots: LERFOB Yield tables: Teobaldelli et al., 2009

RESULTS with Forest Module

Data

Model

Circumference distribution

Running projects & studiesParameterizations

- Forest growth (V. Bellassem)- Wetland dynamics & CH4 emissions (S. Piao + PhD B.

Ringeval)- Frozen C decomposition (post-doc D. Khvorostyanov +

new post-doc)- Fire (Boreal: phD A. Rubtsov ; Global: collab. with Quest

group in UK)- Weathering of Carbonates (phD M. Roland + collab I.

Janssens)- Advanced soil C-N decomposition model (S. Zaehle +

post-doc)

Running projects & studies Regional developments

- Eastern China cold grasslands (phD K.Tan)- Siberian crop abandonment (post-doc N. Vuichard + collab. With R.

Valentini)- Carboafrica (phD P. Brender ?)- Arctic and boreal vegetation (phD Tao Wang ?)- Amazon (post-doc H. Verbeeck)- France (high resolution simulation ; future climate change impacts)- Europe (carboeurope)

- Model intercomparison with climate + CO2- New model intercomparison with Climate + CO2 + land use- Site level evaluation (ongoing)- Forest inventory NPP comparison

CarboEurope project

Mean Carbone Uptake by Europe : ~ 0.15 - 0.3 GtC/ yr

Impact of extreme climate events (i.e. 2003 summer drought)

Flux anomaly : 2003 vs Mean

Comparison of several biosphere models(CarboEurope project)

Anomalous C-release in 2003 : ~ 0.3 GtC / yr

Carbon sequestration due to the abandonment of croplands in the

former USSR since 1990

NEE

(g

C m

-2yr

-1)

Abandonment of cultivation

Croplands100% instant. aband.Realistic aband. scenario

Croplands100% instant. aband. 1993 2000

1993

cropland

2000

537.2 gC m-2

1993 2000

recovering grassland

Change in Northern Hemisphere Spring LAI

• A) detection

Piao et al., GRL, 2006

LAI trend (1982-2002)

ORCHIDEE offlineNOAA data

• B) Attribution

– Temperature– CO2

Piao et al., GRL, 2006

Change in Northern Hemisphere Spring LAI

+ 80 ppm

Friedlingstein et al., GRL, 2001Dufresne et al., GRL, 2002

850

750

650550

450

350

2501850 1900 1950 2000 2050 2100

Berthelot et al., GBC, 2002

Climate impact on land productivity

Coupled runWith impact of climate changeon the carbon cycle

CO2Emission

1860 2100

CO2CLIMATE

ClimateImpact

Carbon cycle

Atmospheric CO2

Uncoupled run

Coupled run

Climate-carbon cycle feedback

Cadule et al., in prep

Model validation withatmospheric CO2

• Seasonal cycle

• Long term trend

Cadule et al., in prep

Mauna Loa mean seasonal cycle

• Test on carbon cycle sensitivity to climate ?

Data assimilation system at LSCE

• Optimize model trajectory using currentcurrent observations (i.e. satellite fAPAR,…)

• Optimize model parameters using current observations (i.e. Flux data, atmospheric CO2,…)

• Optimize model initial conditions: C-pools

Optimizer BFGSJ(X) and dJ(X)/X

flux tower measurements

PFT compositionecosystem parameters initial conditions

parameters(X) ≠

J(X) M(X)

Yflux

satellitefAPARYfAPAR

J(X) J(X)

climate NEE, H, LE

Variational data assimilation system

Bayesian optimization

iterative minimization of J(X)bound constrained optimizationdJ(x)/dx computed using the Tangent Linear version of ORCHIDEE

J(X) = (Yfluxseason- M(x))T Rseason

-1 (Yfluxseason- M(x)) +

(YfAPAR - M(x))T RfAPAR-1 (YfAPAR - M(x)) +

(x-xp)T B-1 (x-xp)

Governing processes and parameters to optimize

1 year 1 year 1 year 1 year

AB

(97-

98)

BX

(97-

98)

TH

(98-

99)

WE

(98-

99)

FCO2 (gC/m2/Jour) FH2O (W/m2)

a priori model

Optimized model

Observations

Seasonal cycle fit: temperate conifers

Diurnal Cycle

a priori model

Optimized model

Observations

AB

(97-

98)

BX

(97-

98)

TH

(98-

99)

WE

(98-

99)

FCO2 FSENS(μmol/m2/s

)(W/m2) (W/m2)

FH2O

Diurnal cycle fit: temperate conifers

Diurnal Cycle Diurnal Cycle

Comparison with independant data: Kvmax

Leaves Age

Observations (Porté et al., 98)

Vc,jmax optimized

Vc,jmax a priori

Vcm

ax(μ

mol

m-2

s-1)

Vjm

ax(μ

mol

m-2

s-1)

Dependency of the carboxylation rates wrt leaves age

Saleska et al. Science, 2003

Wet Dry

Counterintuitive seasonal NEE patternsin (parts of) the Amazon

Carbon uptake during the dry season

Latent heat flux results

33

Soil depth (m)prior optim2.0 6.8

Higher soil depth confirms previous studies: e.g. Kleidon et al. 1999 

NEE results

34

Tapajós km 67: Soil depth 10mReserve Jarú: Soil depth 3.5m

Counterintuitive behaviourExpected behaviour

NEE results

35

Optimisation with Vcmax and SLA varying each month

Leaf flush /increased photosynthetic capacity observed: field data (Malhado et al. 2009, Bonal et al. 2008); modelling (Poulter et al. 2009); remote sensing (Myneni et al. 2007). 

Adaptation of leafs to high light conditions

Parameter Error correlations

36

Photosynthesis

Soil water stress on photosynthesis

Phenology

Respiration

Soil water stress on respiration

Assimilation of MODIS data

• Global scale assimilation..(following Demarty et al. 2005)

• Assimilation of MODIS fAPAR data to correct the simulated LAI of ORCHIDEE

correct the trajectory of the model

Assimilation of MODIS data

2000 GPP differences (assim – ref)gC/m^2/year

● On a global scale, assimilation of LAI MODIS for years 2000-2001

advance of the greening and decrease of the growing season length

over northern temperate latitudes

decrease of the GPP

● Improvement of 25% for GPP RMSE over 40 FLUXNET sites

Assimilation of MODIS data

Assimilation of MODIS data: validation

fAPA

RN

EE

(g

C/m

²/day

)Parameter optimization at site level:

can we use satellite fAPAR and Flux data ?

flux assimilation

PSPOT3

fAPAR assimilationPSPOT3

strong decrease of the carbon uptake during the growing season

observation prior

posterior

Fontainebleau: decideous forest

Model data fusion : Next steps for the Carbon Cycle ?

• Improve “Operational operators”- Satellite data use RT code

• Better handle non-linearities & Thresholds

• Multi-data assimilation systems- Data relevant for all temporal scales- in particular Biomass data, Atm. CO2, …

• Incude Water cycle data in the assimilation…

Carbon data assimilation system

Meteo. dataPrior param. calibration

Optimized Carbone fluxes & pools and model parameters

(values & uncertainties)

Satellite data

Atmos. Conc.

Fossil fuel & Biomass bur

fluxes

Flux Tower

Assimilation data Validation data

CO2 vertical Profiles

Forest & SoilC stock change

Net Primary Prod.

Satellite data

Forest & Soil C inventories

Forcing data

Ocean fluxModel

CARBONES project : 30-yrs of carbon fluxes using several data stream

Challenges for the Biogeochemical cycles

• Soil processes (carbon dynamic)

• Land use history

• Species competitions & Adaptation to climate changes

• Biotic effects on forests(i.e. insect damage)

• Lag effects of climate extreme

0

2

4

6

8

10

60 120 180 240 300

DOY

ΔC

(m

m)

2002

2003

2004

2005

Tree size increment (Beach forest)

Additional material

The terrestrial nitrogen cycle (PgN yr-1)

N2

NO3-1.7 NH4

+ 0.191.7organicresidue

denitrifiers

N2

ammonifiers

NH3+

glutaminesynthetase

nitratereductase

NH4+

fungus

[nitrogenase]

death

assimilation

uptake

uptake

Pools C:Nplant 17 36fungi 8 5bacteria 6 5dead N 132 11[atmos. 4x106]

0.190.15

1.51

fixers

nitrifiers river flow

0.04

11

humus1.1

Water routing + irrigation computed in a consistent manner

Comparaison NDVI ORCHIDEE LAI

Anomalie de NDVI(MODIS)

Anomalie de LAI

(ORCHIDEE)

Pixel de forêt(Massif Central)

Extensive evaluation over more than 30 sites

Average diurnal cycle (JJA)

H(W/m2)

LE(W/m2)

Rn(W/m2)

ORCHIDEE

EC measurements

NEE(µmol/m2/mth)

Impact of critical periods on ecosystem C fluxes:

Lemaire et al. in prep

GPP TER

ObservationsORCHIDEE Model

CRITICAL PERIODS = HOT SPOTS

Assessing hot spots in data and model :

Long-term Proxies of extreme years relating drougth and C fluxes:

Crop Yields (FAO)

1976 2003

P.C. Smith et al. 2009, in press

Long-term proxies of extreme years relating drought and C fluxes:

C isotope of plant biomass in grassland (Rothamsted - England)

1976 2003

Eglin et al., in prep10 Dryest spring

Validation by remote sensing

FPAR modeled relativeanomaly (% of normal )

FPAR from MODISanomaly (% of normal)

FPAR Fraction of Absorbed Photosynthetically Active Radiationanomalies in summer (JAS)

2003

2005